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1 Introduction

Wann sollte die Mathematik je zu einem Anfang gelangen, wenn sie warten wollte, bis
die Philosophie über unsere Grundbegriffe zur Klarheit und Einmüthigkeit gekommen ist?
Unsere einzige Rettung ist der formalistische Standpunkt, undefinirte Begriffe (wie Zahl,
Punkt, Ding, Menge) an die Spitze zu stellen, um deren actuelle oder psychologische oder
anschauliche Bedeutung wir uns nicht kümmern, und ebenso unbewiesene Sätze (Axiome),
deren actuelle Richtigkeit uns nichts angeht. Aus diesen primitiven Begriffen und Urtheilen
gewinnen wir durch Definition und Deduction andere, und nur diese Ableitung ist unser
Werk und Ziel. (Felix Hausdorff, 12. Januar 1918)

Mathematics models real world phenomena like space, time, number, probability,
games, etc. It proceeds from initial assumptions to conclusions by rigorous arguments.
Its results are “universal” and “logically valid”, in that they do not depend on external
or implicit conditions which may change with time, nature or society.

It is remarkable that mathematics is also able tomodel itself : mathematical logic defines
rigorously what mathematical statements and rigorous arguments are. The mathematical
enquiry into the mathematical method leads to deep insights into mathematics, applica-
tions to classical field of mathematics, and to new mathematical theories. The study of
mathematical language has also influenced the theory of formal and natural languages in
computer science, linguistics and philosophy.

(Pure) mathematics is a formal science. The formal character of mathematical state-
ments and arguments is the basis for the self-modelling of mathematics in mathematical
logic. We sketch some aspects of mathematical logic in the following subsections.

1.1 A simple proof

We want to indicate that rigorous mathematical proofs can be generated by applying
simple text manipulations to mathematical statements. Let us consider a fragment of the
elementary theory of functions which expresses that the composition of two surjective maps
is surjective as well:

Let f and g be surjective, i.e., for all y there is x such that y = f(x), and
for all y there is x such that y= g(x).
Theorem. g ◦ f is surjective, i.e., for all y there is x such that y= g(f(x)).
Proof . Consider any y. Choose z such that y = g(z). Choose x such that
z= f(x). Then y= g(f(x)). Thus there is x such that y= g(f(x)). Thus for
all y there is x such that y= g(f(x)).
Qed .

These statements and arguments are expressed in an austere and systematic language,
which can be normalized further. Logical symbols like ∀ and ∃ abbreviate figures of lan-
guage like “for all” or “there exists”:
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Let ∀y∃x y= f(x).
Let ∀y∃x y= g(x).
Theorem. ∀y∃x y= g(f(x)).
Proof. Consider y.
∃x y= g(x).
Let y= g(z).
∃x z= f(x).
Let z= f(x).
y= g(f(x)).
Thus ∃x y= g(f(x)).
Thus ∃x y= g(f(x)).
Thus ∀y∃x y= g(f(x)).
Qed.

These lines can be considered as formal sequences of symbols. Certain sequences of
symbols are acceptable as mathematical formulas. There are rules for the formation of
formulas which are acceptable in a proof. These rules have a purely formal character and
they can be applied irrespectively of the “meaning” of the symbols and formulas.

1.2 Formal proofs

In the example, ∃x y = g(f(x)) is inferred from y = g(f(x)). The rule of existential
quantification: “put ∃x in front of a formula” can usually be applied. It has the character
of a left-multiplication by ∃x.

∃x , ϕ� ∃xϕ.

Logical rules satisfy certain algebraic laws like associativity. Another interesting operation
is substitution: From y = g(z) and z = f(x) infer y = g(f(x)) by a “find-and-replace”-
substitution of z by f(x).

Given a sufficient collection of rules, the above sequence of formulas,
involving “keywords” like “let” and “thus” is a deduction or derivation in which every line
is generated from earlier ones by syntactical rules. Mathematical results may be prov-
able simply by the application of formal rules. In analogy with the formal rules of the
infinitesimal calculus one calls a system of rules a calculus.

1.3 Syntax and semantics

Obviously we do not just want to describe a formal derivation as a kind of domino but we
want to interpret the occuring symbols as mathematical objects. Thus we let variables x,
y,
 range over some domain like the real numbers R and let f and g stand for functions
F , G: R → R . Observe that the symbol or “name” f is not identical to the function
F , and indeed f might also be interpretated as another function F ′. To emphasize the
distinction between names and objects, we classify symbols, formulas and derivations as
syntax whereas the interpretations of symbols belong to the realm of semantics .

By interpreting x, y, 
 and f , g, 
 in a structure like (R, F , G) we can define
straightforwardly whether a formula like ∃xg(f(x)) is satisfied in the structure. A formula
is logically valid if it is satisfied under all interpretations. The fundamental theorem of
mathematical logic and the central result of this course is Gödel’s completeness theorem:

Theorem. There is a calculus with finitely many rules such that a formula is derivable in
the calculus iff it is logically valid.
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1.4 Object theory and meta theory

We shall use the common, informal mathematical language to express properties of a
formal mathematical language. The formal language forms the object theory of our studies,
the informal mathematical language is the “higher” or meta theory of mathematical logic.
There will be strong parallels between object and meta theory which says that the mod-
elling is faithful.

1.5 Set theory

In modern mathematics notions can usually be reduced to set theory: non-negative integers
correspond to cardinalities of finite sets, integers can be obtained via pairs of non-neg-
ative integers, rational numbers via pairs of integers, and real numbers via subsets of
the rationals, etc. Geometric notions can be defined from real numbers using analytic
geometry: a point is a pair of real numbers, a line is a set of points, etc. It is remarkable
that the basic set theoretical axioms can be formulated in the logical language indicated
above. So mathematics may be understood abstractly as

Mathematics = (first-order) logic + set theory.

Note that we only propose this as a reasonable abstract viewpoint corresponding to the
logical analysis of mathematics. This perspective leaves out many important aspects like
the applicability, intuitiveness and beauty of mathematics.

1.6 Circularity

We shall use sets as symbols which can then be used to formulate the axioms of set theory.
We shall prove theorems about proofs. This kind of circularity seems to be unavoidable in
comprehensive foundational science: linguistics has to talk about language, brain research
has to be carried out by brains. Circularity can lead to paradoxes like the liar’s paradox:
“I am a liar”, or “this sentence is false”. Circularity poses many problems and seems to
undermine the value of foundational theories. We suggest that the reader takes a naive
standpoint in these matters: there are sets and proofs which are just as obvious as natural
numbers. Then theories are formed which abstractly describe the naive objects.

A closer analysis of circularity in logic leads to the famous incompleteness theorems of
Gödel’s:

Theorem. Formal theories which are strong enough to “formalize themselves” are not
complete, i.e., there are statements such that neither it nor its negation can be proved in
that theory. Moreover such theories cannot prove their own consistency.

It is no surprise that these results, besides their initial mathematical meaning had a
tremendous impact on the theory of knowledge outside mathematics, e.g., in philosophy,
psychology, linguistics.

2 The Syntax of first-order logic: Symbols, terms, and
formulas

The art of free society consists first
in the maintenance of the symbolic
code.
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A. N. Whitehead

Formal mathematical statements will be finite sequences of symbols, just like ordinary
sentences are sequences of alphabetic letters. These sequences can be studied mathemat-
ically. We shall treat sequences as mathematical objects, similar to numbers or vectors.

The study of the formal properties of symbols, words, sentence,... is called syntax .
Syntax will later be related to the “meaning” of symbolic material, its semantics. The
interplay between syntax and semantics is at the core of logic. A strong logic is able to
present interesting semantic properties, i.e., properties of interesting mathematical struc-
ture, already in its syntax.

We build the formal language with formulas like ∀y∃x y = g(f(x)) recursively from
atomic building blocks.

2.1 Symbols

A symbol has some basic information about its role within larger contexts like words and
sentences. E.g., the symbol 6 is usually used to stand for a binary relation. So we let
symbols include information on its function, like denoting a “relation”, together with further
details, like “binary”.

Definition 1. The basic symbols of first-order logic are

a) ≡ for equality,

b) ¬,→,⊥ for the logical operations of negation, implication and the truth value false,

c) ∀ for universal quantification,

d) ( and ) for auxiliary bracketing.

e) variables vn for n∈N.

Let Var= {vn|n∈N} be the class of variables and let S0 be the class of basic symbols.
There is a sufficiently rich class of relation symbols. Every relation symbol R possesses

an arity which is a natural number. 1-ary relation symbols are called unary, 2-ary relation
symbols are called binary. A 0-ary relation symbol is also called a propositional constant
(symbol).

Moreover there is a sufficiently rich class of function symbols. Every function symbol
f possesses an arity which is a natural number. A 0-ary function symbol is also called a
constant (symbol)l.

A symbol class or a language is a class of relation symbols and function symbols.
We assume that the basic symbols, the relation symbols, and the function symbols are

all pairwise distinct.

An n-ary relation symbol is intended to denote an n-ary relation; an n-ary function
symbol is intended to denote an n-ary function in some structure. A symbol class is also
called a type because it describes the type of structures which will later interpret the
symbols. We shall denote variables by letters like x, y, z , 
 , relation symbols by P , Q,
R,
 , functions symbols by f , g,h,
 and constant symbols by c, c0, c1,
 We shall also use
other typographical symbols in line with standard mathematical practice. A symbol like
<, e.g., usually denotes a binary relation, and we could assume for definiteness that there
is some fixed formalization of < like <=(1, 999, 2), where 1 indicates a relation (symbol),
999 is the “name” of the symbol, and 2 is its arity. Instead of the arbitrary 999 one could
also take the number of < in some typographical coding system like unicode; there < is
coded by the decimal number 60.
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Example 2. The language of group theory is the language

SGr= {◦, e},

where ◦ is a binary function symbol and e is a constant (symbol). Again one could be
definite about the coding of symbols and set SGr = {(2, 9900, 2), (2, 101, 0)}, following
unicode, but we shall not care about such details. As usual in algebra, one also uses an
extended language of group theory

SGr′= {◦,−1, e}

to describe groups, where −1 is a unary function symbol (for forming inverses).

2.2 Words

Words:
A letter and a letter on a string
Will hold forever humanity spell-
bound
The Real Group

Definition 3. Let S be a language. A word over S is a finite sequence

w= s0s1
 sn−1

where each si is an element of S0∪S. The number n is called the length of w: length(w)=
n . The empty sequence ∅ is also called the empty word. Let S∗ be the class of all words
over S.

Definition 4. If w= s0s1
 sm−1 and w ′= s0
′s1

′

 sn−1

′ are words over S then

w	w ′= s0s1
 sm−1s0
′s1

′

 sn−1

′

is the concatenation of w and w ′. We also write ww ′ instead of w	w ′.

Exercise 1. The operation of concatenation satisfies some canonical laws:

a) 	 is associative: (ww ′)w ′′=w(w ′w ′′).

b) ∅ is a neutral element for 	 : ∅w=w∅=w.

c) 	 satisfies cancelation: if uw= u′w then u= u′; if wu=wu′ then u= u′.

2.3 Terms

Fix a language S.

Definition 5. The class TS of all S-terms is the smallest subclass of S∗ such that

a) x∈TS for all variables x;

b) ft0
 tn−1 ∈ TS for all n ∈ N, all n-ary function symbols f ∈ S, and all t0, 
 ,

tn−1∈ TS.

Terms are written in Polish notation, meaning that function symbols come first and

that no brackets are needed. Indeed, terms in TS have unique readings according to the
following

Lemma 6. For every term t∈TS exactly one of the following holds:

a) t is a variable;

The Syntax of first-order logic: Symbols, terms, and formulas 7



b) there is a uniquely defined function symbol f ∈ S and a uniquely defined sequence
t0,
 , tn−1∈T S of terms, where f is n-ary, such that t= ft0
 tn−1 .

Proof. Exercise. �

Remark 7. Unique readability is essential for working with terms. Therefore if this Lemma
would not hold one would have to alter the definition of terms.

Example 8. For the language SGr= {◦, e} of group theory, terms in TSGr look like

e, v0, v1,
 , ◦ee, ◦evm , ◦vm e , ◦ee , ◦e◦ee ,
 , ◦vi ◦vj vk , ◦◦vi vj vk ,
 .

In standard notation we would write ◦vi ◦vj vk as (vi ◦ (vj ◦ vk)) and ◦◦vi vj vk as
=((vi◦vj)◦vk). Later, if the operation ◦ should be seen to be associative, one might “leave
out” some brackets.

Exercise 2. Show that every term t∈TSGr has odd length 2 n+1 where n is the number of ◦-symbols
in t.

2.4 Formulas

Definition 9. The class LS of all S-formulas is the smallest subclass of S∗ such that

a) ⊥∈LS (the false formula);

b) t0≡ t1∈LS for all S-terms t0, t1∈T S (equality);

c) Rt0
 tn−1∈LS for all n-ary relation symbols R∈S and all S-terms t0,
 , tn−1∈TS

(relational formula);

d) ¬ϕ∈LS for all ϕ∈LS (negation);

e) (ϕ→ ψ)∈LS for all ϕ, ψ ∈LS (implication);

f ) ∀xϕ∈LS for all ϕ∈LS and all variables x (universalisation).

LS is also called the first-order language for the symbol class S. Formulas produced by
conditions a) - c) only are called atomic formulas since they constitute the initial steps of
the formula calculus.

We restrict LS to just the logical connectives ¬ and →, and the quantifier ∀. The next
definition introduces other connectives and quantifiers as convenient abbreviations for
formulas in LS. For theoretical considerations it is however advantageous to work with
a “small” language.

Definition 10. For S-formulas ϕ and ψ and a variable x write

− ⊤ (“true”) instead of ¬⊥ ;

− (ϕ∨ ψ) (“ϕ or ψ”) instead of (¬ϕ→ ψ) is the disjunction of ϕ, ψ ;

− (ϕ∧ ψ) (“ϕ and ψ”) instead of ¬(ϕ→¬ψ) is the conjunction of ϕ, ψ ;

− (ϕ↔ ψ) (“ϕ iff ψ”) instead of ((ϕ→ ψ)∧ (ψ→ ϕ) ) is the equivalence of ϕ, ψ ;

− ∃xϕ (“for all x holds ϕ”) instead of ¬∀x¬ϕ is an existential quantification.

For the sake of simplicity one often omits redundant brackets, in particular outer
brackets. So we usually write ϕ∨ ψ instead of (ϕ∨ ψ).
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Exercise 3. Formulate and prove the unique readability of formulas in LS.

Exercise 4. Formulate the standard axioms of group theory in LSGr.

3 Implementations of first-order syntax

We have defined the syntactic notions in informal mathematical language. To be more
formal, one could formalize those notions in some foundational mathematical theory. We
shall consider formalizations in set theory and in some programming language.

3.1 Formalization in set theory without infinity

Set theory the widely accepted foundation of mathematics. Hence the syntactical notions
introduced so far should be formalizable in set theory. Since the notions of symbol and
formula are finitary, they should not require the axiom of infinity. So we shall work in
standard set theory without infinity. We shall later present set theory axiomatically. For
the moment we work in the usual “naive” set theory, without employing infinite sets.

We introduce some basic notions of set theory. The term

{x |A(x)}

denotes the class of all sets x which satisfy the property A. V = {x |x=x} is the class of
all sets or the set theoretical universe and ∅= {x | x � x} is the empty set . We can form
pairs of elements as the set

{x, y}= {z | z= x or z= y}.

Ordered pairs and triples can be formalized as

(x, y) = {{x}, {x, y}}

(x, y, z) = ((x, y), z)

The natural numbers can be defined, without assuming infinite sets, as a class N which
contains the recursively defined numbers

0 = ∅

1 = {0}

2 = {0, 1}

3 = {0, 1, 2}


 = 


The cartesian product of A and B is

A×B= {(x, y)| x∈A and y ∈B}.

The cartesian powers of A are defined recursively as

A0 = {0}

A1 = A

An+2 = An+1×A

An n-ary relation on A is a subclass R ⊆ An. An n-ary function on A is a function f :
An→A .

Implementations of first-order syntax 9



We can now begin to embed syntax into set theory by defining symbols to be certain
fixed sets.

Definition 11. Set

a) ≡=0,

b) ¬=1 ,

c) →=2 ,

d) ⊥=3 ,

e) ∀=4 ,

f ) (=5 ,

g) )= 6 ,

h) vn=(0, n, 0),

i) an n-ary relation symbol is a set R of the form R= (1, x, n),

j ) an n-ary function symbol is a set f of the form f = (2, x, n).

This provides us with sufficiently many pairwise distinct relation symbols and function
symbols.

Words are sequences of symbols, and these can be formalized set-theoretically as func-
tions from natural numbers to symbols.

Definition 12. Let S be a language. A word over S is a function

w:n→S0∪S

for some number n∈N which is the length of w. Note that n= {0,
 , n− 1} so that

w: {0,
 , n− 1}→S0∪S.

We denote w also by w0
wn−1 . For finite sequences w = w0
wm−1 and w ′ = w0
′

wn−1

′

define the concatenation wˆw ′=w0
wm−1w0
′

wn−1

′ of w and w ′ by

wˆw ′(i)=

{

w(i), if i <m ;
w ′(i−m), if i>m.

These formalizations will also allow the further development to be carried out in set
theory.

3.2 Implementations in programming languages

Finite sequences of symbols can be easily handled by computers and programming lan-
guages. We quote some code from the implementation of first-order logic in OCaml by
John Harrison, where the syntactic categories are defined as inductive data types.

type term = Var of string

| Fn of string * term list;;

(* -------------------------------------------------------------------------

*)

(* Example.

*)
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(* -------------------------------------------------------------------------

*)

START_INTERACTIVE;;

Fn("sqrt",[Fn("-",[Fn("1",[]);

Fn("cos",[Fn("power",[Fn("+",[Var "x"; Var "y"]);

Fn("2",[])])])])]);;

END_INTERACTIVE;;

Any string can be come a variable by prefixing it with the “constructor” Var: Var "x".
Any string can become a function symbol by using the constructor Fn: Fn("+",[Var "x";

Var "y"]) turns the string "+" into a function symbol; its argument are contained in the
2-element list [Var "x"; Var "y"]; this makes "+" a binary symbol.

Atomic relational formulas are implemented as

type fol = R of string * term list;;

So any string can also become a relation symbol. Note that there is no distinguished
equality symbol in Harrison’s approach; one could use the string "=" for it.

General first-order formulas with atomic formulas of type ’a are defined as

type (’a)formula = False

| True

| Atom of ’a

| Not of (’a)formula

| And of (’a)formula * (’a)formula

| Or of (’a)formula * (’a)formula

| Imp of (’a)formula * (’a)formula

| Iff of (’a)formula * (’a)formula

| Forall of string * (’a)formula

| Exists of string * (’a)formula;;

Then (fol) formula is the type of first order formulas.
Harrison also introduces parsing and printing routines that improve the readability of

input and output formulas, like in

<<(forall x y. exists z. forall w. P(x) /\ Q(y) ==>R(z) /\ U(w))

==> (exists x y. P(x) /\ Q(y)) ==> (exists z. R(z))>>;;

Note that in implementation of first-order logic in a computer language amounts to the
definition of a formal language within an other formal language. A computer language can
have some formal semantics within some abstract mathematical domain, or we can let it
have a concrete semantics in terms of steering a concrete electronic device like a PC.

4 Semantics

Man muß jederzeit an Stelle
von ’Punkte, Geraden, Ebenen’,
’Tische, Stühle, Bierseidel’ sagen
können”.
Quote ascribed to David Hilbert
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We shall interpret formulas like ∀y∃x y = g(f(x)) in adequate structures. The inter-
action between language and structures is usually called semantics. Technically it will
consist in mapping all syntactic material to semantic material centered around structures.
We shall obtain a mapping schema like:

∀ structure A

variable element of A

function symbol function on A

relation symbol relation on A

term element of A

formula truth value

... ...

