Problems	Prof. Peter Koepke
Series 3	Dr. Philipp Schlicht

Problem 10 (4 points). Prove the following statements.

- (1) Ord is a proper class.
- (2) There is no function $f: \omega \to \text{Ord}$ such that f(n+1) < f(n) for all $n \in \omega$.

Problem 11 (6 points). Prove the following principles of \in -induction and \in -recursion.

(1) Let $\varphi(x, v_0, \dots, x_{n-1})$ be an \in -formula and $x_0, \dots, x_{n-1} \in V$. Suppose that

$$\forall x [(\forall y \in x \ \varphi(y, x_0, \dots, x_{n-1})) \to \varphi(x, x_0, \dots, x_{n-1})]$$

holds. Then $\forall x \ \varphi(x, x_0, \dots, x_{n-1})$.

(2) Let $G: V \to V$. Then there is a canonical class term F such that $F: V \to V$ and $\forall x \ F(x) = G(F \upharpoonright x)$, and moreover F = F' for any class term F' with this property.

Problem 12 (8 points). Prove the following statements for all ordinals α, β, γ .

- (1) $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma).$
- (2) $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma).$
- (3) $\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma).$
- (4) + and \cdot are not commutative on *Ord*.
- **Problem 13** (4 points). (1) Suppose that α, γ are ordinals with $\alpha \leq \gamma$. Prove that there is a unique ordinal β such that $\alpha + \beta = \gamma$.
 - (2) Suppose that α, δ are ordinals with $\alpha \leq \delta$. Prove that there are unique ordinals β, γ such that $\alpha \cdot \beta + \gamma = \delta$ and $\gamma < \alpha$.

Due Friday, November 11, before the lecture.