Set theory - Winter semester 2016-17

Problems	Prof. Peter Koepke
Series 1	Dr. Philipp Schlicht

Problem 1 (4 points). Prove the following statements.
(1) $\cup V=V$.
(2) $\cap V=\emptyset$.
(3) $\bigcup \emptyset=\emptyset$.
(4) $\cap \emptyset=V$.

Problem 2 (4 points). Suppose that F, G are functions.
(1) Show that $F=G$ if and only if $\operatorname{dom}(F)=\operatorname{dom}(G)$ and $F(x)=G(x)$ for all $x \in \operatorname{dom}(F)=\operatorname{dom}(G)$,
(2) Show that F is injective if and only if there is a function H with $\operatorname{dom}(H)=\operatorname{ran}(F)$ and $H(F(x))=x$ for all $x \in \operatorname{dom}(F)$.

Problem 3 (4 points). (1) Show that $\langle x, y\rangle:=\{\{x, 0\},\{y,\{y, \emptyset\}\}\}$ also satisfies the fundamental property of ordered pairs.
(2) Can $\{x,\{y, \emptyset\}\}$ be used as an ordered pair?

Problem 4 (4 points). Prove the following statements.
(1) $\forall x \forall y \exists z z=(x, y)$.
(2) If $(x, y) \in A$, then $x, y \in \bigcup \bigcup A$.

Problem 5 (4 points). Define a relation \sim on V by $x \sim y \leftrightarrow$ there is a bijective function $f: x \rightarrow y$. One says that x and y are equinumerous or equipollent. Show that \sim is an equivalence relation on V. What is the equivalence class of \emptyset ? What is the equivalence class of $\{\emptyset\}$