Fix a symbol class S.

Definition 13. An S-structure is a function A defined on {∀}∪S such that

a) A(∀) is a nonempty set; A(∀) is called the underlying set of A and is often denoted
by A or |A|;

b) for every n-ary relation symbol R∈S, A(R) is an n-ary relation on A, i.e., A(r)⊆
An;

c) for every n-ary function symbol f ∈S, A(f) is an n-ary function on A, i.e., A(f):
An→A.

Again we use customary and convenient notations for the components of the structure
A, i.e., the values of A . One often writes RA, fA, or cA instead of A(r), A(f), or A(c) resp.
In simple cases, one may simply list the components of the structure. If, e.g., S= {R0,R1,

f } we may write

A=(A,R0
A, R1

A, fA)

or “A has domain A with relations R0
A, R1

A and an operation fA ”.
A constant symbol c ∈ S is interpreted by a 0-ary function A(c):A0= {0}→A which

is defined for the single argument 0 and takes a single value A(c)(0) in A. It is natural to
identify the function A(c) with the constant value A(c)(0) and obtain A(c)∈A .

One often uses the same notation for a structure and its underlying set like in

A= (A,R0
A, R1

A, fA).

This “overloading” of notation is common in mathematics (and in natural language, “pars
pro toto”). Usually a human reader is readily able to detect and “disambiguate” ambiguities
introduced by multiple usage. There are techniques in computer science to deal with
overloading, e.g., by typing of notions. Another common overloading is given by a naive
identification of syntax and semantics, i.e., by writing

A=(A,R0, R1, f) instead of A= (A,R0
A, R1

A, fA)

Since we are particularly interested in the interplay of syntax and semantics we shall try
to avoid this particular kind of overloading.

Example 14. Formalize the ordered field of reals R as follows. Define the language of
ordered fields

SOF= {<,+, ·, 0, 1}.
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Then define the SOF-structure R by

R(∀) = R

R(<)=<R = {(u, v)∈R2 |u<v}

R(+)=+R = {(u, v,w)∈R3 |u+ v=w}

R(·)= ·R = {(u, v,w)∈R3 |u · v=w}

R(0)= 0R = 0∈R

R(1)= 1R = 1∈R

This defines the standard structure R= (R, <R,+R, ·R, 0R, 1R).
Observe that the symbols could in principle be interpreted in completely different, even

counterintuitive ways like

R′(∀) = N

R′(<) = {(u, v)∈N2 |u> v}

R′(+) = {(u, v, w)∈N3 |u · v=w}

R′(·) = {(u, v, w)∈N3 |u+ v=w}

R′(0) = 1

R′(1) = 0

Example 15. Define the language of Boolean algebras by

SBA= {∧,∨,−, 0, 1}

where ∧ and ∨ are binary function symbols for “and” and “or”, − is a unary function symbol
for “not”, and 0 and 1 are constant symbols. A Boolean algebra of particular importance in
logic is the algebra B of truth values. Let B= |B|= {F,T} with F=B(0) and T=B(1).
Define the operations and=B(∧), or=B(∨), and not=B(−) by operation tables in analogy
with standard multiplication tables:

and F T

F F F

T F T

,
or F T

F F T

T T T

, and
not

F T

T F

.

Note that we use the non-exclusive “or” instead of the exclusive “either - or”.

Exercise 5. Show that every truth-function F : Bn → B can be obtained as a composition of the

functions and and not .

The notion of structure leads to derived definitions.

Definition 16. Let A be an S-structure and A′ be an S ′-structure. Then A is a reduct
of A′, or A′ is an expansion of A, if S ⊆S ′ and A′ ↾ ({∀}∪S)=A .

According to this definition, the additive group (R,+,0) of reals is a reduct of the field
(R,+, ·, 0, 1).

Definition 17. Let A,B be S-structures. Then A is a substructure of B, A⊆B, if B

is a pointwise extension of A, i.e.,

a) A= |A| ⊆ |B|;

b) for every n-ary relation symbol R∈S holds RA=RB∩An;
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c) for every n-ary function symbol f ∈S holds fA= fB↾An.

Definition 18. Let A,B be S-structures and h: |A| → |B|. Then h is a homomorphism
from A into B, h:A→B, if

a) for every n-ary relation symbol R∈S and for every a0,
 , an−1∈A

RA(a0,
 , an−1) implies RB(h(a0),
 , h(an−1));

b) for every n-ary function symbol f ∈S and for every a0,
 , an−1∈A

fB(h(a0),
 , h(an−1))=h(fA(a0,
 , an−1)).

h is an embedding of A into B, h:A� B, if moreover

a) h is injective;

b) for every n-ary relation symbol R∈S and for every a0,
 , an−1∈A

RA(a0,
 , an−1) iff RB(h(a0),
 , h(an−1)).

If h is also bijective, it is called an isomorphism.

An S-structure interprets the symbols in S. To interpret a formula in a structure, one
also has to interpret the (occuring) variables.

Definition 19. Let S be a language. An S-model is a function

M: {∀}∪S ∪Var→V

such that M ↾ {∀}∪S is an S-structure and for all n∈N holds M(vn)∈ |M|. M(vn) is the
interpretation or valuation of the variable vn in M.

It will be important to modify a model M at specific variables. For pairwise distinct
variables x0,
 , xr−1 and a0,
 , ar−1∈ |M| define

M
a0
 ar−1

x0
xr−1
=(M \ {(x0,A(x0)),
 , (xr−1,A(xr−1))})∪{(x0, a0),
 , (xr−1, ar−1)}.

5 The satisfaction relation

“What is truth?” Pilate asked.
John 18:38

We now define the semantics of first-order languages by interpreting terms and formulas
in models.

Definition 20. Let M be an S-model. Define the interpretation M(t) ∈ |M| of a term
t∈ TS by recursion on the term calculus:

a) for t a variable, M(t) is already defined;

b) for an n-ary function symbol and terms t0,
 , tn−1∈T S, let

M(ft0
 .tn−1)= fA(M(t0),
 ,M(tn−1)).

This explains the interpretation of a term like v3
2+ v200

3 in the reals.
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Definition 21. Let M be an S-model. Define the interpretation M(ϕ)∈B of a formula
ϕ∈LS, where B={F,T} is the Boolean algebra of truth values, by recursion on the formula
calculus:

a) M(⊥)=F ;

b) for terms t0, t1∈T S: M(t0≡ t1)=T iff M(t0)=M(t1);

c) for every n-ary relation symbol R∈S and terms t0,
 , t1∈ TS

M(Rt0
 tn−1)=T iff RM(M(t0),
 ,M(tn−1));

d) M(¬ϕ)=T iff M(ϕ)=F ;

e) M(ϕ→ ψ)=T iff M(ϕ)=T implies M(ψ)=T;

f ) M(∀vnϕ)=T iff for all a∈ |M| holds M
a

vn
(ϕ)=T.

We write M� ϕ instead of M(ϕ)=T. We also say that M satisfies ϕ or that ϕ holds in
M or that ϕ is true in M. For Φ⊆LS write M�Φ iff M� ϕ for every ϕ∈Φ.

Definition 22. Let S be a language and Φ⊆LS. Φ is universally valid if Φ holds in every
S-model. Φ is satisfiable if there is an S-model M such that M�Φ.

The language extension by the (abbreviating) symbols ∨,∧,↔,∃ is consistent with the
expected meanings of the additional symbols:

Exercise 6. Prove:

a) M�(ϕ∨ ψ) iff M�ϕ or M � ψ;

b) M � (ϕ∧ ψ) iff M � ϕ and M � ψ;

c) M�(ϕ↔ ψ) iff M�ϕ is equivalent to M � ψ;

d) M � ∃vnϕ iff there exists a∈ |M| such that M
a

vn

� ϕ.

With the notion of � we can now formally define what it means for a structure to be
a group or for a function to be differentiable. Before considering examples we make some
auxiliary definitions and simplifications.

It is intuitively obvious that the interpretation of a term only depends on the occuring
variables, and that satisfaction for a formula only depends on its free, non-bound variables.

Definition 23. For t∈TS define var(t)⊆{vn|n∈N} by recursion on (the lengths of) terms:

− var(x)= {x};

− var(c)= ∅;

− var(ft0
 tn−1)=
⋃

i<n
var(ti).

Definition 24. Für ϕ∈LS define the set of free variables free(ϕ)⊆{vn|n∈N} by recursion
on (the lengths of) formulas:

− free(t0≡ t1)= var(t0)∪ var(t1);

− free(Rt0
 tn−1)= var( t0)∪
 ∪ var(tn−1);

− free(¬ϕ)= free(ϕ);

− free(ϕ→ ψ)= free(ϕ)∪ free(ψ).

− free(∀xϕ)= free(ϕ) \ {x}.
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For Φ⊆LS define the class free(Φ) of free variables as

free(Φ)=
⋃

ϕ∈Φ

free(ϕ) .

Example 25.

free(Ryx→∀y¬y= z) = free(Ryx)∪ free(∀y¬y= z)

= free(Ryx)∪ (free(¬y= z) \ {y})

= free(Ryx)∪ (free( y= z) \ {y})

= {y, x}∪ ({y, z} \ {y})

= {y, x}∪ {z}

= {x, y, z}.

Definition 26.

a) For n∈N let Ln
S= {ϕ∈LS | free(ϕ)⊆{v0,
 , vn−1}}.

b) ϕ∈LS is an S-sentence if free(ϕ)= ∅; L0
S is the class of S-sentences.

Theorem 27. Let t be an S-term and let M and M′ be S-models with the same structure
M ↾ {∀}∪S=M′ ↾ {∀}∪S and M ↾ var(t)=M′ ↾ var(t). Then M(t)=M′(t).

Theorem 28. Let t be an S-term and let M and M′ be S-models with the same structure
M ↾ {∀}∪S=M′ ↾ {∀}∪S and M ↾ free(ϕ)=M′ ↾ free(ϕ). Then

M� ϕ iff M′� ϕ.

Proof. By induction on formulas.
ϕ= t0≡ t1: Then var(t0)∪ var(t1)= free(ϕ) and

M� ϕ iff M(t0)=M(t1)

iff M′(t0)=M′(t1) by the previous Theorem,

iff M′� ϕ.

ϕ= ψ→ χ and assume the claim to be true for ψ and χ. Then

M� ϕ iff M� ψ implies M� χ

iff M′� ψ implies M′� χ by the inductive assumption,

iff M′� ϕ.

ϕ= ∀vnψ and assume the claim to be true for ψ. Then free(ψ)⊆ free(ϕ) ∪ {vn}. For all
a∈A= |M|: M

a

vn
↾ free(ψ)=M′ a

vn
↾ free(ψ) and so

M� ϕ iff for all a∈A holds M
a

vn
� ψ

iff for all a∈A holds M′ a

vn
� ψ by the inductive assumption,

iff M′� ϕ.

�

This allows further simplifications in notations for �:

Definition 29. Let A be an S-structure and let (a0, 
 , an−1) be a sequence of elements
of A. Let t be an S-term with var(t)⊆{v0,
 , vn−1}. Then define

tA[a0,
 , an−1] =M(t),

16 Section 5



where M⊇A is some (or any) S-model with M(v0)= a0 ,
 ,M(vn−1)= an−1.
Let ϕ be an S-formula with free(ϕ)⊆{v0,
 , vn−1}. Then define

A� ϕ[a0,
 , an−1] iff M� ϕ,

where M⊇A is some (or any) S-model with M(v0)= a0 ,
 ,M(vn−1)= an−1 .

In case n=0 also write tA instead of tA[a0,
 , an−1], and A� ϕ instead of A� ϕ[a0,
 ,
an−1]. In the latter case we also say: A is a model of ϕ, A satisfies ϕ or ϕ is true in A.

For Φ⊆L0
S a class of sentences also write

A�Φ iff for all ϕ∈Φ holds :A� ϕ.

Example 30. Groups. SGr: ={◦, e} with a binary function symbol ◦ and a constant
symbol e is the language of groups theory . The group axioms are

a) ∀v0∀v1 ∀v2 ◦v0 ◦ v1v2≡◦◦v0v1v2 ;

b) ∀v0 ◦v0 e≡ v0 ;

c) ∀v0∃v1 ◦v0v1≡ e .

This defines the axiom set

ΦGr= {∀v0∀v1∀v2 ◦v0 ◦ v1v2≡◦◦v0v1v2, ∀v0 ◦v0 e≡ v0, ∀v0∃v1 ◦v0v1≡ e}.

An S-structure G= (G, ∗, k) satisfies ΦGr iff it is a group in the ordinary sense.

Definition 31. Let S be a language and let Φ⊆L0
S be a class of S-sentences. Then

ModSΦ= {A |A is an S-structure and A�Φ}

is the model class of Φ. In case Φ = {ϕ} we also write ModSϕ instead of ModSΦ. We

also say that Φ is an axiom system for ModSΦ, or that Φ axiomatizes the class ModSΦ .

Thus ModSGrΦGr is the model class of all groups. Model classes are studied in generality
within model theory which is a branch of mathematical logic. For specific axiom systems

Φ the model class ModSΦ is examined in subfields of mathematics: group theory, ring

theory, graph theory, etc. Some typical questions questions are: is ModSΦ � ∅, i.e., is Φ
satisfiable? What are the elements of ModSΦ ? Can one classify the isomorphism classes
of models? What are the cardinalities of models?

Exercise 7. One may consider ModSΦ with appropriate morphisms as a category. In certain cases
this category has closure properties like closure under products. One can give the categorial definition

of cartesian product and show their existence under certain assumptions on Φ .

6 Logical implication and propositional connectives

The design of the following treatise
is to investigate the fundamental
laws of those operations of the mind
by which reasoning is performed; to
give expression to them in the sym-
bolical language of a Calculus, and
upon this foundation to establish
the science of Logic and construct
its method.
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George Boole, The Laws of
Thought

Definition 32. For a symbol class S and Φ ⊆ LS and ϕ ∈ LS define that Φ (logically)
implies ϕ (Φ� ϕ) iff every S-model I�Φ is also a model of ϕ.

Note that logical implication � is a relation between syntactical entities which is defined
via the semantic notion of interpretation. The relation Φ� ? can be viewed as the central
relation in modern axiomatic mathematics: given the assumptions Φ what do they imply?
The � -relation is usually verified by mathematical proofs . These proofs seem to refer to
the exploration of some domain of mathematical objects and, in practice, require particular
mathematical skills and ingenuity.

We will however show that the logical implication � satisfies certain simple syntactical
laws. These laws correspond to ordinary proof methods but are purely formal. Amazingly a
finite list of methods will (in principle) suffice for all mathematical proofs. This is Gödel’s
completeness theorem that we shall prove later.

Theorem 33. Let S be a language, t∈TS, ϕ, ψ ∈LS, and Γ,Φ⊆LS. Then

a) (Monotonicity) If Γ⊆Φ and Γ� ϕ then Φ� ϕ.

b) (Assumption property) If ϕ∈Γ then Γ� ϕ.

c) (→-Introduction) If Γ∪ ϕ� ψ then Γ� (ϕ→ ψ).

d) (→-Elimination) If Γ� ϕ and Γ� (ϕ→ ψ) then Γ� ψ.

e) (⊥-Introduction) If Γ� ϕ and Γ�¬ϕ then Γ�⊥ .

f ) (⊥-Elimination) If Γ∪{¬ϕ}�⊥ then Γ� ϕ.

g) (≡-Introduction) Γ� t≡ t .

Proof. f) Assume Γ∪ {¬ϕ}�⊥ . Consider an S-model with M�Γ. Assume that M2 ϕ.
Then M � ¬ϕ . M � Γ ∪ {¬ϕ}, and by assumption, M �⊥ . But by the definition of the
satisfaction relation, this is false. Thus M� ϕ . Thus Γ� ϕ . �

Exercise 8. There are similar rules for the introduction and elimination of junctors like ∧ and ∨ that
we have introduced as abbreviations:

a) (∧-Introduction) If Γ� ϕ and Γ� ψ then Γ� ϕ∧ ψ.

b) (∧-Elimination) If Γ� ϕ∧ ψ then Γ� ϕ and Γ� ψ.

c) (∨-Introduction) If Γ� ϕ then Γ� ϕ∨ ψ and Γ� ψ ∨ ϕ.

d) (∨-Elimination) If Γ� ϕ∨ ψ and Γ⊢¬ϕ then Γ� ψ.

7 Substitution and term rules

To prove further rules for equality and quantification, we first have to consider the substi-
tution of terms in formulas.

Definition 34. For a term s∈TS, pairwise distinct variables x0,
 , xr−1 and terms t0,
 ,
tr−1∈ TS define the (simultaneous) substitution

s
t0
 .tr−1

x0
xr−1
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of t0,
 , tr−1 for x0,
 , xr−1 by recursion:

a) x
t0
 .tr−1

x0
 xr−1
=

{

x, if x� x0,
 , x� xr−1

ti , if x= xi
for all variables x;

b) (fs0
 sn−1)
t0
 .tr−1

x0
 xr−1
= fs0

t0
 .tr−1

x0
 xr−1

 sn−1

t0
 .tr−1

x0
 xr−1
for all n-ary function symbols

f ∈S .

Note that the simultaneous substitution

s
t0
 .tr−1

x0
xr−1

is in general different from a successive substitution

s
t0
x0

t1
x1




tr−1

xr−1

which depends on the order of substitution. E.g., x
yx

xy
= y, x

y

x

x

y
= y

x

y
= x and

x
x

y

y

x
= x

y

x
= y.

Definition 35. For a formula ϕ ∈ LS, pairwise distinct variables x0, 
 , xr−1 and terms
t0,
 , tr−1∈T S define the (simultaneous) substitution

ϕ
t0
 .tr−1

x0
xr−1

of t0,
 , tr−1 for x0,
 , xr−1 by recursion:

a) (s0≡ s1)
t0
 .tr−1

x0
 xr−1
=s0

t0
 .tr−1

x0
 xr−1
≡ s1

t0
 .tr−1

x0
 xr−1
for all terms s0, s1∈TS;

b) (Rs0
 sn−1)
t0
 .tr−1

x0
 xr−1
=Rs0

t0
 .tr−1

x0
 xr−1

 sn−1

t0
 .tr−1

x0
 xr−1
for all n-ary relation symbols

R∈ s and terms s0,
 , sn−1∈T S;

c) (¬ϕ)
t0
 .tr−1

x0
 xr−1
=¬(ϕ

t0
 .tr−1

x0
 xr−1
);

d) (ϕ→ ψ)
t0
 .tr−1

x0
 xr−1
= (ϕ

t0
 .tr−1

x0
 xr−1
→ψ

t0
 .tr−1

x0
 xr−1
);

e) for (∀xϕ)
t0
 .tr−1

x0
 xr−1
we proceed in two steps: let xi0, 
 , xis−1

with i0 < 
 < is−1 be

exactly those xi which are “relevant” for the substitution, i.e., xi ∈ free(∀xϕ) and
xi� ti .

− if x does not occur in ti0,
 ., tis−1
, then set

(∀xϕ)
t0
 .tr−1

x0
xr−1
= ∀x (ϕ

ti0
 .tis−1

xi0
xis−1

).

− if x does occur in ti0,
 ., tis−1
, then let k ∈N minimal such that vk does not

occur in ϕ, ti0,
 ., tis−1
and set

(∀xϕ)
t0
 .tr−1

x0
xr−1
=∀vk (ϕ

ti0
 .tis−1
vk

xi0
xis−1
x
).

