U	
Problems	Prof. Peter Koepke
Series 1	Dr. Philipp Schlicht

Set theory - Winter semester 2016-17

Problem 1 (4 points). Prove the following statements.

- (1) $\bigcup V = V$.
- (2) $\bigcap V = \emptyset$.
- (3) $\bigcup \emptyset = \emptyset$.
- (4) $\bigcap \emptyset = V.$

Problem 2 (4 points). Suppose that F, G are functions.

- (1) Show that F = G if and only if dom(F) = dom(G) and F(x) = G(x) for all $x \in dom(F) = dom(G)$,
- (2) Show that F is injective if and only if there is a function H with dom(H) = ran(F) and H(F(x)) = x for all $x \in dom(F)$.

Problem 3 (4 points). (1) Show that $\langle x, y \rangle := \{\{x, 0\}, \{y, \{y, \emptyset\}\}\}$ also satisfies the fundamental property of ordered pairs.

(2) Can $\{x, \{y, \emptyset\}\}$ be used as an ordered pair?

Problem 4 (4 points). Prove the following statements.

- (1) $\forall x \forall y \exists z \ z = (x, y).$
- (2) If $(x, y) \in A$, then $x, y \in \bigcup \bigcup A$.

Problem 5 (4 points). Define a relation \sim on V by $x \sim y \leftrightarrow$ there is a bijective function $f: x \to y$. One says that x and y are equinumerous or equipollent. Show that \sim is an equivalence relation on V. What is the equivalence class of \emptyset ? What is the equivalence class of $\{\emptyset\}$

Due Friday, October 28, before the lecture.