Problems	Prof. Peter Koepke
Series 4	Dr. Philipp Schlicht

Problem 19 (3 points). Show that for any ordinal α , $\alpha + \omega$ is a limit ordinal. Use this to show that the class of all limit ordinals is a proper class.

Problem 20 (3 points). The *Collection Scheme* states that for every relation R and for every set x, there is a set y such that

 $\forall u \in x \ (\exists v \ (u, v) \in R \Rightarrow \exists w \in y \ (u, w) \in R).$

Prove the Collection Scheme (hint: use the von Neumann hierarchy.)

Problem 21 (6 points). Prove that the definitions of the following functions and relations on \mathbb{Q} in Definition 53 d)-f) are independent of the representatives.

 $\begin{array}{ll} (1) & +^{\mathbb{Q}} \\ (2) & \cdot^{\mathbb{Q}} \\ (3) & <_{\mathbb{Q}} \end{array}$

Problem 22 (4 points). Show that $(\mathbb{R}^+, \mathbb{R}, 1^{\mathbb{R}})$ is a multiplicative group.

Problem 23 (4 points). Show that $V_{\omega+\omega}$ is closed under the following operations.

- (1) Power sets, pairs, ordered pairs and unions.
- (2) For every formula $\varphi(x, y, z)$, the map f_{φ} sending an ordered pair (y, z) to the set

 $f_{\varphi}(y,z) = \{ x \in y \mid \varphi(x,y,z) \}.$

Due Friday, November 18, before the lecture.