The following substitution theorem shows that syntactic substitution corresponds
semantically to a (simultaneous) modification of assignments by interpreted terms. The
definition of substitution was intended to make the substitution theorem true. There are
variants of the syntactical substitution which could also satisfy the substitution theorem.
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Theorem 36. Consider an S-model M, pairwise distinct variables x0,
 , xr−1 and terms
t0,
 , tr−1∈T S.

a) If s∈T S is a term,

M(s
t0
 tr−1

x0
xr−1
)=M

M(t0)
M(tr−1)
x0
xr−1

(s).

b) If ϕ∈LS is a formula,

M� ϕ
t0
 tr−1

x0
xr−1
iff M

M(t0)
M(tr−1)
x0
xr−1

� ϕ.

Proof. By induction on the complexities of s and ϕ.
a) Case 1 : s= x.
Case 1.1 : x � {x0,
 , xr−1}. Then

M(x
t0
 tr−1

x0
xr−1
)=M(x)=M

M(t0)
M(tr−1)
x0
xr−1

(x).

Case 1.2 : x=xi . Then

M(x
t0
 tr−1

x0
xr−1
)=M(ti)=M

M(t0)
M(tr−1)
x0
xr−1

(xi)=M
M(t0)
M(tr−1)

x0
xr−1
(x).

Case 2 : s = fs0
 sn−1 where f ∈ S is an n-ary function symbol and the terms s0, 
 ,
sn−1∈ TS satisfy the theorem. Then

M((fs0
 sn−1)
t0
 tr−1

x0
xr−1
) = M(fs0

t0
 tr−1

x0
xr−1

 sn−1

t0
 tr−1

x0
xr−1
)

= M(f)(M(s0
t0
 tr−1

x0
xr−1
),
 ,M(sn−1

t0
 tr−1

x0
xr−1
))

= M(f)(M
M(t0)
M(tr−1)

x0
xr−1
(s0),


 ,M
M(t0)
M(tr−1)

x0
xr−1
(sn−1))

= M
M(t0)
 .M(tr−1)

x0
xr−1
(fs0
 sn−1).

Assuming that the substitution theorem is proved for terms, we prove
b) Case 4 : ϕ=Rs0
 sn−1 . Then

M� (Rs0
 sn−1)
t0
 .tr−1

x0
xr−1
iff M�Rs0

t0
 .tr−1

x0
xr−1

 sn−1

t0
 .tr−1

x0
xr−1

iff RM

(

M(s0
t0
 .tr−1

x0
xr−1
),
 ,M(s1

t0
 .tr−1

x0
xr−1
)

)

iff RM

(

M
M(t0)
 .M(tr−1)

x0
xr−1
(s0),


 ,M
M(t0)
 .M(tr−1)

x0
xr−1
(sn−1)

)

iff M
M(t0)
 .M(tr−1)

x0
xr−1
�Rs0
 sn−1

Equations s0≡ s1 can be treated as a special case of the relational Case 4 . Propositional
combinations of formulas by ⊥ , ¬ and → behave similar to terms; indeed formulas can be
viewed as terms whose values are truth values. So we are left with universal quantification:
Case 5 : ϕ=(∀xψ)

t0
 .tr−1

x0
 xr−1
, assuming that the theorem holds for ψ.
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We proceed according to our definition of syntactic substitution. Let xi0,
 , xis−1
with

i0<
 <is−1 be exactly those xi such that xi∈ free(∀xψ) and xi� ti . Since

M
M(t0)
M(tr−1)

x0
xr−1
� ϕ iff M

M(ti0)
M(tis−1
)

xi0
 xis−1

� ϕ,

we can assume that (x0,
 , xr−1)= (xi0,
 , xis−1
), i.e., every xi is free in ∀xψ, xi� x, and

xi� ti . Now follow the two cases in the definition of the substitution:

Case 5.1 : The variable x does not occur in t0,
 ., tr−1 and

(∀xψ)
t0
 .tr−1

x0
xr−1
= ∀x (ψ

t0
 .tr−1

x0
xr−1
).

M� (∀xψ)
t0
 tr−1

x0
xr−1
iff M�∀x (ψ

t0
 tr−1

x0
 xr−1
)

iff for all a∈M holds M
a

x
� ψ

t0
 tr−1

x0
xr−1

(definition of �)

iff for all a∈M holds

(M
a

x
)
M

a

x
(t0)
M

a

x
(tr−1)

x0
xr−1
� ψ

(by the inductive hypothesis for ψ)

iff for all a∈M holds

(M
a

x
)
M(t0)
M(tr−1)

x0
xr−1
� ψ

(since x does not occur in ti)

iff for all a∈M holds

M
M(t0)
M(tr−1) a

x0
xr−1 x
� ψ

(since x does not occur in x0,
 , xr−1)

iff for all a∈M holds

(M
M(t0)
M(tr−1)

x0
xr−1
)
a

x
� ψ

(by simple properties of assignments)

iff M
M(t0)
M(tr−1)

x0
xr−1
�∀xψ

Case 5.2 : The variable x occurs in t0,
 ., tr−1 . Then

(∀xψ)
t0
 .tr−1

x0
xr−1
= ∀vk (ψ

t0
 .tr−1vk
x0
xr−1

x
),

where k ∈N is minimal such that vk does not occur in ϕ, ti0,
 ., tis−1
.

M� (∀xψ)
t0
 tr−1

x0
 xr−1
iff M�∀vk (ψ

t0
 .tr−1vk
x0
xr−1x

)

iff for all a∈M holds M
a

vk
� ψ

t0
 tr−1vk
x0
xr−1x

iff for all a∈M holds

(M
a

vk
)
M

a

vk
(t0)
M

a

vk
(tr−1)M

a

vk
(vk)

x0
xr−1 x
� ψ

(inductive hypothesis for ψ)
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iff for all a∈M holds

(M
a

x
)
M(t0)
M(tr−1)a

x0
xr−1x
� ψ

(since vk does not occur in ti)

iff for all a∈M holds

M
M(t0)
M(tr−1) a

x0
xr−1x
� ψ

(since x is anyway sent to a)

iff for all a∈M holds

(M
M(t0)
M(tr−1)

x0
xr−1
)
a

x
� ψ

(by simple properties of assignments)

iff M
M(t0)
M(tr−1)

x0
xr−1
� ∀xψ

�

We can now formulate properties of the � relation in connection with the treatment of
variables.

Theorem 37. Let S be a language. Let x, y be variables, t, t′∈ T S, ϕ ∈LS, and Γ⊆LS.
Then:

a) (∀-Introduction) If Γ� ϕ
y

x
and y � free(Γ∪{∀xϕ}) then Γ� ∀xϕ .

b) (∀-elimination) If Γ�∀xϕ then Γ� ϕ
t

x
.

c) (≡-Elimination or substitution) If Γ� ϕ
t

x
and Γ� t≡ t′ then Γ� ϕ

t′

x
.

Proof. a) Assume Γ� ϕ
y

x
and y � free(Γ∪{∀xϕ}). Consider an S-model M with M�Γ.

Let a∈M = |M|. Since y � free(Γ), M
a

y
�Γ. By assumption, M

a

y
�ϕ

y

x
. By the substitution

theorem,

(M
a

y
)
M

a

y
(y)

x
�ϕ and so (M

a

y
)
a

x
�ϕ

Case 1 : x= y. Then M
a

x
�ϕ.

Case 2 : x� y. Then M
aa

yx
�ϕ, and since y � free(ϕ) we have M

a

x
�ϕ.

Since a∈M is arbitrary, M�∀xϕ. Thus Γ�∀xϕ.
b) Let Γ�∀xϕ . Consider an S-model M with M�Γ. For all a∈M = |M| holds M

a

x
�ϕ .

In particular M
M(t)

x
�ϕ . By the substitution theorem, M� ϕ

t

x
. Thus Γ� ϕ

t

x
.

c) Let Γ� ϕ
t

x
and Γ� t≡ t′. Consider an S-model M mit M�Γ. By assumption M� ϕ

t

x

and M� t≡ t′. By the substitution theorem

M
M(t)
x

�ϕ.

Since M(t)=M(t′),

M
M(t′)
x

�ϕ

and again by the substitution theorem

M� ϕ
t′

x
.

Thus Γ� ϕ
t′

x
. �
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Note that in proving these proof rules we have used corresponding forms of arguments in
the language of our discourse. This “circularity” was noted before and is a general feature in
formalizations of logic. A particularly important method of proof is the ∀-introduction: to
prove a universal statement ∀xϕ it suffices to consider an “arbitrary but fixed” y and prove
the claim for y . Formally this corresponds to using a “new” variable y � free(Γ∪{∀xϕ}).

8 A sequent calculus

The only way to rectify our
reasonings is to make them as
tangible as those of the Math-
ematicians, so that we can
find our error at a glance, and
when there are disputes among
persons, we can simply say:
Let us calculate [calculemus],
without further ado, to see
who is right. G.W. Leibniz

We can put the rules of implication established in the previous two sections together
as a calculus which leads from correct implications Φ � ϕ to further correct implications
Φ′ � ϕ′. Our sequent calculus will work on finite sequents (ϕ0, 
 , ϕn−1, ϕn) of formulas,
whose intuitive meaning is that {ϕ0, 
 , ϕn−1} implies ϕn . The Gödel completeness
theorem shows that these rules actually generate the implication relation � . Fix a language
S for this section.

Definition 38. A finite sequence (ϕ0,
 , ϕn−1, ϕn) of S-formulas is called a sequent. The
initial segment Γ=(ϕ0,
 , ϕn−1) is the antecedent and ϕn is the succedent of the sequent.
We usually write ϕ0
 ϕn−1ϕn or Γϕn instead of (ϕ0,
 , ϕn−1, ϕn). To emphasize the last
element of the antecedent we may also denote the sequent by Γ′ ϕn−1 ϕn with Γ′=(ϕ0,
 ,

ϕn−2).
A sequent ϕ0
 ϕn−1 ϕ is correct if {ϕ0
 ϕn−1}� ϕ.

Exercise 9. One could also define a sequent to be the concatenation of finitely many formulas

Definition 39. The sequent calculus consists of the following (sequent-)rules:

− monotonicity (MR)
Γ ϕ

Γ ψ ϕ

− assumption (AR)
Γ ϕ ϕ

− →-introduction (→I)
Γ ϕ ψ

Γ ϕ→ ψ

− →-elimination (→E)
Γ ϕ

Γ ϕ→ ψ

Γ ψ

− ⊥-introduction (⊥I)
Γ ϕ

Γ ¬ϕ
Γ ⊥
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− ⊥-elimination (⊥E)
Γ ¬ϕ ⊥
Γ ϕ

− ∀-introduction (∀I)
Γ ϕ

y

x

Γ ∀xϕ
, if y � free(Γ∪{∀xϕ})

− ∀-elimination (∀E)
Γ ∀xϕ

Γ ϕ
t

x

, if t∈TS

− ≡-introduction (≡I)
Γ t≡ t

, if t∈ TS

− ≡-elimination (≡E)

Γ ϕ
t

x

Γ t≡ t′

Γ ϕ
t′

x

The deduction relation is the smallest subclass ⊢⊆Seq(S) of the class of sequents which
is closed under these rules. We write ϕ0 
 ϕn−1 ⊢ ϕ instead of ϕ0 
 ϕn−1 ϕ ∈ ⊢. For
Φ an arbitrary class of formulas define Φ ⊢ ϕ iff there are ϕ0, 
 , ϕn−1 ∈ Φ such that
ϕ0
 ϕn−1⊢ ϕ . We say that ϕ can be deduced or derived from ϕ0
 ϕn−1 or Φ, resp. We
also write ⊢ϕ instead of ∅ ⊢ ϕ and say that ϕ is a tautology.

Remark 40. A calculus is a formal system for obtaining (mathematical) results. The
usual algorithms for addition and multiplication of decimal numbers are calculi: the results
are achieved by symbolic and systematic operations on the decimal symbols 0,
 , 9. Such
an addition is not an addition in terms of joining together line segments of certain lengths
or forming the union of disjoint finite sets. The calculi are however correct in that the
interpretation of the decimal numbers obtained correspond to the results of the intuitive
operations of joining line segments or disjoint unions.

Mathematics has shown that far more sophisticated operations can also be described
by calculi . The derivative of a polynomial function

p(x)= anx
n+ an−1x

n−1+
 + a0

can be obtained by formal manipulations of exponents and coefficients:

p′(x)=nanx
n−1+(n− 1) an−1 x

n−2+
 + a1

without explicitly forming limits of difference quotients.
Since many basic results of analysis can be expressed as formal calculi, the word calculus

is used for basic analysis courses in the English speaking world. Similarly in German
one uses the words Differentialrechnung and Integralrechnung . The words derivation or
Ableitung also refer to derivations within a formal calculus.

A formula ϕ∈LS is derivable from Γ= ϕ0
 ϕn−1 (Γ⊢ϕ) iff there is a derivation or a
formal proof

(Γ0ϕ0,Γ1ϕ1,
 ,Γk−1ϕk−1)

of Γϕ=Γk−1ϕk−1 , in which every sequent Γiϕi is generated by a sequent rule from sequents
Γi0ϕi0,
 ,Γin−1

ϕin−1
with i0,
 , in−1<i .

We usually write the derivation (Γ0ϕ0,Γ1ϕ1,
 ,Γk−1ϕk−1) as a vertical scheme

Γ0 ϕ0

Γ1 ϕ1



Γk−1 ϕk−1
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where we may also indicate rules and other remarks along the course of the derivation.
In our theorems on the laws of implication we have already shown:

Theorem 41. The sequent calculus is correct, i.e., every rule of the sequent calculus leads
from correct sequents to correct sequents. Thus every derivable sequent is correct. This
means that

⊢⊆�.

The converse inclusion corresponds to

Definition 42. The sequent calculus is complete iff �⊆⊢.

The Gödel completeness theorem proves the completeness of the sequent calculus.
The definition of ⊢ immediately implies the following finiteness or compactness theorem.

Theorem 43. Let Φ⊆LS and ϕ∈Φ . Then Φ⊢ ϕ iff there is a finite subset Φ0⊆Φ such
that Φ0⊢ ϕ .

After proving the completeness theorem, such structural properties carry over to the
implication relation � .

9 Derivable sequent rules

The composition of rules of the sequent calculus yields derived sequent rules which are
again correct. First note:

Lemma 44. Assume that
Γ ϕ0



Γ ϕk−1

Γ ϕk

is a derived rule of the sequent calculus. Then

Γ0 ϕ0



Γk−1 ϕk−1

Γ ϕk

, where Γ0,
 ,Γk−1 are initial sequences of Γ

is also a derived rule of the sequent calculus.

Proof. This follows immediately from iterated applications of the monotonicity rule. �

We now list several derived rules.

9.1 Auxiliary rules

We write the derivation of rules as proofs in the sequent calculus where the premisses of
the derivation are written above the upper horizontal line and the conclusion as last row.

ex falso quodlibet
Γ ⊥
Γ ϕ

:
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1. Γ ⊥
2. Γ ¬ϕ ⊥
3. Γ ϕ

¬-Introduction
Γ ϕ ⊥
Γ ¬ϕ

:

1. Γ ϕ ⊥
2. Γ ϕ→⊥
3. Γ ¬¬ϕ ¬¬ϕ
4. Γ ¬¬ϕ ¬ϕ ¬ϕ
5. Γ ¬¬ϕ ¬ϕ ⊥
6. Γ ¬¬ϕ ϕ

7. Γ ¬¬ϕ ⊥
8. Γ ¬ϕ

1. Γ ¬ϕ
2. Γ ϕ ϕ

3. Γ ϕ ⊥
4. Γ ϕ ψ

5. Γ ϕ→ ψ

1. Γ ψ

2. Γ ϕ ψ

3. Γ ϕ→ ψ

Cut rule
1. Γ ϕ

2. Γ ϕ ψ

3. Γ ϕ→ ψ

4. Γ ψ

Contraposition

1. Γ ϕ ψ

2. Γ (ϕ→ ψ)
3. Γ ¬ψ ϕ (ϕ→ ψ)
4. Γ ¬ψ ϕ ϕ

5. Γ ¬ψ ϕ ψ

6. Γ ¬ψ ϕ ¬ψ
7. Γ ¬ψ ϕ ⊥
8. Γ ¬ψ ¬ϕ

9.2 Introduction and elimination of ∨,∧,


The (abbreviating) logical symbols ∨, ∧, and ∃ also possess (derived) introduction and
elimination rules. We list the rules and leave their derivations as exercises.

∨-Introduction
Γ ϕ

Γ ϕ∨ ψ
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∨-Introduction
Γ ψ

Γ ϕ∨ ψ

∨-Elimination
Γ ϕ∨ ψ
Γ ϕ→ χ

Γ ψ→ χ

Γ χ

∧-Introduction
Γ ϕ

Γ ψ

Γ ϕ∧ ψ

∧-Elimination
Γ ϕ∧ ψ
Γ ϕ

∧-Elimination
Γ ϕ∧ ψ
Γ ψ

∃-Introduction

Γ ϕ
t

x

Γ ∃xϕ

∃-Elimination
Γ ∃xϕ

Γ ϕ
y

x
ψ where y � free(Γ∪ {∃xϕ , ψ})

Γ ψ

9.3 Manipulations of antecedents

We derive rules by which the formulas in the antecedent may be permuted arbitrarily,
showing that only the set of antecedent formulas is relevant.

Transpositions of premisses
1. Γ ϕ ψ χ

2. Γ ϕ ψ→ χ

3. Γ ϕ→ (ψ→ χ)
4. Γ ψ ψ

5. Γ ψ ϕ ϕ

6. Γ ψ ϕ ψ→ χ

7. Γ ψ ϕ χ

Duplication of premisses
1. Γ ϕ ψ

2. Γ ϕ ϕ ψ

Elimination of double premisses

Derivable sequent rules 27



1. Γ ϕ ϕ ψ

2. Γ ϕ ϕ→ ψ

3. Γ ϕ→ (ϕ→ ψ)
4. Γ ϕ ϕ

5. Γ ϕ ψ

Iterated applications of these rules yield:

Lemma 45. Let ϕ0
 ϕm−1 and ψ0
 ψn−1 be antecedents such that

{ϕ0,
 , ϕm−1}= {ψ0,
 , ψn−1}

and χ∈LS. Then
ϕ0 
 ϕm−1 χ

ψ0 
 ψn−1 χ
is a derived rule.

9.4 Formal proofs about ≡

We give some examples of formal proofs which show that within the proof calculus ≡ is
an equivalence relation.

Lemma 46. We prove the following tautologies:

a) Reflexivity: ⊢∀xx≡x

b) Symmetry: ⊢∀x∀y(x≡ y→ y≡ x)

c) Transitivity: ⊢∀x∀y∀z(x≡ y ∧ y≡ z→x≡ z)

Proof. a)

x≡ x

∀xx≡x

b)

x≡ y x≡ y

x≡ y x≡ x

x≡ y (z≡x)
x

z

x≡ y (z≡x)
y

x

x≡ y y≡x

x≡ y→ y≡x

∀y(x≡ y→ y≡ x)

∀x∀y(x≡ y→ y≡x)

c)

x≡ y ∧ y≡ z x≡ y ∧ y≡ z

x≡ y ∧ y≡ z x≡ y

x≡ y ∧ y≡ z (x≡w)
y

w

x≡ y ∧ y≡ z y≡ z

x≡ y ∧ y≡ z (x≡w)
z

w

x≡ y ∧ y≡ z x≡ z

x≡ y ∧ y≡ z→ x≡ z

∀z(x≡ y ∧ y≡ z→x≡ z)
∀y∀z(x≡ y ∧ y≡ z→ x≡ z)

∀x∀y∀z(x≡ y ∧ y≡ z→ x≡ z)
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We show moreover that ≡ is a congruence relation from the perspective of ⊢.

Theorem 47. Let ϕ∈LS and t0,
 , tn−1, t0
′ ,
 , tn−1

′ ∈TS. Then

⊢ t0≡ t0
′ ∧
 ∧ tn−1≡ tn−1

′ →(ϕ
t0
 tn−1

v0
 vn−1
↔ ϕ

t0
′

 tn−1

′

v0
 vn−1
).

Proof. Choose pairwise distinct “new” variables u0,
 , un−1 . Then

ϕ
t0
 tn−1

v0
 vn−1
=ϕ

u0
v0

u1
v1




un−1

vn−1

t0
u0

t1
u1




tn−1

un−1
and

ϕ
t0
′

 tn−1

′

v0
 vn−1
=ϕ

u0
v0

u1
v1




un−1

vn−1

t0
′

u0

t1
′

u1



tn−1
′

un−1
.

Thus the simultaneous substitutions can be seen as successive substitutions, and the order
of the substitutions

ti

ui
may be permuted without affecting the final outcome. We may use

the substitution rule repeatedly:

ϕ
t0
 tn−1

v0
 vn−1
ϕ
t0
 tn−1

v0
 vn−1

ϕ
u0
v0




un−1

vn−1

t0
u0




tn−1

un−1
ϕ
u0
v0




un−1

vn−1

t0
u0




tn−1

un−1

ϕ
u0
v0




un−1

vn−1

t0
u0




tn−1

un−1
tn−1≡ tn−1

′ ϕ
u0
v0




un−1

vn−1

t0
u0




tn−1
′

un−1



ϕ
u0
v0




un−1

vn−1

t0
u0




tn−1

un−1
tn−1≡ tn−1

′

 t0≡ t0

′ ϕ
u0
v0




un−1

vn−1

t0
′

u0



tn−1
′

un−1

ϕ
t0
 tn−1

v0
 vn−1
t0≡ t0

′

 tn−1≡ tn−1

′ ϕ
t0
′

 tn−1

′

v0
 vn−1
.

�

10 Consistency

Vor Allem aber möchte ich unter

den zahlreichen Fragen, welche

hinsichtlich der Axiome gestellt

werden können, dies als das

wichtigste Problem bezeichnen, zu

beweisen, daß dieselben unterein-

ander widerspruchslos sind, d.h.

daß man auf Grund derselben mit-

telst einer endlichen Anzahl von

logischen Schlüssen niemals zu Res-

ultaten gelangen kann, die mitein-

ander in Widerspruch stehen.

David Hilbert

Fix a language S.

Definition 48. A set Φ⊆LS is consistent if Φ0⊥ . Φ is inconsistent if Φ⊢⊥ .

Consistency 29



We prove some laws of consistency.

Lemma 49. Let Φ⊆LS and ϕ∈LS. Then

a) Φ is inconsistent iff there is ψ ∈LS such that Φ⊢ ψ and Φ⊢¬ψ.

b) Φ⊢ ϕ iff Φ∪{¬ϕ} is inconsistent.

c) If Φ is consistent, then Φ∪{ϕ} is consistent or Φ∪{¬ϕ} is consistent (or both).

d) Let F be a family of consistent sets which is linearly ordered by inclusion, i.e., for
all Φ,Ψ∈F holds Φ⊆Ψ or Ψ⊆Φ. Then

Φ∗=
⋃

Φ∈F

Φ

is consistent.

Proof. a) Assume Φ⊢⊥ . Then by the ex falso rule, Φ⊢ ψ and Φ⊢¬ψ.
Conversely assume that Φ ⊢ ψ and Φ ⊢ ¬ψ for some ψ ∈ LS. Then Φ ⊢ ⊥ by ⊥-

introduction.
b) Assume Φ ⊢ ϕ . Take ϕ0, 
 , ϕn−1 ∈ Φ such that ϕ0
 ϕn−1 ⊢ ϕ . Then we can extend
a derivation of ϕ0
 ϕn−1⊢ ϕ as follows

ϕ0 
 ϕn−1 ϕ

ϕ0 
 ϕn−1 ¬ϕ ¬ϕ
ϕ0 
 ϕn−1 ¬ϕ ⊥

and Φ∪{¬ϕ} is inconsistent.
Conversely assume that Φ∪{¬ϕ} ⊢⊥ and take ϕ0,
 , ϕn−1∈Φ such that ϕ0
 ϕn−1¬

ϕ⊢⊥ . Then ϕ0
 ϕn−1⊢ ϕ and Φ⊢ ϕ .
c) Assume that Φ∪ {ϕ} and Φ∪ {¬ϕ} are inconsistent. Then there are ϕ0,
 , ϕn−1∈Φ
such that ϕ0
 ϕn−1⊢ϕ and ϕ0
 ϕn−1⊢¬ϕ. By the introduction rule for ⊥, ϕ0
 ϕn−1⊢⊥.
Thus Φ is inconsistent.
d) Assume that Φ∗ is inconsistent. Take ϕ0, 
 , ϕn−1 ∈ Φ∗ such that ϕ0 
 ϕn−1 ⊢ ⊥ .
Take Φ0,
Φn−1∈F such that ϕ0∈Φ0 , ..., ϕn−1∈Φn−1 . Since F is linearly ordered by
inclusion there is Φ ∈ {Φ0, 
Φn−1} such that ϕ0, 
 , ϕn−1 ∈ Φ. Then Φ is inconsistent,
contradiction. �

The proof of the completeness theorem will be based on the relation between consist-
ency and satisfiability.

Lemma 50. Assume that Φ⊆LS is satisfiable. Then Φ is consistent.

Proof. Assume that Φ ⊢ ⊥ . By the correctness of the sequent calculus, Φ �⊥ . Assume
that Φ is satisfiable and let M � Φ . Then M �⊥ . This contradicts the definition of the
satisfaction relation. Thus Φ is not satisfiable. �

We shall later show the converse of this Lemma, since:

Theorem 51. The sequent calculus is complete iff every consistent Φ⊆LS is satisfiable.

Proof. Assume that the sequent calculus is complete. Let Φ⊆LS be consistent, i.e., Φ0⊥ .
By completeness, Φ2⊥ , and we can take an S-model M�Φ such that M2⊥ . Thus Φ is
satisfiable.

Conversely, assume that every consistent Φ⊆LS is satisfiable. Assume Ψ�ψ . Assume
for a contradiction that Ψ 0 ψ . Then Ψ∪ {¬ψ} is consistent. By assumption there is an
S-model M�Ψ∪ {¬ψ}. M�Ψ and M2 ψ , which contradicts Ψ� ψ . Thus Ψ⊢ ψ . �
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11 Term models and Henkin sets

The following constructions will assume that the class of all terms of some language is a
set. In view of the previous lemma, we strive to construct interpretations for given sets
Φ⊆LS of S-formulas. Since we are working in great generality and abstractness, the only
material available for the construction of structures is the language LS itself. We shall
build a model out of S-terms.

Definition 52. Let S be a language and let Φ⊆LS be consistent. The term model TΦ of
Φ is the following S-model:

a) Define a relation ∼ on TS,

t0∼ t1 iff Φ⊢ t0≡ t1 .

∼ is an equivalence relation on TS.

b) For t∈T S let t̄ = {s∈TS |s∼ t} be the equivalence class of t.

c) The underlying set TΦ=TΦ(∀) of the term model is the set of ∼-equivalence classes

TΦ= {t̄ |t∈TS}.

d) For an n-ary relation symbol R∈S let RTΦ

on TΦ be defined by

( t̄0,
 , t̄n−1)∈RTΦ

iff Φ⊢Rt0
 tn−1 .

e) For an n-ary function symbol f ∈S let fT
Φ

on TΦ be defined by

fT
Φ

( t̄0,
 , t̄n−1)= ft0
 tn−1 .

f ) For n∈N define the variable interpretation TΦ(vn)= vn .

The term model is well-defined.

Lemma 53. In the previous construction the following holds:

a) ∼ is an equivalence relation on TS.

b) The definition of RTΦ

is independent of representatives.

c) The definition of fT
Φ

is independent of representatives.

Proof. a) We derived the axioms of equivalence relations for ≡:

− ⊢∀xx≡x

− ⊢∀x∀y (x≡ y→ y≡x)

− ⊢∀x∀y∀z (x≡ y ∧ y≡ z→ x≡ z)

Consider t∈TS. Then ⊢t≡ t. Thus for all t∈TS holds t∼ t .
Consider t0, t1∈ T S with t0∼ t1 . Then ⊢t0≡ t1 . Also ⊢t0≡ t1→ t1≡ t0 , ⊢t1≡ t0 , and

t1∼ t0 . Thus for all t0, t1∈TS with t0∼ t1 holds t1∼ t0 .
The transitivity of ∼ follows similarly.

b) Let t̄0,
 , t̄n−1 ∈ TΦ, t̄0= s̄0,
 , t̄n−1= s̄n−1 and Φ ⊢Rt0
 tn−1 . Then ⊢t0 ≡ s0 , ... ,
⊢tn−1≡ sn−1 . Repeated applications of the substitution rule yield Φ⊢Rs0
 sn−1 . Hence
Φ ⊢Rt0
 tn−1 implies Φ ⊢Rs0
 sn−1 . By the symmetry of the argument, Φ ⊢Rt0
 tn−1

iff Φ⊢Rs0
 sn−1 .
c) Let t̄0, 
 , t̄n−1 ∈ TΦ and t̄0 = s̄0, 
 , t̄n−1 = s̄n−1 . Then ⊢t0 ≡ s0 , ... , ⊢tn−1 ≡ sn−1 .
Repeated applications of the substitution rule to ⊢ft0
 tn−1≡ ft0
 tn−1 yield

⊢ft0
 tn−1≡ fs0
 sn−1
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and ft0
 tn−1= fs0
 sn−1 . �

We aim to obtain TΦ � Φ. The initial cases of an induction over the complexity of
formulas is given by

Theorem 54.

a) For terms t∈TS holds TΦ(t)= t̄.

b) For atomic formulas ϕ∈LS holds

TΦ� ϕ iff Φ⊢ ϕ.

Proof. a) By induction on the term calculus. The initial case t = vn is obvious by the
definition of the term model. Now consider a term t = ft0
 tn−1 with an n-ary function
symbol f ∈S , and assume that the claim is true for t0,
 , tn−1 . Then

TΦ(ft0
 tn−1) = fT
Φ

(TΦ(t0),
 ,T
Φ(tn−1))

= fT
Φ

(t0̄,
 , tn−1)

= ft0
 tn−1 .

b) Let ϕ=Rt0
 tn−1 with an n-ary relation symbol R∈S and t0,
 , tn−1∈ TS. Then

TΦ�Rt0
 tn−1 iff RTΦ

(TΦ(t0),
 ,T
Φ(tn−1))

iff RTΦ

(t0̄,
 , tn−1)

iff Φ⊢Rt0
 tn−1 .

Let ϕ= t0≡ t1 with t0, t1∈TS. Then

TΦ� t0≡ t1 iff TΦ(t0)=TΦ(t1)

iff t0̄= t1̄

iff t0∼ t1

iff Φ⊢ t0≡ t1 .

�

To extend the lemma to complex S-formulas, Φ has to satisfy some recursive properties.

Definition 55. A set Φ⊆ LS of S-formulas is a Henkin set if it satisfies the following
properties:

a) Φ is consistent;

b) Φ is (derivation) complete, i.e., for all ϕ∈LS

Φ⊢ ϕ or Φ⊢¬ϕ;

c) Φ contains witnesses, i.e., for all ∀xϕ∈LS there is a term t∈TS such that

Φ⊢¬∀xϕ→¬ϕ
t

x
.

Lemma 56. Let Φ⊆LS be a Henkin set. Then for all χ, ψ ∈LS and variables x:

a) Φ0 χ iff Φ⊢¬χ .

b) Φ⊢ χ implies Φ⊢ ψ, iff Φ⊢ χ→ ψ .
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c) For all t∈TS holds Φ⊢ χ
t

u
iff Φ⊢∀xχ .

Proof. a) Assume Φ0χ . By derivation completeness, Φ⊢¬χ . Conversely assume Φ⊢¬χ .
Assume for a contradiction that Φ⊢ χ . Then Φ is inconsistent. Contradiction. Thus Φ0χ .
b) Assume Φ⊢ χ implies Φ⊢ ψ .
Case 1 . Φ⊢ χ . Then Φ⊢ ψ and by an easy derivation Φ⊢ χ→ ψ .
Case 2 . Φ 0 χ . By the derivation completeness of Φ holds Φ ⊢ ¬χ . And by an easy
derivation Φ⊢ χ→ ψ .

Conversely assume that Φ ⊢ χ→ ψ . Assume that Φ ⊢ χ . By →-elimination, Φ ⊢ ψ .
Thus Φ⊢ χ implies Φ⊢ ψ .

c) Assume that for all t ∈ TS holds Φ ⊢ χ
t

u
. Assume that Φ 0 ∀xχ . By a), Φ ⊢ ¬∀xχ .

Since Φ contains witnesses there is a term t ∈ T S such that Φ ⊢ ¬∀xχ→¬χ
t

u
. By →-

elimination, Φ ⊢¬χ
t

u
. Contradiction. Thus Φ ⊢ ∀xχ . The converse follows from the rule

of ∀-elimination. �

Theorem 57. Let Φ⊆LS be a Henkin set. Then

a) For all formulas χ∈LS, pairwise distinct variables xS and terms tS ∈T S

TΦ� χ
tS

xS
iff Φ⊢ χ

tS

xS
.

b) TΦ�Φ.

Proof. b) follows immediately from a). a) is proved by induction on the formula calculus.
The atomic case has already been proven. Consider the non-atomic cases:

i) χ=⊥ . Then ⊥
tS

xS
=⊥ . TΦ�⊥

tS

xS
is false by definition of the satisfaction relation �, and

Φ⊢ χ
tS

xS
is false since Φ is consistent. Thus TΦ�⊥

tS

xS
iff Φ⊢⊥

tS

xS
.

ii.) χ=¬ϕ
tS

xS
and assume that the claim holds for ϕ. Then

TΦ�¬ϕ
tS

xS
iff not TΦ� ϕ

tS

xS

iff not Φ⊢ ϕ
tS

xS
by the inductive assumption

iff Φ⊢¬ϕ
tS

xS
by a) of the previous lemma.

iii.) χ= (ϕ→ ψ)
tS

xS
and assume that the claim holds for ϕ and ψ. Then

TΦ� (ϕ→ ψ)
tS

xS
iff TΦ� ϕ

tS

xS
implies TΦ� ψ

tS

xS

iff Φ⊢ ϕ
tS

xS
implies Φ⊢ ψ

tS

xS
by the inductive assumption

iff Φ⊢ ϕ
tS

xS
→ ψ

tS

xS
by a) of the previous lemma

iff Φ⊢ (ϕ→ ψ)
tS

xS
by the definition of substitution.

iv.) χ = (∀xϕ)
t0
 .tr−1

x0
 xr−1
and assume that the claim holds for ϕ. By definition of the

substitution χ is of the form

∀u (ϕ
t0
 .tr−1 u

x0
xr−1x
) oder ∀u (ϕ

t1
 .tr−1 u

x1
xr−1 x
)
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with a suitable variable u. Without loss of generality assume that χ is of the first form.
Then

TΦ� (∀xϕ)
tS

xS
iff TΦ� ∃u (ϕ

t0
 .tr−1u

x0
xr−1 x
)

iff for all t∈TS holds TΦ t̄

u
� ϕ

t0
 .tr−1 u

x0
 xr−1x

iff for all t∈TS holds TΦI
Φ(t)
u

� ϕ
t0
 .tr−1u

x0
xr−1 x
by a previous lemma

iff for all t∈TS holds TΦ� (ϕ
t0
 .tr−1

x0
xr−1
)
t

u
by the substitution lemma

iff for all t∈TS holds TΦ� ϕ
t0
 .tr−1 t

x0
xr−1x
by successive substitutions

iff for all t∈TS holds Φ⊢ ϕ
t0
 .tr−1 t

x0
 xr−1x
by the inductive assumption

iff for all t∈TS holds Φ⊢ (ϕ
t0
 .tr−1u

x0
xr−1 x
)
t

u
by successive substitutions

iff Φ⊢∀u (ϕ
t0
 .tr−1 u

x0
xr−1 x
) by c) of the previous lemma

iff Φ⊢ (∀xϕ)
tS

xS
.

�

12 Constructing Henkin sets

We shall show that every consistent set of formulas can be extended to a henkin set
by “adding witnesses” and then ensuring negation completeness. We first consider wit-
nesses.

Theorem 58. Let Φ⊆LS be consistent. Let ϕ∈LS and let z be a variable which does not
occur in Φ∪{ϕ}. Then the set

Φ∪{¬∀xϕ→¬ϕ
z

x
}

is consistent.

Proof. Assume for a contradiction that Φ ∪ {(¬∃xϕ ∨ ϕ
z

x
)} is inconsistent. Take ϕ0,
 ,

ϕn−1∈Φ such that

ϕ0
 ϕn−1 ¬∀xϕ→¬ϕ
z

x
⊢ ⊥ .

Set Γ= (ϕ0,
 , ϕn−1). Then continue the derivation as follows:

1. Γ ¬∀xϕ→¬ϕ
z

x
⊥

2. Γ ¬¬∀xϕ ¬¬∀xϕ

3. Γ ¬¬∀xϕ ¬∀xϕ→¬ϕ
z

x

4. Γ ¬¬∀xϕ ⊥
5. Γ ¬∀xϕ

6. Γ ¬ϕ
z

x
¬ϕ

z

x

7. Γ ¬ϕ
z

x
¬∀xϕ→¬ϕ

z

x

8. Γ ¬ϕ
z

x
⊥

9. Γ ϕ
z

x

10. Γ ∀xϕ
11. Γ ⊥
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Hence Φ is inconsistent, contradiction. �

This means that “unused” variables may be used as henkin witnesses. Since “unused”
constant symbols behave much like unused variables, we get:

Theorem 59. Let Φ ⊆ LS be consistent. Let ϕ ∈ LS and let c ∈ S be a constant symbol
which does not occur in Φ∪{ϕ}. Then the set

Φ∪{¬∀xϕ→¬ϕ
c

x
}

is consistent.

Proof. Assume that Φ∪ {(¬∃xϕ∨ ϕ
c

x
)} is inconsistent. Take a derivation

Γ0ϕ0

Γ1ϕ1

 (1)

Γn−1 ϕn−1

Γn (¬∀xϕ→¬ϕ
c

x
) ⊥

with Γn⊆Φ . Choose a variable z, which does not occur in the derivation. For a formula
ψ define ψ ′ by replacing each occurence of c by z, and for a sequence Γ=(ψ0,
 , ψk−1) of
formulas let Γ′=(ψ0

′ ,
 , ψk−1
′ ). Replacing each occurence of c by z in the deriavation we get

Γ0
′ϕ0

′

Γ1
′ϕ1

′

 (2)

Γn−1
′ ϕn−1

′

Γn (¬∀xϕ→¬ϕ
z

x
) ⊥

The particular form of the final sequence is due to the fact that c does not occur in Φ∪{ϕ}.
To show that (2) is again a derivation in the sequent calculus we show that the replacement
c� z transforms every instance of a sequent rule in (1) into an instance of a (derivable)
rule in (2). This is obvious for all rules except possibly the quantifyer rules.

So let

Γ ψ
y

x
Γ ∀xψ

, with y � free(Γ∪{∀xψ})

be an ∀-introduction in (1). Then (ψ
y

x
)′= ψ ′ y

x
, (∀xψ)′=∀xψ ′, and y � free(Γ′∪{(∀xψ)′}).

Hence

Γ′ (ψ
y

x
)′

Γ′ (∀xψ)′
is a justified ∀-introduction.

Now consider an ∀-elimination in (1):

Γ ∀xψ

Γ ψ
t

x

Then (∀xψ)′=∀xψ ′ and (ψ
t

x
)′=ψ ′ t

′

x
where t′ is obtained from t by replacing all occurences

of c by z. Hence
Γ′ (∀xψ)′

Γ′ (ψ
t

x
)′
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is a justified ∀-elimination.

The derivation (2) proves that

Φ∪
{(

¬∀xϕ→¬ϕ
z

x

)}

⊢⊥ ,

which contradicts the preceding lemma. �

We shall now show that any consistent set of formulas can be consistently expanded to
a set of formulas which contains witnesses.

Theorem 60. Let S be a language and let Φ⊆LS be consistent. Then there is a language
Sω and Φω⊆LS

ω
such that

a) Sω extends S by constant symbols, i.e., S ⊆Sω and if s∈Sω \S then s is a constant
symbol;

b) Φω⊇Φ;

c) Φω is consistent;

d) Φω contains witnesses;

e) if LS is countable then so are LS
ω
and Φω.

Proof. For every a define a “new” distinct constant symbol ca, which does not occur in S,
e.g., ca= ((a, S), 1, 0). Extend S by constant symbols cψ for ψ ∈LS :

S+=S ∪{cψ |ψ ∈LS}.

Then set

Φ+=Φ∪{¬∀xϕ→¬ϕ
c∀xϕ
x

|∀xϕ∈LS}.

Φ+ contains witnesses for all universal formulas of S.
(1) Φ+⊆LS

+

is consistent.
Proof : Assume instead that Φ+ is inconsistent. Choose a finite sequence ∀x0ϕ0, 
 ,

∀xn−1ϕn−1∈LS of pairwise distinct universal formulas such that

Φ∪{¬∀x0ϕ0→¬ϕ0
c∀x0ϕ0

x0
,
 ,¬∀xn−1ϕn−1→¬ϕn−1

c∀xn−1ϕn−1

xn−1
}

is inconsistent. By the previous theorem one can inductively show that for all i<n the set

Φ∪{¬∀x0ϕ0→¬ϕ0
c∀x0ϕ0

x0
,
 ,¬∀xn−1ϕn−1→¬ϕn−1

c∀xi−1ϕni−1

xi−1
}

is consistent. Contradiction. qed(1)

We iterate the +-operation through the integers. Define recursively

Φ0 = Φ

S0 = S

Sn+1 = (Sn)+

Φn+1 = (Φn)+

Sω =
⋃

n∈N

Sn

Φω =
⋃

n∈N

Φn .
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Sω is an extension of S by constant symbols. For n∈N, Φn is consistent by induction. Φω

is consistent by the lemma on unions of consistent sets.
(2) Φω contains witnesses.
Proof . Let ∀xϕ∈LS

ω
. Let n∈N such that ∀xϕ∈LS

n
. Then ¬∀xϕ→¬ϕ

c∀xϕ

x
∈Φn+1⊆Φω.

qed(2)

(3) Let LS be countable. Then LS
ω
and Φω are countable.

Proof . Since LS is countable, there can only be countably many symbols in the alphabet

of S0 = S. The alphabet of S1 is obtained by adding the countable set {cψ |ψ ∈ LS}; the
alphabet of S1 is countable as the union of two countable sets. The set of words over a
countable alphabet is countable, hence LS

1

and Φ1⊆LS
1

are countable.
Inductive application of this argument show that for any n ∈N, the sets LS

n
and Φn

are countable. Since countable unions of countable sets are countable, LS
ω
=

⋃

n∈N
LS

n

and also Φω⊆LS
ω
are countable. �

Exercise 10. Let S be a countable language, let Φ⊆LS be consistent, and let Var\Var(Φ) be infinite.
Then there exists Φω ⊆LS such that

a) Φω ⊇Φ;

b) Φω is consistent;

c) Φω contains witnesses.

To get Henkin sets we have to ensure derivation completeness.

Theorem 61. Let S be a language and let Φ⊆LS be consistent. Then there is a consistent
Φ∗⊆LS, Φ∗⊇Φ which is derivation complete.

Proof. Define the partial order (P ,⊆) by

P = {Ψ⊆LS |Ψ⊇Φ and Ψ is consistent}.

P � ∅ since Φ∈P . P is inductively ordered by a previous lemma: if F ⊆P is linearly ordered
by inclusion, i.e., for all Ψ,Ψ′∈F holds Ψ⊆Ψ′ or Ψ′⊆Ψ then

⋃

Ψ∈F

Ψ∈P .

Hence (P ,⊆) satisfies the conditions of Zorn’s lemma. Let Φ∗ be a maximal element of (P ,
⊆). By the definition of P , Φ∗⊆LS, Φ∗⊇Φ , and Φ∗ is consistent. Derivation completeness
follows from the following claim.

(1) For all ϕ∈LS holds ϕ∈Φ∗ or ¬ϕ∈Φ∗.
Proof . Φ∗ is consistent. By a previous lemma, Φ∗∪{ϕ} or Φ∗∪{¬ϕ} are consistent.
Case 1 . Φ∗∪{ϕ} is consistent. By the ⊆-maximality of Φ∗, Φ∗∪{ϕ}=Φ∗ and ϕ∈Φ∗.
Case 2 . Φ∗ ∪ {¬ϕ} is consistent. By the ⊆-maximality of Φ∗, Φ∗ ∪ {¬ϕ} = Φ∗ and
¬ϕ∈Φ∗. �

The proof uses Zorn’s lemma. In case LS is countable one can work without Zorn’s
lemma.

Proof. (For countable LS) Let LS = {ϕn|n ∈ N} be an enumeration of LS. Define a
sequence (Φn|n∈N) by recursion on n such that

i. Φ⊆Φn⊆Φn+1⊆LS;

ii. Φn is consistent.

For n=0 set Φ0=Φ. Assume that Φn is defined according to i. and ii.
Case 1 . Φn∪{ϕn} is consistent. Then set Φn+1=Φn∪ {ϕn}.
Case 2 . Φn ∪ {ϕn} is inconsistent. Then Φn ∪ {¬ϕn} is consistent by a previous lemma,
and we define Φn+1=Φn∪{¬ϕn}.
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Let

Φ∗=
⋃

n∈N

Φn .

Then Φ∗ is a consistent superset of Φ. By construction, ϕ∈Φ∗ or ¬ϕ∈Φ∗, for all ϕ∈LS.
Hence Φ∗ is derivation complete. �

According to Theorem 60 a given consistent set Φ can be extended to Φω ⊆ LS
ω

containing witnesses. By Theorem 61 Φω can be extended to a derivation complete Φ∗⊆
LS

ω
. Since the latter step does not extend the language, Φ∗ contains witnesses and is thus

a henkin set:

Theorem 62. Let S be a language and let Φ⊆LS be consistent. Then there is a language
S∗ and Φ∗⊆LS

∗

such that

a) S∗⊇S is an extension of S by constant symbols;

b) Φ∗⊇Φ is a Henkin set;

c) if LS is countable then so are LS
∗

and Φ∗.

13 The completeness theorem

The development of mathematics

towards greater precision has led,

as is well known, to the formaliz-

ation of large tracts of it, so that

one can prove any theorem using

nothing but a few mechanical rules.

Kurt Gödel, 1941

We can now combine our technical preparations to show the fundamental theorems
of first-order logic. Combining Theorems 62 and 57, we obtain a general and a countable
model existence theorem:

Theorem 63. (Henkin model existence theorem) Let Φ⊆ LS. Then Φ is consistent iff
Φ is satisfiable.

By Lemma 51, Theorem 63 the model existence theorems imply the main theorem.

Theorem 64. (Gödel completeness theorem) The sequent calculus is complete, i.e.,
�=⊢.

TheGödel completeness theorem is the fundamental theorem of mathematical logic. It
connects syntax and semantics of formal languages in an optimal way. Before we continue
the mathematical study of its consequences we make some general remarks about the wider
impact of the theorem:

− The completeness theorem gives an ultimate correctness criterion for mathematical
proofs. A proof is correct if it can (in principle) be reformulated as a formal deriv-
ation. Although mathematicians prefer semi-formal or informal arguments, this
criterion could be applied in case of doubt.
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− Checking the correctness of a formal proof in the above sequent calculus is a
syntactic task that can be carried out by computer. We shall later consider a
prototypical proof checker Naproche which uses a formal language which is a subset
of natural english.

− By systematically running through all possible formal proofs, automatic theorem
proving is in principle possible. In this generality, however, algorithms immediately
run into very high algorithmic complexities and become practically infeasable.

− Practical automatic theorem proving has become possible in restricted situations,
either by looking at particular kinds of axioms and associated intended domains, or
by restricting the syntactical complexity of axioms and theorems.

− Automatic theorem proving is an important component of artificial intelligence
(AI) where a system has to obtain logical consequences from conditions formulated
in first-order logic. Although there are many difficulties with artificial intelligence
this approach is still being followed with some success.

− Another special case of automatic theorem proving is given by logic programming
where programs consist of logical statements of some restricted complexity and a
run of a program is a systematic search for a solution of the given statements. The
original and most prominent logic programming language is Prolog which is still
widely used in linguistics and AI.

− There are other areas which can be described formally and where syntax/semantics
constellations similar to first-order logic may occur. In the theory of algorithms
there is the syntax of programming languages versus the (mathematical) meaning
of a program. Since programs crucially involve time alternative logics with time
have to be introduced. Now in all such generalizations, the Gödel completeness
theorem serves as a pattern onto which to model the syntax/semantics relation.

− The success of the formal method in mathematics makes mathematics a leading
formal science. Several other sciences also strive to present and justify results form-
ally, like computer science and parts of philosophy.

− The completeness theorem must not be confused with the famous Gödel incom-
pleteness theorems: they say that certain axiom systems like Peano arithmetic are
incomplete in the sense that they do not imply some formulas which hold in the
standard model of the axiom system.

14 The compactness theorem

The equality of � and ⊢ and the compactness theorem 43 for ⊢ imply

Theorem 65. (Compactness theorem) Let Φ⊆LS and ϕ∈Φ . Then

a) Φ� ϕ iff there is a finite subset Φ0⊆Φ such that Φ0� ϕ .

b) Φ is satisfiable iff every finite subset Φ0⊆Φ is satisfiable.

This theorem is often to construct (unusual) models of first-order theories. It is the
basis of a field of logic called Model Theory .

We present a number theoretic application of the compactness theorem. The language
of arithmetic can be naturally interpreted in the structure N=(N,+, ·,0,1). This structure
obviously satisfies the following axioms:
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Definition 66. The axiom system PA ⊆ LSAR of peano arithmetic consists of the fol-
lowing sentences

− ∀x x+1� 0

− ∀x∀y x+1= y+1→x= y

− ∀x x+0= x

− ∀x∀y x+(y+1)= (x+ y)+ 1

− ∀x x · 0= 0

− ∀x∀y x · (y+1)=x · y+x

− Schema of induction: for every formula ϕ(x0,
 , xn−1, xn)∈LSAR:

∀x0
∀xn−1(ϕ(x0,
 , xn−1, 0)∧∀xn(ϕ→ ϕ(x0,
 , xn−1, xn+1))→∀xnϕ)

The theory PA is allows to prove a lot of number theoretic properties, e.g., about
divisibility and prime numbers. On the other hand the first incompleteness theorem of
Gödel shows that there are arithmetic sentences ϕ which are not decided by PA although
they are true in the standard model N of PA. Therefore PA is not complete.

If ϕ and ¬ϕ are both not derivable from PA then PA+¬ϕ and PA+ ϕ are consistent.
By the model existence theorem, there are models M− and M+ such that M−�PA+¬ϕ
and M+ � PA+ ϕ. M− and M+ are not isomorphic. So there exist models of PA which
are not isomorphic to the standard model N.

We can also use the compactness theorem to obtain nonstandard models of theories.
Define the SAR-terms n̄ for n∈N recursively by

0̄ = 0,

n+1 = (n̄+1).

Define divisibility by the SAR-formula δ(x, y)=∃z x · z≡ y.

Theorem 67. There is a model M�PA which contains an element ∞∈M, ∞� 0̄M such
that M � δ(n̄ ,∞) for every n∈N \ {0} (we use M � δ(n̄ ,∞) as an intuitive abbreviation
for M� δ(n̄ , v0)[∞]).

So “from the outside”, ∞ is divisible by every positive natural number. This implies
that M is a nonstandard model with MK N .

Proof. Consider the theory

Φ=PA∪{δ(n̄, v0) |n∈N \ {0}}∪ {¬v0≡ 0̄}

(1) Φ is satisfiable.
Proof . We use the compactness theorem 65(b). Let Φ0 ⊆ Φ be finite. It suffices to show
that Φ0 is satisfiable. Take a finite number n0∈N such that

Φ0⊆PA∪{δ(n̄, v0) |n∈N, 16n6n0}.

Let N =n! . Then

N�PA and N� δ(n̄ ,N ) for 16n6n0 .

So N
N

v0
�Φ0 . qed(1)

By (1), let M′�Φ. Let ∞=M′(v0)∈ |M′|. Let M be the SAR-structure which extends
to the modelM′, i.e.,M=M′↾{∀}∪SAR . ThenM is a structure satisfying the theorem. �
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This indicates that the model class of PA is rather complicated and rich. Indeed there
is a subfield of model theory which studies models of Peano arithmetic.

We define notions which allow to examine the axiomatizability of classes of structures.

Definition 68. Let S be a language and K be a class of S-structures.

a) K ist elementary or finitely axiomatizable if there is an S-sentence ϕ with K =

ModSϕ.

b) K is ∆-elementary or axiomatizable, if there is a set Φ of S-sentences with K =

ModSΦ.

We state simple properties of the Mod-operator:

Theorem 69. Let S be a language.Then

a) For Φ⊆Ψ⊆L0
S holds ModSΦ⊇ModSΨ.

b) For Φ,Ψ⊆L0
S holds ModS(Φ∪Ψ)=ModSΦ∩ModSΨ.

c) For Φ⊆L0
S holds ModSΦ=

⋂

ϕ∈Φ ModSϕ .

d) For ϕ0,
 , ϕn−1∈L0
S holds ModS{ϕ0,
 , ϕn−1}=ModS(ϕ0∧
 ∧ ϕn−1).

e) For ϕ∈L0
S holds ModS(¬ϕ)=ModS(∅) \ModS(ϕ).

c) explains the denotation “∆-elementary”, since ModSΦ is the intersection (“Durch-
schnitt”) of all single ModSϕ .

Theorem 70. Let S be a language and K,L be classes of S-structures with

L=ModS∅\K .

Then if K and L are axiomatizable, they are finitely axiomatizable.

Proof. Take axiom systems ΦK and ΦL such that K=ModSΦK and L=ModSΦL. Assume
that K is not finitely axiomatizable.
(1) Let Φ0⊆ΦK be finite. Then Φ0∪ΦL is satisfiable.
Proof : ModSΦ0 ⊇ModSΦK . Since K is not finitely axiomatizable, ModSΦ0 � ModSΦK .

Then ModSΦ0∩L� ∅. Take a model A∈L, A∈ModSΦ0 . Then A�Φ0∪ΦL . qed(1)
(2) ΦK ∪ΦL is satisfiable.
Proof : By the compactness theorem 65 it suffices to show that every finite Ψ⊆ ΦK ∪ ΦL
is satsifiable. By (1), (Ψ∩ΦK)∪ΦL is satisfiable. Thus Ψ⊆ (Ψ∩ΦK)∪ΦL is satisfiable.
qed(2)

By (2), ModSΦK ∩ModSΦL� ∅. But the classes K and L are complements, contradic-
tion. Thus K is finitely axiomatizable. �

15 The Löwenheim-Skolem theorems

Definition 71. An S-structure A is finite, infinite, countable, or uncountable, resp., iff
the underlying set |A| is finite, infinite, countable, or uncountable, resp..

If the language S is countable, i.e., finite or countably infinite, and it Φ ⊆ LS is a
countable consistent set of formulas then an inspection of the above construction of a term
model for Φ shows the following theorem.
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Theorem 72. (Downward Löwenheim-Skolem theorem) Let Φ ⊆ LS be a countable
consistent set of formulas. Then Φ possesses a model M= (A, β)�Φ, A= (A,
 ) with a
countable underlying set A.

The word “downward” emphasises the existence of models of “small” cardinality. We
shall soon consider an “upward” Löwenheim-Skolem theorem.

Theorem 73. Assume that Φ ⊆ LS has arbitrarily large finite models. Then Φ has an
infinite model.

Proof. For n∈N define the sentence

ϕ>n= ∃v0,
 , vn−1

∧

i<j<n

¬vi≡ vj ,

where the big conjunction is defined by
∧

i<j<n

ψij=ψ0,1∧
 ∧ ψ0,n−1∧ ψ1,2∧
 ∧ ψ1,n−1∧
 ∧ ψn−1,n−1 .

For any model M

M� ϕ>n iff A has at least n elements.

Now set

Φ′=Φ∪ {ϕ>n |n∈N}.

(1) Φ′ has a model.
Proof . By the compactness theorem 65b it suffices to show that every finite Φ0⊆Φ has a
model. Let Φ0⊆Φ be finite. Take n0∈N such that

Φ0⊆Φ∪{ϕ>n |n6n0}.

By assumption Φ has a model with at least n0 elements. Thus Φ∪ {ϕ>n |n6n0} and Φ0

have a model. qed(1)
Let M�Φ′. Then M is an infinite model of Φ. �

Theorem 74. (Upward Löwenheim-Skolem theorem) Let Φ⊆ LS have an infinite S-
model and let X be an arbitrary set. Then Φ has a model into which X can be embedded
injectively.

Proof. Let M be an infinite model of Φ. Choose a sequence (cx |x ∈ X) of pairwise
distinct constant symbols which do not occur in S, e.g., setting cx = ((x, S), 1, 0). Let
S ′=S ∪{cx |x∈X} be the extension of S by the new constant symbols. Set

Φ′=Φ∪ {¬cx≡ cy |x, y ∈X,x� y}.

(1) Φ′ has a model.
Proof . It suffices to show that every finite Φ0⊆Φ′ has a model. Let Φ0⊆Φ′ be finite. Take
a finite set X0⊆X such that

Φ0⊆Φ∪ {¬cx≡ cy |x, y ∈X0, x� y}.

Since |M| is infinite we can choose an injective sequence (ax|x ∈ X0) of elements of |M|
such that x� y implies ax� ay . For x ∈X \X0 choose ax ∈ |M| arbitrarily. Then in the
extended model

M′=M∪{(cx, ax)|x∈X}�Φ∪{¬cx≡ cy |x, y ∈X0, x� y}⊇Φ0 .

qed(1)
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By (1), choose a model M′�Φ′. Then the map

i:X→|M′|, x�M′(cx)

is injective. The reduct M′′=M′ ↾ {∀}∪S is as required. �

Theorem 75. Let S be a language.

a) The class of all finite S-structures is not axiomatizable.

b) The class of all infinite S-structures is axiomatizable but not finitely axiomatizable.

Proof. a) is immediate by Theorem 73.
b) The class of infinite S-structures is axiomatized by

Φ= {ϕ>n |n∈N}.

If that class were finitely axiomatizable then the complementary class of finite S-structures
would also be (finitely) axiomatizable, contradicting a). �

16 Normal forms

There are many motivations to transform formulas into equivalent normal forms . The
motivation here will be that normal forms are important for automated theorem proving
and for logic programming .

We are particularly interested in transforming formulas ψ into formulas ψ ′ such that ψ
is consistent iff ψ ′ is consistent. This relates to provability as follows: Φ⊢ ϕ iff Φ∪{¬ϕ} is
not satisfiable/inconsistent. So a check for provability can be based on inconsistency checks.

Work in some fixed language S.

Definition 76.

a) An S-formula is a literal if it is atomic or the negation of an atomic formula.

b) Define the dual of the literal L as

L̄=

{

¬L, if L is an atomic formula;
K, if L is of the form ¬K.

c) A formula ϕ is in disjunctive normal form if it is of the form

ϕ=
∨

i<m

(
∧

j<ni

Lij)

where each Lij is a literal.

d) A formula ϕ is in conjunctive normal form if it is of the form

ϕ=
∧

i<m

(
∨

j<ni

Lij)

where each Lij is a literal. Sometimes a disjunctive normal form is also written in
set notion as

ϕ= {{L00,
 , L0n0−1},
 , {Lm−1,0,
 , Lm−1,nm−1
}}.

Theorem 77. Let ϕ be a formula without quantifiers. Then ϕ is equivalent to some ϕ′ in
disjunctive normal form and to some ϕ′′ in conjunctive normal form.
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Proof. By induction on the complexity of ϕ. Clear for ϕ atomic. The ¬ step follows from
the de Morgan laws:

¬
∨

i<m

(
∧

j<ni

Lij) ↔
∧

i<m

¬(
∧

j<ni

Lij)

↔
∧

i<m

(
∨

j<ni

¬Lij).

The ∧-step is clear for conjunctive normal forms. For disjunctive normal forms the asso-
ciativity rules yield

∨

i<m

(
∧

j<ni

Lij)∧
∨

i<m′

(
∧

j<ni
′

Lij
′ ) ↔

∨

i<m,i′<m′

(
∧

j<ni

Lij ∧
∧

j<ni
′

Lij
′ )

which is also in conjunctive normal form. �

Definition 78. A formula ϕ is in prenex normal form if it is of the form

ϕ=Q0 x0Q1 x1
Qm−1 xm−1 ψ

where each Qi is either the quantifier ∀ or ∃ and ψ is quantifier-free. Then the quantifier
string Q0 x0 Q1 x1
Qm−1 xm−1 is called the prefix of ϕ and the formula ψ is the matrix
of ϕ.

Theorem 79. Let ϕ be a formula. Then ϕ is equivalent to a formula ϕ′ in prenex normal
form.

Proof. By induction on the complexity of ϕ. Clear for atomic formulas. If

ϕ↔Q0x0Q1 x1
Qm−1xm−1 ψ

with quantifier-free ψ then by the de Morgan laws for quantifiers

¬ϕ↔ Q̄
0
x0 Q̄1 x1
 Q̄m−1xm−1¬ψ

where the dual quantifier Q̄ is defined by ∃̄=∀ and ∀̄=∃ .
For the ∧-operation consider another formula

ϕ′↔Q0
′ x0

′ Q1
′ x1

′

Qm′−1

′ xm′−1
′ ψ ′

with quantifier-free ψ ′. We may assume that the bound variables of of the prenex normal
forms are disjoint. Then

ϕ∧ ϕ′↔Q0x0Q1 x1
Qm−1xm−1Q0
′ x0

′ Q1
′ x1

′

Qm′−1

′ xm ′−1
′ (ψ ∧ ψ ′).

(semantic argument). �

Definition 80. A formula ϕ is universal if it is of the form

ϕ= ∀x0∀x1
∀xm−1 ψ

where ψ is quantifier-free. A formula ϕ is existential if it is of the form

ϕ= ∃x0∃x1
∃xm−1 ψ

where ψ is quantifier-free.

We show a quasi-equivalence with respect to universal (and existential) formulas which
is not a logical equivalence but concerns the consistency or satisfiability of formulas.
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Theorem 81. Let ϕ be an S-formula. Then there is a canonical extension S∗ of the
language S and a canonical universal ϕ∗∈LS

∗

such that

ϕ is consistent iff ϕ∗ is consistent.

The formula ϕ∗ is called the Skolem normal form of ϕ.

Proof. By a previous theorem we may assume that ϕ is in prenex normal form. We prove
the theorem by induction on the number of existential quantifiers in ϕ. If ϕ does not
contain an existential quantifier we are done. Otherwise let

ϕ=∀x1
∀xm∃yψ

where m < ω may also be 0. Introduce a new m-ary function symbol f (or a constant
symbol in case m=0) and let

ϕ′=∀x1
∀xmψ
fx1
xm

y
.

By induction it suffices to show that ϕ is consistent iff ϕ′ is consistent.
(1) ϕ′→ ϕ.
Proof . Assume ϕ′. Consider x1,
 , xm . Then ψ

fx1
 xm

y
. Then ∃yψ. Thus ∀x1
∀xm∃yψ.

qed(1)
(2) If ϕ′ is consistent then ϕ is consistent.
Proof . If ϕ→⊥ then by (1) ϕ′→⊥ . qed(2)
(3) If ϕ is consistent then ϕ′ is consistent.
Proof . Let ϕ be consistent and let M=(M,
 )� ϕ . Then

∀a1∈M
 ∀am∈M ∃b∈MM
aS b

xS y
�ψ.

Using the axiom of choice there is a function h:Mm→M such that

∀a1∈M
 ∀am∈MM
aS h(a1,
 , am)

xS y
�ψ.

Expand the structure M to M′=M∪{(f , h)} where the symbol f is interpreted by the

function h. Then h(a1,
 , am)=M′aS

xS
(fx1
xm) and

∀a1∈M
 ∀am∈MM′
aS M′aS

xS
(fx1
xm)

xS y
=M′aS

xS

M′aS

xS
(fx1
 xm)

y
� ψ.

By the substitution theorem this is equivalent to

∀a1∈M
 ∀am∈MM′aS

xS
� ψ

fx1
xm
y

.

Hence

M′�∀x1
∀xmψ
fx1
xm

y
=ϕ′.

Thus ϕ′ is consistent. �

17 Herbrand’s theorem

By the previous chapter we can reduce the question whether a given finite set of formulas
is inconsistent to the question whether some universal formula is inconsistent. By the
following theorem this can be answered rather concretely.
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Theorem 82. Let S be a language which contains at least one constant symbol. Let

ϕ= ∀x0∀x1
∀xm−1 ψ

be a universal S-sentence with quantifier-free matrix ψ . Then ϕ is inconsistent if there are
variable-free S-terms (“constant terms”)

t0
0,
 , tm−1

0 ,
 , t0
N−1,
 , tm−1

N−1

such that

ϕ′=
∧

i<N

ψ
t0
i ,
 , tm−1

i

x0,
 , xm−1
=ψ

t0
0,
 , tm−1

0

x0,
 , xm−1
∧
 ∧ ψ

t0
N−1,
 , tm−1

N−1

x0,
 , xm−1

is inconsistent.

Proof. All sentences ϕ′, for various choices of constant terms, are logical consequences of
ϕ. So ϕ is consistent, all ϕ′ are consistent.

Conversely assume that all ϕ′ are consistent. Then by the compactness theorem

Φ= {ψ
t0,
 , tm−1

x0,
 , xm−1
|t0,
 , tm−1 are constant S-terms}

is consistent. Let M= (M,
 )�Φ. Let

H = {M(t) |t is a constant S-term}.

Then H � ∅ since S contains a constant symbol. By definition, H is closed under the
functions of M . So we let H=(H,
 )⊆M be the substructure of M with domain H.
(1) H � ϕ .
Proof . Let M(t0), 
 , M(tm−1) ∈ H where t0, 
 , tm−1 are constant S-terms. Then

ψ
t0,
 , tm−1

x0,
 , xm−1
∈Φ, M� ψ

t0,
 , tm−1

x0,
 , xm−1
, and by the substitution theorem

M
M(t0),
 ,M(tm−1)

x0,
 , xm−1
� ψ.

Since ψ is quantifier-free this transfers to H :

H
M(t0),
 ,M(tm−1)

x0,
 , xm−1
� ψ.

Thus

H �∀x0 ∀x1
∀xm−1 ψ= ϕ.

qed(1)
Thus ϕ is consistent. �

In case that the formula ψ does not contain the equality sign ≡ checking for inconsist-
ency of

ϕ′=
∧

i<N

ψ
t0
i ,
 , tm−1

i

x0,
 , xm−1
=ψ

t0
0,
 , tm−1

0

x0,
 , xm−1
∧
 ∧ ψ

t0
N−1,
 , tm−1

N−1

x0,
 , xm−1

is in principle a straightforward finitary problem. ϕ′ contains finitely many constant S-
terms. ϕ′ is consistent iff the relation symbols can be interpreted on appropriate tuples
of the occuring S-terms to make ϕ′ true. There are finitely many possibilities for the
assignments of truth values of relations. This leads to the following (theoretical) algorithm
for automatic proving for formulas without ≡:

Let Ω⊆LS be finite and χ∈LS. To check whether Ω⊢ χ:

1. Form Φ = Ω ∪ {¬χ} and let ϕ = ∀(
∧

Φ) be the universal closure of
∧

Φ . Then
Ω⊢ χ iff Φ=Ω∪{¬χ} is inconsistent iff (

∧

Φ)⊢⊥ iff ∀(
∧

Φ)⊢⊥ .
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2. Transform ϕ into universal form ϕ∀= ∀x0 ∀x1
 ∀xm−1 ψ (Skolemization).

3. (Systematically) search for constant S-terms

t0
0,
 , tm−1

0 ,
 , t0
N−1,
 , tm−1

N−1

such that

ϕ′=
∧

i<N

ψ
t0
i ,
 , tm−1

i

x0,
 , xm−1
=ψ

t0
0,
 , tm−1

0

x0,
 , xm−1
∧
 ∧ ψ

t0
N−1,
 , tm−1

N−1

x0,
 , xm−1

is inconsistent.

4. If an inconsistent ϕ′ is found, output “yes”, otherwise carry on.

Obviously, if “yes” is output then Ω⊢ χ . This is the correctness of the algorithm. On the
other hand, Herbrand’s theorem ensures that if Ω ⊢ χ then an appropriate ϕ′ will be
found, and “yes” will be output, i.e., the algorithm is complete.

Example 83. We demonstrate the procedure with a small example. Let

χ=∃x∀y(D(x)→D(y))

be the well-known drinker’s paradox : there is somebody called x such that everybody
drinks provided x drinks. To prove χ we follow the above steps.

1. χ is valid iff ¬χ is inconsistent. ¬χ is equivalent to ∀x∃y(D(x)∧¬D(y)).

2. The Skolemization of that formula is ∀x(D(x)∧¬D(fy(x))).

3. Ground terms without free variables can be formed from a new constant symbol c
and the unary function symbol fy : c, fy(c), fy(fy(c)),
 . We form the corresponding
ground instances of the kernel D(x)∧¬D(fy(x)):

D(c)∧¬D(fy(c)), D(fy(c))∧¬D(fy(fy(c))), D(fy(fy(c)))∧¬D(fy(fy(fy(c)))),


This leads to a sequence of conjunctions of ground instances:

− D(c) ∧ ¬D(fy(c)) is consistent since the conjunction does not contain dual
literals;

− D(c) ∧ ¬D(fy(c)) ∧ D(fy(c)) ∧ ¬D(fy(fy(c))) is inconsistent since the
conjunction contains the dual literals ¬D(fy(c)) and D(fy(c)).

This concludes the proof of the drinker’s paradox via Herbrand’s theorem.

18 Simple automatic theorem proving

The syntax of first-order logic works with finite strings of symbols and is amenable
to computer implementation. The Handbook of Practical Logic and Automated Reas-
oning by John Harrison, Cambridge University Press 2009, contains working programs
which define basic notions of first-order logic including the above proof method based
on Herbrand’s theorem. The programs are written in the functional programming lan-
guage OCaml. OCaml programs consist of commands which are similar to mathematical
definitions of constants and functions. The OCaml programs of the Handbook are avail-
able via the website http://www.cl.cam.ac.uk/~jrh13/atp/index.html.
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Harrison defines the type (or class or set) of terms recursively as:

type term = Var of string

| Fn of string * term list;;

(Relational) atomic formulas are given by

type fol = R of string * term list;;

The atomic formula D(x) of the drinker’s formula is thus

R("D",[Var "x"])

Formulas are defined generally over any type (’a) of atomic formulas

type (’a)formula = False

| True

| Atom of ’a

| Not of (’a)formula

| And of (’a)formula * (’a)formula

| Or of (’a)formula * (’a)formula

| Imp of (’a)formula * (’a)formula

| Iff of (’a)formula * (’a)formula

| Forall of string * (’a)formula

| Exists of string * (’a)formula;;

First-order formulas in particular are those of type fol formula where fol has been
defined above. The drinker’s paradox is expressed in this language as

Exists("x",Forall("y",Imp(Atom(R("D",[Var "x"])),Atom(R("D",[Var "y"])))))

To improve readability, a pretty printer for the type fol formula is defined and automat-
ically invoked. Entering the drinker’s formula into an interactive OCaml terminal results
in the following dialogue:

# Exists("x",Forall("y",Imp(Atom(R("D",[Var "x"])),Atom(R("D",[Var

"y"])))));;

- : fol formula = <<exists x. forall y. D(x) ==> D(y)>>

The result of the query is output in the bottom line: the input is recognized by type
inference as a first-order formula; the value of the input is then reprinted readably by the
pretty printer; the << >> quotes signal the “pretty format”. Formulas can also be input in
the pretty format. We define the drinker’s formula χ by:

# let chi = <<exists x. forall y. D(x) ==> D(y)>>;;

val chi : fol formula = <<exists x. forall y. D(x) ==> D(y)>>

The definition of χ is acknowledged by stating that the value of chi is now the drinker’s
formula. In the Herbrand procedure, a formula to be proved is generalized, negated and
skolemized. These operations are implemented by certain functions defined by Harrison:
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# generalize chi;;

- : fol formula = <<exists x. forall y. D(x) ==> D(y)>>

# Not (generalize chi);;

- : fol formula = <<exists x. forall y. D(x) ==> D(y)>>

# skolemize (Not (generalize chi));;

- : fol formula = <<D(x) /\ ~D(f_y(x))>>

The Paul Gilmore in the 1950’s was one of the first to implement the Herbrand pro-
cedure. Gilmore’s algorithm is implemented in the Handbook :

let gilmore_loop =

let mfn djs0 ifn djs =

filter (non trivial) (distrib (image (image ifn) djs0) djs) in

herbloop mfn (fun djs -> djs <> []);;

let gilmore fm =

let sfm = skolemize(Not(generalize fm)) in

let fvs = fv sfm and consts,funcs = herbfuns sfm in

let cntms = image (fun (c,_) -> Fn(c,[])) consts in

length(gilmore_loop (simpdnf sfm) cntms funcs fvs 0 [[]] [] []);;

After generalizing, negating and skolemizing, constants and function symbols are extracted
and used to generate ground terms and ground instances of the matrix of the skolemized
formula in some recursive loop. Then an inconsistency is searched by transforming for-
mulas into disjunctive normal form and checking for inconsistent literals. Details of these
algorithms are explained in the the Handbook . We prove the drinker’s paradox by applying
the function gilmore to the formula chi:

# gilmore chi;;

0 ground instances tried; 1 items in list

0 ground instances tried; 1 items in list

1 ground instances tried; 1 items in list

1 ground instances tried; 1 items in list

- : int = 2

The output gives some information about the progress of the search procedure, in particular
that it finishes with “search length” 2, and thus that the claim has been proved.

The Gilmore procedure is able to prove some simple, yet interesting results. The Rus-

sell paradox says that there is no x such that x= {y |y � y}, i.e., such that ∀y(y ∈ x↔
y � y). We can define and prove the Russell paradox:

# let russell = <<~(exists x. forall y. Elem(y,x) <=> ~Elem(y,y))>>;;

val russell : fol formula =

<<~(exists x. forall y. Elem(y,x) <=> ~Elem(y,y))>>

# gilmore russell;;

0 ground instances tried; 1 items in list

0 ground instances tried; 1 items in list

- : int = 1

Simple automatic theorem proving 49



Exercise 11. Apply the Herbrand procedure to the Russell paradox “by hand”.

19 Resolution

The Gilmore procedure is theoretically complete: a formula is provable iff the procedure
terminates. Termination can however take very long so that a proof will not be found in
practice. Also there is an enormous amount of data to be stored which may cause the
program to crash. E.g., the disjunctive normal forms in the gilmore program which can
simply be checked for inconsistency seem to double in length with each iteration of the
algorithm. Practical automatic theorem proving requires more efficient algorithms in order
to narrow down the search space for inconsistencies and to keep data sizes small.

We shall now present another method based on conjunctive normal forms. We assume
that the quantifier-free formula ψ is a conjunction of clauses ψ= c0∧ c1∧
 ∧ cl−1. Then
∀x0 ∀x1
∀xm−1 ψ is inconsistent iff the set

{ci
t0,
 , tm−1

x0,
 , xm−1
|t0,
 , tm−1 are constant S-terms}

is inconsistent.
The method of resolution gives an efficient method for showing the inconsistency of sets

of clauses. Let us assume until further notice, that the formulas considered do not contain
the symbol ≡.

Definition 84. Let c+= {K0,
 ,Kk−1} and c−= {L0,
 , Ll−1} be clauses with literals Ki

and Lj . Note that {K0,
 ,Kk−1} stands for the disjunction K0∨
 ∨Kk−1 . Assume that
K0 and L0 are dual, i.e., L0=K0 . Then the disjunction

{K1,
 ,Kk−1}∪ {L1,
 , Ll−1}

is a resolution of c+ and c−.

Resolution is related to the application of modus ponens: ϕ→ ψ and ϕ correspond to
the clauses {¬ϕ, ψ} and {ϕ}. {ψ} is a resolution of {¬ϕ, ψ} and {ϕ}.

Theorem 85. Let C be a set of clauses and let c be a resolution of two clauses c+, c−∈C.
Then if C ∪{c} is inconsistent then C is inconsistent.

Proof. Let c+= {K0,
 ,Kk−1}, c−= {¬K0, L1
 , Ll−1}, and c= {K1,
 ,Kk−1}∪ {L1,
 ,

Ll−1}. Assume that M�C is a model of C.
Case 1 . M�K0 . Then M� c−, M� {L1
 , Ll−1}, and

M� {K1,
 , Kk−1}∪ {L1,
 , Ll−1}= c.

Case 2 . M�¬K0 . Then M� c+, M� {K1
 ,Kk−1}, and

M� {K1,
 , Kk−1}∪ {L1,
 , Ll−1}= c.

Thus M�C ∪{c}. �

Theorem 86. Let C be a set of clauses closed under resolution. Then C is inconsistent
iff ∅∈C. Note that the empty clause {} is logically equivalent to ⊥ .

Proof. If ∅∈C then C is clearly inconsistent.
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Assume that the converse implication is false. Consider an set C of clauses such that

(∗) C is inconsistent and closed under resolution, but ∅ � C .

By the compactness theorem there is a finite set of atomic formulas {ϕ0,
 , ϕn−1} such that

C ′= {c∈C |for every literal L in c there exists i < n such that L= ϕi or L=¬ϕi},

is also inconsistent. Since resolution only deletes atomic formulas, C ′ is also closed under
resolution, and of course ∅� C ′. So we may assume right away that there is only a finite set
{ϕ0,
 , ϕn−1} of atomic formulas occuring in C, and that n with that property is chosen
minimally.

From n= 0 atomic formulas one can only build the empty clause ∅. Since C is incon-
sistent, we must have C � ∅ . Thus C = {∅} and ∅∈C , which contradicts (∗).

So we have n=m+1> 0. Let

C+= {c∈C |¬ϕm � c}, C−= {c∈C |ϕm � c}

and

C0
+= {c \ {ϕm}|c∈C+}, C0

−= {c \ {¬ϕm}|c∈C−}.

(1) C0
+ and C0

− are closed under resolution.
Proof . Let d′′ be a resolution of d, d′ ∈C0

+. Let d= c \ {ϕm} and d′ = c′ \ {ϕm} with c,
c′∈C+. The resolution d′′ was based on some atomic formula ϕi� ϕm . Then we can also
resolve c, c′ by the same atomic formula ϕi . Let c′′ be that resolution of c, c′. Since C is
closed under resolution, c′′∈C, c′′∈C+, and d′′= c′′ \ {ϕm}∈C0

+. qed(1)
(2) ∅ � C0

+ or ∅ � C0
−.

Proof . If ∅ ∈C0
+ and ∅ ∈C0

−, and since ∅ � C we have {ϕm} ∈C+ and {¬ϕm} ∈C−. But
then the resolution ∅ of {ϕm} and {¬ϕm} would be in C, contradiction. qed(2)

Case 1 . ∅� C0
+. Since C0

+ is formed by removing the atomic formula ϕm , C0
+ only contains

atomic formulas from {ϕ0,
 , ϕm−1}. By the minimality of n and by (1), C0
+ is consistent.

Let M � C0
+. Let the atomic formula ϕm be of the form rt0
 ts−1 where r is an n-ary

relation symbol and t0,
 , ts−1∈TS. Since the formula rt0
 ts−1 does not occur within C0
+,

we can modify the model M to a model M′ by only modifying the interpretation M(r)
exactly at (M(t0),
 ,M(ts−1)). So let M′(M(t0),
 ,M(ts−1)) be false. Then M′�¬ϕm .
We show that M′�C ′.

Let c ∈ C ′. If ¬ϕm ∈ c then M′ � c . So assume that ¬ϕm � c . Then c ∈ C+ and
c \{ϕm}∈C0

+. Then M� c \{ϕm}, M′� c \{ϕm}, and M′� c . But then C ′ is consistent,
contradiction.
Case 2 . ∅ � C0

−. We can then proceed analogously to case 1, arranging that
M′(M(t0),
 ,M(ts−1)) be true. So we get a contradiction again. �

This means that the inconsistency check in the automatic proving algorithm can be
carried out even more systematically: produce all relevant resolution instances until the
empty clause is generated. Again we have correctness and completeness for the algorithm
with resolution.

Here is an implementation of resolution by Harrison; given a literal p, all pairs of clauses
that contain p positively and negatively resp. are treated by resolution with respect to p.

let resolve_on p clauses =

let p’ = negate p and pos,notpos = partition (mem p) clauses in

let neg,other = partition (mem p’) notpos in

let pos’ = image (filter (fun l -> l <> p)) pos
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and neg’ = image (filter (fun l -> l <> p’)) neg in

let res0 = allpairs union pos’ neg’ in

union other (filter (non trivial) res0);;

The Davis-Putnam procedure uses resolution (and some other methods) to search for
inconsisties.

let davisputnam fm =

let sfm = skolemize(Not(generalize fm)) in

let fvs = fv sfm and consts,funcs = herbfuns sfm in

let cntms = image (fun (c,_) -> Fn(c,[])) consts in

length(dp_loop (simpcnf sfm) cntms funcs fvs 0 [] [] []);;

Like in the Gilmore procedure, the given formula is prepared and a loop is initiated to
search for inconsistencies. Here the formula is put in conjunctive normal form and resol-
ution is performed in some loop. One readily finds examples solvable by Davis-Putnam

which Gilmore cannot prove in a short time.

19.1 Prolog

Resolution is one of the main mechanisms behind the logic programming language Prolog.
Prolog programs can be viewed as conjunctions of universally quantified clauses. A uni-
versally quantified clause stands for all clauses that can be reached by substituting into the
free variable of the clause. Prolog searches systematically for clauses that can be resolved
after substitution. Prolog uses “minimal” substitutions (“unifications”) for those resolutions
and keeps track of the required substitutions. The composition of all those substitutions
is the computational result of the program: a minimal substitution to reach inconsistency.

To demonstrate how one can compute in Prolog let us consider the addition problem “2
+ 2 = ?”. Represent natural numbers by terms in a language with the constant symbol
zero and the successor function succ. The ground terms of the language are:

zero, succ(zero), succ(succ(zero)),


Addition is represented as a ternary predicate

add(X, Y , Z)↔X +Y =Z.

The following universal sentences axiomatize addition:

A1. ∀X.add(X, zero, X)

A2. ∀X,Y , Z.(add(X,Y , Z)→ add(X, succ(Y ), succ(Z)))

Computing 2+2 can be viewed as an inconsistency problem:

4= succ(succ(succ(succ(zero))))

is the unique term t of the language such that the axioms A1 and A2 are inconsistent with

¬add(succ(succ(zero)), succ(succ(zero)), t).

So the aim is to find a possibly iterated substitution for the variable V such that A1 and
A2 are inconsistent with

¬add(succ(succ(zero)), succ(succ(zero)), V ).
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We can write these formulas in clausal form by omitting quantifyers.

A1. {add(X, zero, X)}

A2. {¬add(X,Y , Z), add(X, succ(Y ), succ(Z))}

A3. {¬add(succ(succ(zero)), succ(succ(zero)), V )}

All variables are understood to be universally quantified. So we can rename variables freely,
and we shall do so in order to avoid variable clashes.

In Prolog notation, the program to compute 2+2 can be written as follows, where the
implication in A2 is indicated by “:-”:

add(X,zero,X).

add(X,succ(Y),succ(Z) :- add(X,Y,Z).

?- add(succ(succ(zero)),succ(succ(zero)),V).

Execution of this program means to find substitutions and resolutions leading to incon-
sistency: we begin with the clauses

1. add(X, zero,X)
2. ¬add(X, Y ,Z), add(X, succ(Y ), succ(Z))
3. ¬add(succ(succ(zero)), succ(succ(zero)), V )

The clauses 2 and 3 can be resolved by making the literals add(X, succ(Y ), succ(Z))
and ¬add(succ(succ(zero)), succ(succ(zero)), V ) dual using the substitutions X: =
succ(succ(zero)), Y : =succ(zero), V : =succ(Z). This yields the resolution:

4. ¬add(succ(succ(zero)), succ(zero), Z)
This should again resolve against 2. To avoid variable clashes, we first rename the
(universal) variables in 2:

5. ¬add(X1, Y 1, Z1), add(X1, succ(Y 1), succ(Z1))
4 and 5 can be resolved by making the literals add(X1, succ(Y 1), succ(Z1)) and ¬
add(succ(succ(zero)), succ(zero), Z) dual using the substitutions X1:=succ(succ(zero)),
Y 1:=zero, Z: =succ(Z1). This yields the resolution:

6. ¬add(succ(succ(zero), zero, Z1)
This should resolve against 1. To avoid variable clashes, we first rename the (universal)
variables in 1 by “new” variables:

7. add(X2, zero, X2).
6 and 7 can be resolved by the substitutions X2: =succ(succ(zero)), Z1: =X2. This
yields the “false” resolution, as required:

8. {}

The combined substitution for V which lead to this contradiction is obtained
by “chasing” through the substitutions:

V = succ(Z)= succ(succ(Z1))= succ(succ(X2))= succ(succ(succ(succ(zero)))).

Thus 2+2=4!

Exercise 12. Addition and multiplication on the natural numbers can be formalized in Prolog by the
following program.

add(X,zero,X).

add(X,succ(Y),succ(Z) :- add(X,Y,Z).

mult(X,zero,zero).

mult(X,succ(Y),Z) :- mult(X,Y,W), add(W,X,Z).

The question 2× 2= ? is expressed by the query:
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?- mult(succ(succ(zero)),succ(succ(zero)),V).

Please describe with pen and paper how Prolog calculates this product.

20 Set theory

Almost all mathematical notions can be defined set-theoretically. Georg Cantor, the
founder of set theory, gave the following definition or description:

Unter einer Menge verstehen wir jede Zusammenfassung M von bestim-
mten, wohlunterschiedenen Objekten m unsrer Anschauung oder unseres
Denkens (welche die “Elemente” von M genannt werden) zu einem Ganzen.

Felix Hausdorff begins the Grundzüge der Mengenlehre with a concise description,
which seems less dependent on human minds:

Eine Menge ist eine Zusammenfassung von Dingen zu einem Ganzen, d.h.
zu einem neuen Ding.

The notion of set is adequately formalized in first-order axiom systems introduced by
Zermelo, Fraenkel and others. Together with the Gödel completeness theorem for
first-order logic this constitutes a “formalistic” answer to the question “what is mathem-
atics”: mathematics consists of formal proofs from the axioms of Zermelo-Fraenkel set
theory.

Definition 87. Let ∈ be a binary infix relation symbol; read x∈ y as “x is an element of
y”. The language of set theory is the language {∈}. The formulas in L{∈} are called set

theoretical formulas or ∈-formulas. We write L∈ instead of L{∈}.

The naive notion of set is intuitively understood and was used extensively in previous
chapters. The following axioms describe properties of naive sets. Note that the axiom
system is an infinite set of axioms. It seems unavoidable that we have to go back to some
previously given set notions to be able to define the collection of set theoretical axioms -
another example of the frequent circularity in foundational theories.

Definition 88. The axiom system ST of set theory consists of the following axioms:

a) The axiom of extensionality (Ext):

∀x∀y(∀z(z ∈x↔ z ∈ y)→ x≡ y)

- a set is determined by its elements, sets having the same elements are identical.

b) The pairing axiom (Pair):

∀x∀y∃z∀w (w ∈ z↔w≡x∨w≡ y).

- z is the unordered pair of x and y.

c) The union axiom (Union):

∀x∃y∀z(z ∈ y↔∃w(w ∈x∧ z ∈w))

- y is the union of all elements of x.

d) The powerset axiom (Pow):

∀x∃y∀z(z ∈ y↔∀w(w ∈ z→w ∈x))
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- y consists of all subsets of x.

e) The separation schema (Sep) postulates for every ∈-formula ϕ(z, x1,
 , xn):

∀x1
∀xn∀x∃y∀z (z ∈ y↔z ∈x∧ ϕ(z, x1,
 , xn))

- this is an infinite scheme of axioms, the set z consists of all elements of x which
satisfy ϕ.

f ) The replacement schema (Rep) postulates for every ∈-formula ϕ(x, y, x1,
 , xn):

∀x1
∀xn(∀x∀y∀y ′((ϕ(x, y, x1,
 , xn)∧ ϕ(x, y ′, x1,
 , xn))→ y≡ y ′)→

∀u∃v∀y (y ∈ v↔∃x(x∈u∧ ϕ(x, y, x1,
 , xn))))

- v is the image of u under the map defined by ϕ.

g) The foundation schema (Found) postulates for every ∈-formula ϕ(x, x1,
 , xn):

∀x1
∀xn(∃xϕ(x, x1,
 , xn)→∃x(ϕ(x, x1,
 , xn)∧∀x′(x′∈x→¬ϕ(x′, x1,
 , xn))))

- if ϕ is satisfiable then there are ∈-minimal elements satisfying ϕ.

The axiom of extensionality expresses that a set is only determined by its elements.
There is no further structure in a set; the order or multiplicity of elements does not matter.
The axiom of extensionality can also be seen as a definition of ≡ in terms of ∈ :

∀x∀y(x≡ y↔∀z(z ∈x↔ z ∈ y)).

The axioms b)−d) describe the basic set theoretic operations of forming two-element sets,
unions, and power sets. The separation schema (“Aussonderung”) is the crucial axiom of
Zermelo set theory. Gottlob Frege had used the more liberal comprehension schema

∀x1
∀xn∃y∀z (z ∈ y↔ϕ(z, x1,
 , xn))

without restricting the variable z to some x on the right hand side. This however lead to
the famous Russell paradox and was thus inconsistent. Zermelo’s restriction apparently
avoids contradiction.

The replacement schema was added by Abraham Fraenkel to postulate that func-
tional images of sets are sets.

The foundation schema by Mirimanoff allows to carry out induction on the binary
relation ∈ . To prove a universal property by contradiction one can look at a minimal
counterexample and argue that the property is inherited from the elements of a set to the
set. The schema is used seldomly in mathematical practice, but it is very convenient for
the development of set theory.

Note that the axioms of ST do not require the existence of infinite sets, and indeed one
can easily build a canonical model of ST consisting only of finite sets. Such a model can
be defined over the structure N= (N,+, ·, 0, 1). The theory ST has the same strength as
first-order Peano arithmetic (PA).

The theory would become much stronger, if the axiom of infinity (Inf) was added:

∃x(∃y (y ∈x∧∀z¬z ∈ y)∧∀y(y ∈ x→∃z(z ∈x∧∀w(w ∈ z↔w ∈ y ∨w≡ y)))).

Intuitively, the closure properties of x ensure that x is infinite. The strengthened theory
is Zermelo-Fraenkel set theory (without the axiom of choice), which is usually taken
as the universal foundation of mathematics. We work with the weaker theory ST, since
we want to show the Gödel incompleteness theorems for ST, which are another version
of the usual incompleteness theorems for PA.
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20.1 Class terms

Most of the axioms have a form like

∀xS ∃y∀z (z ∈ y↔ ϕ).

Intuitively, y is the collection of sets z which satisfy ϕ. The common notation for that set is

{z |ϕ}.

This is to be seen as a term, which assigns to the other parameters in ϕ the value {z |ϕ}.
Since the result of such a term is not necessarily a set we call such terms class terms . It
is very convenient to employ class terms within ∈-formulas. We view this notation as an
abbreviation for “pure” ∈-formulas.

Definition 89. A class term is of the form {x|ϕ} where x is a variable and ϕ ∈ L∈. If
{x|ϕ} and {y |ψ} are class terms then

− u∈{x|ϕ} stands for ϕ
u

x
;

− u= {x|ϕ} stands for ∀v (v ∈ u↔ ϕ
v

x
);

− {x|ϕ}=u stands for ∀v (ϕ
v

x
↔ v ∈u);

− {x|ϕ}= {y |ψ} stands for ∀v (ϕ
v

x
↔ ψ

v

y
);

− {x|ϕ}∈u stands for ∃v(v ∈u∧ v= {x|ϕ};

− {x|ϕ}∈ {y |ψ} stands for ∃v(ψ
v

y
∧ v= {x|ϕ}.

In this notation, the separation schema becomes:

∀x1
∀xn∀x∃y y= {z |z ∈x∧ ϕ(z, x1,
 , xn)}.

We shall further extend this notation, first by giving specific names to important formulas
and class terms.

Definition 90.

a) ∅8 {x|x� x} is the empty set;

b) V 8 {x|x=x} is the universe.

We work in the theory ZF for the following propositions.

Proposition 91.

a) ∅∈V.

b) V � V (Russell’s antinomy).

Proof. a) ∅∈V abbreviates the formula

∃v(v= v ∧ v= ∅).

This is equivalent to ∃v v= ∅ which again is an abbreviation for

∃v ∀w (w ∈ v↔w� w).

Consider an arbitrary set x . Then the formula is equivalent to

∃v ∀w (w ∈ v↔w ∈x∧w� w).
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This follows from the instance

∀x∃y∀z (z ∈ y↔z ∈x∧ z � z)

of the separation schema for the formula z � z .
b) Assume that V ∈V . By the schema of separation

∃y y= {z |z ∈V ∧ z � z}.

Let y= {z |z ∈ V ∧ z � z}. Then

∀z (z ∈ y↔ z ∈V ∧ z � z).

This is equivalent to

∀z (z ∈ y↔ z � z).

Instantiating the universal quantifier with y yields

y ∈ y↔ y � y

which is a contradiction. �

We introduce further abbreviations. By a term we understand a class term or a variable,
i.e., those terms which may occur in an extended ∈-formula. We also introduce bounded
quantifiers to simplify notation.

Definition 92. Let A be a term. Then ∀x∈Aϕ stands for ∀x(x∈A→ ϕ) and ∃x∈Aϕ
stands for ∃x (x∈A∧ ϕ).

Definition 93. Let x, y, z,
 be variables and X, Y ,Z ,
 be class terms. Define

a) X ⊆Y 8 ∀x∈X x∈Y, X is a subclass of Y ;

b) X ∪ Y 8 {x|x∈X ∨ x∈Y } is the union of X and Y ;

c) X ∩ Y 8 {x|x∈X ∧ x∈Y } is the intersection of X and Y ;

d) X \Y 8 {x|x∈X ∧x � Y } is the difference of X and Y ;

e)
⋃

X8 {x|∃y ∈X x∈ y} is the union of X ;

f )
⋂

X8 {x|∀y ∈X x∈ y} is the intersection of X ;

g) P(X)= {x|x⊆X} is the power class of X;

h) {X}= {x|x=X} is the singleton set of X;

i) {X,Y }= {x|x=X ∨ x= Y } is the (unordered) pair of X and Y;

j ) {X0,
 , Xn−1}= {x|x=X0∨
 ∨x=Xn−1}.

One can prove the well-known boolean properties for these operations. We only give a
few examples.

Proposition 94. X ⊆ Y ∧ Y ⊆X→X = Y.

Proposition 95.
⋃

{x, y}=x∪ y.

Proof. We show the equality by two inclusions:
(⊆). Let u∈

⋃

{x, y}. ∃v(v∈{x, y}∧u∈v). Let v∈{x, y}∧u∈ v. (v=x∨v= y)∧u∈ v.
Case 1 . v= x. Then u∈x. u∈x∨ u∈ y. Hence u∈x∪ y.
Case 2 . v= y. Then u∈ y. u∈x∨u∈ y. Hence u∈x∪ y.
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Conversely let u∈ x∪ y. u∈x∨u∈ y.
Case 1 . u∈x. Then x∈ {x, y}∧u∈x. ∃v(v ∈{x, y}∧u∈ v) and u∈

⋃

{x, y}.
Case 2 . u∈ y. Then x∈{x, y}∧ u∈x. ∃v(v ∈ {x, y}∧u∈ v) and u∈

⋃

{x, y}. �

We can now reformulate the ZF axioms using class terms; for brevity we omit initial
universal quantifiers.

a) Extensionality: x⊆ y ∧ y⊆ x→ x= y.

b) Pairing: {x, y}∈ V .

c) Union:
⋃

x∈V .

d) Powerset: P(x)∈V .

e) Separation schema: for all terms A with free variables x0,
 , xn−1

x∩A∈V .

f) Replacement: see later.

g) Foundation: for all terms A with free variables x0,
 , xn−1

A� ∅→∃x∈A x∩A= ∅.

Also the axiom of infinity can be written as

∃x (∅∈ x∧∀u∈x u∪{u}∈x).

21 Relations and functions

Ordered pairs are the basis for the theory of relations.

Definition 96. (x, y)= {{x}, {x, y}} is the ordered pair of x and y .

Remark 97. There are sometimes discussions whether (x, y) is the ordered pair of x and
y , or to what degree it agrees with the intuitive notion of an ordered pair. ...

Proposition 98. (x, y)∈ V.
(x, y)= (x′, y ′)→ x= y ∧x′= y ′.

Definition 99. Let A,B,R be terms. Define

a) A×B= {z |∃a∈A∃b∈B z= (a, b)} is the cartesian product of A and B .

b) R is a (binary) relation if R⊆V ×V.

c) If R is a binary relation write aRb instead of (a, b)∈R.

We can now introduce the usual notions for relations:

Definition 100.

a) dom(R)= {x|∃y (x, y)∈R} is the domain of R.

b) ran(R)= {y |∃x (x, y)∈R} is the range of R.

c) R ↾A= {z |z ∈R∧∃x∃y((x, y)= z ∧x∈A)} is the restriction of R to A.

d) R[A] = {y |∃x∈A xRy} is the image of A under R.
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e) R−1= {z |∃x∃y (xRy∧z=(y, x))} is the inverse of R .

f ) R−1[B] = {x|∃y ∈B xRy} is the preimage of B under R .

One can prove the usual properties for these notions in ZF. One can now formalize the
types of relations, like equivalence relations, partial and linear orders, etc. We shall only
consider notions which are relevant for our short introduction to set theory.

Definition 101. Let F ,A,B be terms. Then

a) F is a function if ∀x∀y, y ′ (xFy∧xFy ′→ y= y ′).

b) F : A → B if F is a function∧dom(F ) = A ∧ ran(F ) ⊆ B. The sequence notions
(F (x)|x∈A) or (F (x))x∈A are just other ways to write F :A→V.

c) F (x)= {v |∃y (xFy∧∀y ′ (xFy ′→ y= y ′)→∃y (xFy∧v ∈ y)} is the value of F at x.

Note that if F :A→B and x∈A then xFF (x). If there is no unique y such that xFy
then F (x)= V which we may read as F (x) is “undefined”.

Using functional notations we may now write the replacement schema as

F is a function → F [x]∈ V .

One could now develop the usual theory of functions and formalize notions like sur-
jective, injective, bijective, compositions, etc.

22 Natural numbers and complete induction

It is natural to formalize the integer n in set theory by some set with n elements. This
intuitive plan will be implemented in the sequel. For every ordinary natural number we
define a set-theoretical version.

Definition 102.
0 = ∅
1 = {0}
2 = {0, 1}



n+1 = {0, 1,
 , n} = {0, 1,
 , n− 1}∪ {n} =n∪ {n}


For x∈V define x+1=x∪{x} and x+2= (x+1)+ 1.

We would like to set N= {0, 1, 2, 
 }, but such infinitary definitions are not possible
in first-order logic. Instead we look for a characteristic property to define a class which is
able to serve as the collection of set-theoretic integers. Every ordinary integer n is either
of the form n=0 or n=m+1 for some other integer.

Definition 103. A set n is a natural number if

∀i∈n+1(i=0∨∃j ∈n.i= j+1).

Let N be the class of natural numbers. We shall often use letters like i, j , k, l, m, n as
variables for natural numbers.

We show that this class is an adequate formalization of the intuitive notion of “natural
number”.
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Lemma 104.

a) 0∈N ;

b) ∀n∈N. n+1∈N ;

c) 0, 1, 2,
 ∈N .

Proof. a) is trivial. b) Assume n ∈N .To show that n+ 1 ∈N consider i ∈ (n+ 1) + 1=
(n+1)∪{n+1}. If i∈n+1 then we have by assumption that i=0∨∃j ∈n.i= j+1 and
so i=0∨∃j ∈n+1.i= j +1. If i=n+1 then n∈n+1 satisfies ∃j ∈n+1.i= j+1. �

N is the ⊆-smallest class which contains 0 and is closed under +1.

Lemma 105. Let A be a term such that 0∈A and ∀x∈A.x+1∈A . Then N⊆A .

Proof. Let n ∈N . Assume for a contradiction that n � A . By foundation let i ∈ n+ 1
be ∈-minimal such that i � A . Then i� 0 . By the definition of N there is j ∈n such that
i= j+1 . Then j ∈ i and by the ∈-minimality of i we have j ∈A . But then i= j+1∈A .
Contradiction. �

This immediately implies the principle of (complete) induction theorem for natural
numbers.

Theorem 106. Let ϕ(n, pS ) be an ∈-formula. Assume that ϕ(0, pS ) and that ∀n∈N.ϕ(n,
pS )→ ϕ(n+1, pS ). Then ∀n∈N.ϕ(n, pS ).

Proof. Apply the previous lemma with A= {x∈N | ϕ(x, pS )}. �

Theorem 107. N is a set if the axiom of infinity holds.

Proof. If the axiom of infinity holds, take a set x such that

(∃y (y ∈x∧∀z¬z ∈ y)∧∀y(y ∈x→∃z(z ∈x∧∀w(w ∈ z↔w ∈ y ∨w≡ y)))).

This means that ∅∈x∧∀y ∈x.y+1∈x . By Lemma 105, N⊆x . Then N=x∩N is a set
by separation.

Conversely assume that N∈V . Then N obviously witnesses the axiom of infinity. �

So the axiom of infinity can be written briefly as

N∈V .

The natural numbers are linearly ordered by ∈ . To prove this we draw a useful consequence
of foundation, which also shows that the ∈-relation is strict on N .

Lemma 108. There is no finite sequence x0, x1,
 , xn which forms an ∈-cycle with

x0∈x1∈
 ∈ xn∈x0 .

In particular ∀xx � x .

Proof. Assume that x0∈ x1∈
 ∈ xn∈ x0 . Let A= {x0,
 , xn}. A� ∅ since x0∈A . By
foundation, take x∈A such that x∩A= ∅ .
Case 1 . x=x0 . Then xn∈x∩A� ∅ , contradiction.
Case 2 . x=xi for some 16 i6n . Then xi−1∈x∩A= ∅ , contradiction. �

Theorem 109. ∀m,n∈N.m∈n∨m=n∨n∈m .
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Proof. By complete induction on m∈N . The property holds for m=0
(1) ∀n∈N.0∈n∨ 0=n∨n∈ 0 .
Proof . By complete induction on n∈N . The initial case n=0 is trivial:
(1.1) 0∈ 0∨ 0= 0∨ 0∈ 0.
(1.2) Assume that 0∈n∨ 0=n∨n∈ 0. Then 0∈n+1∨ 0=n+1∨n+1∈ 0.
Proof . We have 0∈n∨ 0=n . Then 0∈n+1 . qed(1.2, 1)
(2) Assume ∀n∈N.m∈n∨m=n∨n∈m . Then ∀n∈N.m+1∈n∨m+1=n∨n∈m+1 .
Proof . We prove the conclusion by induction on n∈N .
(2.1) m+1∈ 0∨m+1=0∨ 0∈m+1 .
Proof . By assumptionm∈0∨m=0∨0∈m . Then 0∈m∨0=m . Thus 0∈m+1 . qed(2.1)
(2.2) Assume that m+1∈n∨m+1=n∨n∈m+1 . Then m+1∈n+1∨m+1=n+1∨
n+1∈m+1 .
Proof . If m+1∈n∨m+1=n then m+1∈n+1 as required. So assume that n∈m+1 .
If n=m then m+1=n+1 as required.

This leaves the case n∈m . By the assumption of (2) we have m∈n+1∨m=n+1∨
n+1 ∈m. We obtain a contradiction from the case m ∈ n+ 1: if m ∈ n then m ∈ n ∈m ,
contracting the previous lemma; if m=n then m∈m which again contradicts the lemma.
So we are left with m=n+1∨n+1∈m which implies n+1∈m+1 . qed(2.2, 2) �

Definition 110. Let <= {(m,n)|m∈n} be the natural strict linear order on N .

A natural number is the set of smaller numbers.

Lemma 111. For n∈N, n⊆N . Therefore n= {m∈N |m<n}.

Proof. By induction on n ∈ N . Obviously ∅ ⊆ N . Assume that n ⊆ N . Then n + 1 =
n∪ {n}⊆N . �

So, intuitively, we have the desired n= {0, 1,
 , n− 1}.

23 Complete recursion and arithmetic

Recursion, often called induction as well, over the natural numbers is a ubiquitous method
for defining mathematical objects.

Theorem 112. Let a∈V and G:V →V. Then there is a canonically defined class term F

such that

F :N→V , F (0)= a and ∀n∈N F (n+1)=G(F (n)).

We then say that F is defined by recursion over N by the recursion equations F (0)=a and
∀n∈N F (n+1)=G(F (n)). Moreover, the function F is uniquely determined: if F ′:N→V

satisfies the recursion equations F ′(0)= a and ∀n∈N F ′(n+1)=G(F ′(n)) then F =F ′.

Proof. To “compute” the value of F at some k∈N we would intuitively form a sequence of
(F (0),F (1),
 ,F (k)) according to the recursion equations. This finite sequence is uniquely
determined by k .
(1) For all k∈N there exists a unique f :k+1→V such that f(0)=a and ∀n<k.f(n+1)=
G(f(n)).
Proof . By induction on k . For k=0 set f = {(0, a)}: 1→V . Obviously, this f is uniquely
determined.
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Assume that k ∈ N and that f : k + 1 → V is the uniquely determined function with
f(0)= a and ∀n<k.f(n+1)=G(f(n)). Define

f ′= f ∪{(k+1, G(f(k)))}: k+2→V .

Then f ′ ∈ V is a set by pairing and union. Also f ′(0) = a and ∀n < k + 1. f ′(n + 1) =
G(f ′(n)) by the assumptions on f and by the definition of f ′.

Consider some f ′′:k+2→V such that f ′′(0)=a and ∀n<k+1. f ′′(n+1)=G(f ′′(n)).
By the uniqueness assumption at k we must have f ′′ ↾ k+1= f = f ′ ↾ k+1 . Also

f ′′(k+1)=G(f ′′(k))=G(f(k))=G(f ′(k))= f ′(k+1).

Thus f ′′= f ′ which proves uniqueness at k+1 . qed(1)

We can now define

F = {(k, f(k))| k ∈N∧ f : k+1→V ∧ f(0)= a∧∀n<k.f(n+1)=G(f(n))}.

By (1), F :N→V , and we have to check the recursive equations. F (0)= f(0)=a for some
appropriate f . For n∈N choose f :n+2→V with f(0)= a∧∀k <n.f(k+1)=G(f(k)).
As before, f ↾n+1 is the unique function used to define F (n). Then

F (n+1)= f(n+1)=G(f(n))=G((f ↾n+1)(n))=G(F (n)).

Finally, to show the uniqueness of F let F ′:N→V satisfy the recursion equations F ′(0)=a
and ∀n∈N F ′(n+1)=G(F ′(n)).
(2) ∀n∈N.F (n)=F ′(n).
Proof . By induction. F (0)=a=F ′(0). For the induction step assume that F (n)=F ′(n).
Then F (n+1)=G(F (n))=G(F ′(n))=F ′(n+1). �

We can now define arithmetical operations on natural numbers, using familiar recursive
properties.

Definition 113. Define the sum add(m, n) of m, n ∈ N by recursion on the variable n
(taking m as a parameter) such that

add(m,n)=

{

m, if n=0
add(m, k)+ 1, if n= k+1

Also write m+n instead of add(m,n). Then the recursive equation can be written as

m+0 = m

m+(n+1) = (m+n)+ 1 .

One can show that addition satisfies the expected properties.

Proposition 114.

a) m+n∈N .

b) m+0=0+m=m .

c) (i+ j)+ k= i+ (j+ k).

d) m+n=n+m .

Proof. By induction. �
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Definition 115. Define the product m ·n of m,n∈N:

m · 0 = 0

m · (n+1) = (m ·n)+m

Multiplication satisfies natural properties.

Proposition 116.

a) m ·n∈N .

b) m · 0=0 ·m=0 .

c) (k ·m) · l= k · (m · l).

d) k · (l+m)= (k · l)+ (k ·m).

e) m ·n=n·m .

Proof. By induction. �

Definition 117. Define the power mn of m,n∈N recursively:

m0 = 1

mn+1 = (mn) ·m

Again one can prove the usual arithmetic laws for exponentiation. We shall also need
that obvious instances of these laws are provable in ST. E.g.,

a) ST⊢ 0< 1, ST⊢ 0< 2, ST⊢ 1< 2, etc.. To interpret these statements observe that
the formulas on the right-hand side of ⊢ have to be ∈-formulas. Hence the “numbers”
occuring in those formulas must be abstraction terms, i.e., they are the set-theoretic
numbers defined by 0=∅ and n+1=n∪{n}, and the <-symbol is the set-theoretic
∈. To prove that, e.g., ST ⊢ 3 < 5 requires in principle to unravel the abstraction
term notation into ∈-notation. Although these proof are schematic, ST⊢ 3< 5 will
be proved by a different and much shorter proof than ST⊢ 121< 122 .

b) In the metatheory, where we are constructing statements and proofs, these consid-
eration can be expressed by:

if m and n are ordinary natural numbers withm<n then ST⊢m<n .

This metatheoretic statement deserves some comment: it is a universal statement
in the metatheory, quantifying over all ordinary natural numbers, i.e., the intuitive
mathematical numbers. In the metatheory we can form the set-theoretic statement
m<n for all ordinary natural numbersm and n. The statement ST⊢m<n contains
a metatheoretic existential quantification expressing that a formal proof exists.

24 Formalizing the metatheory in the object theory

We are currently “reflecting” parts of our metatheory, i.e., common mathematical argu-
mentation, into our object theory ST. So far this has been done for class operations,
ordered pairs, relations, functions, and natural numbers. We have given ST-definitions of
certain notions and we have proved propositions showing that the ST-definitions satisfy
ST-properties corresponding to properties of the original metatheoretic notions. If the ST-
definitions are chosen efficiently then the proofs of the propositions should be straightfor-
ward, corresponding to the usual intuitions and arguments.
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We shall continue to formalize the syntax of first-order logic within ST. To avoid confu-
sion, it is helpful to distinguish between metatheoretic notions and their ST-formalizations.
We introduce “Gödel brackets” to denote formalizations.

If A is a metatheoretic notion that has been formalized in ST we may
use ⌈A⌉ to denote its formalization.

Sometimes ⌈A⌉ is called the Gödelization of A . If we would formalize into number
theory instead of set theory, and if then ⌈A⌉ is a natural number, one often calls ⌈A⌉ the
Gödel number of A . Analogously we may call ⌈A⌉ the Gödel set of A . This turns properties
of mathematical objects into properties of sets.

So in defining the natural numbers within ST we could have been more careful by
defining
⌈0⌉ = ∅
⌈1⌉ = {0}
⌈2⌉ = {0, 1}



⌈n+1⌉ = {0, 1,
 , n} = {0, 1,
 , n− 1}∪ {n} =n∪{n}


Then the “correctness” statements from the last chapter look like:

a) ST ⊢⌈ 0⌉ <⌈ 1⌉, ST ⊢⌈ 0⌉ <⌈ 2⌉, ST ⊢⌈ 1⌉ <⌈ 2⌉, etc.. That < is the set-theoretic
<-relation, namely ∈, can still be infered from the context. Of course one could
also introduce further notation to distinguish the set-theoretic relation from the
metatheoretic <-relation. We shall, however, try to restrict our notation to the
necessary.

b) if m and n are ordinary natural numbers with m<n then ST⊢⌈m⌉<⌈n⌉ .

There are many more correctness statements in the context of our formalizations. If the
formalization was to be carried out in some automatic system, one should introduce mech-
anisms to prove most of these schematically and automatically. Here some examples:

a)

if k · l=m then ST⊢⌈ k⌉ ·⌈ l⌉=⌈m⌉

if k · l� m then ST⊢⌈ k⌉ ·⌈ l⌉� ⌈m⌉

The implications of a) cannot be reversed (at the moment). We cannot argue that

warning: if ST⊢⌈ k⌉ ·⌈ l⌉=⌈m⌉ then k · l=m .

The reason is that ST, for all we know, might be an inconsistent theory so that ST
would be able to prove every statement of set theory. There are difficult relations between

truth (“m<n”) and provability (“ST⊢⌈m<n⌉”) which also concern the mechanics behind
the Gödel incompleteness theorems.

25 Finite sequences

For the incompleteness results we want to formalize first-order syntax within ST. Syntax
is very much about finite sequences: words are finite sequences of symbols, sequents are
finite sequences of formulas, formal derivations are finite sequences of sequents. Carrying
out syntax within ST requires a good theory of finite sequences within ST. For the next
definition observe that a set-theoretical natural number is equal to the set of all smaller
numbers.
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Definition 118. w is a finite sequence if w:n→V for some n∈N. We call n the length
of w and write length(w)=n or |s|=n . For i< |s| write wi instead of w(i). The sequence
s will also be denoted by (wi)i<n , (w0,
 , wn−1) or w0
wn−1 .

Let V ∗ be the class of all finite sequences. For sequences w=w0
wm−1 and w0
′

wn−1

′

define the concatenation w	w ′ to be the unique sequence with length(w	w ′)=m+n and

(w	w ′)i=

{

wi , for i <m

wi−m
′ , for m6 i <m+n

We also write w0
wm−1w0
′

wn−1

′ or ww ′ instead of w	w ′.

Lemma 119. V ∗ with 	 has the properties of a monoid with cancellation:

a) 	 is associative: (ww ′)w ′′=w(w ′w ′′).

b) ∅ is a neutral element for 	 : ∅w=w∅=w.

c) 	 satisfies cancelation: if uw=u ′w then u=u′; if wu=wu′ then u=u′.

Exercise 13. Prove these laws by induction.

The associative law allows us to omit brackets in multiple concatenations and to write
ww ′ w ′′ instead of (ww ′) w ′′. We can also view “single” sets s as sequences of length 1 ,
writing simply s instead of (s); then ws stands for w	 (s).

Finite sequences can be used to define “smallest” classes closed under given functions.
Let us first introduce multi-argument functions.

Definition 120. For a term A and n∈N let

An= {w |w:n→A}

be the n-fold cartesian product of A. F :An→V is called an n-ary function on A.

Note that ∅: 0→V and A0= {∅}. So a 0-ary function F :V 0→V can be identified with
its constant value F (∅).

Exercise 14. Show in ST that xn∈V .

25.1 Calculi

We have defined terms and formulas of first-order logic as calculi that produced, e.g.,
formulas out of other formulas and out of other syntactic material. We had used the meta-
mathematical definition:

Definition 121. The class LS of all S-formulas is the smallest subclass of S∗ such that

a) ⊥∈LS (the false formula);

b) t0≡ t1∈LS for all S-terms t0, t1∈T S (equality);

c) Rt0
 tn−1∈LS for all n-ary relation symbols R∈S and all S-terms t0,
 , tn−1∈TS

(relational formula);

d) ¬ϕ∈LS for all ϕ∈LS (negation);

e) (ϕ→ ψ)∈LS for all ϕ, ψ ∈LS (implication);

f ) ∀xϕ∈LS for all ϕ∈LS and all variables x (universalisation).
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We want to capture these formation rules by a single function F such that

a) (0)�
F
⊥ ;

b) (1, t0, t1)�
F
t0≡ t1 for t0, t1∈ TS ;

c) (2, R, t0,
 , tn−1)�
F
Rt0
 tn−1 for R∈S an n-ary relation symbol;

d) (3, ϕ)�
F
¬ϕ ;

e) (4, ϕ, ψ)�
F
(ϕ→ ψ) ;

f) (5, x, ϕ)�
F
∀xϕ for x∈Var .

The first element of the arguments signifies which formation rule is to be used; the further
arguments consist of “previously formed” formulas and other material. We now prove that
the smallest class closed under F can be expressed in ST.

Theorem 122. Let F :D→V be given. A term B is called F-closed if whenever (z, s)∈D
and s∈B∗ then F (z,s)∈B. Then we can canonically define a class AF which is the uniquely
determined ⊆-minimal F-closed class: if B is another F-closed term then AF ⊆B. We call
A the class generated by F, or the smallest class such that ... , where ... stands for the
properties that define F as in the example above.

An F-derivation of x∈AF is a finite sequence f :n+1→V such that

∀m6n∃(z, s)∈D.s∈ (f [m])∗∧ f(m)=F (z, s)∧ f(n)= x.

We view F as a generating function: if F (x, s) = t and s = (s0, 
 , sn−1) is a finite
sequence then we can view t as being built from s0, 
 , sn−1 , possibly using the extra
material x . An F -derivation is a finite sequences in which every step is generated from
earlier steps using F .

Proof. Set

A= {x| ∃n∈N∃f :n+1→V .f is an F -derivation of x}.

(1) A is F -closed.
Proof . Let (y, t)∈D with t∈A∗. We have to show that x=F (y, t)∈A . Take k ∈N such
that t=(t0,
 , tk−1)∈Ak. For l < k take an F -derivation fl:nl+1→V of tl .

Then

f = f0	 f1	 
 	 fk−1	 (x): 1+
∑

l<k

(nl+1)→V

is an F -derivation of x . qed(1)
(2) Let B be F -closed. Then A⊆B.
Proof . Let f :n+1→V be an F -derivation. It suffices to prove by induction on n′6n that
∀m6n′. f(m)∈B . For n′=0 and m=0 there is some (z, s)∈D such that s∈ (f [0])∗={∅}
and f(0)=F (z, ∅). ∅∈B0 and by the assumptions on B

f(0)=F (z, ∅)∈B.

For the induction step consider n′+16 n and assume that ∀m6n′. f(m)∈B. It suffices
to see that f(n′+1)∈B . Set m=n′+1 . Take some (z, s)∈D such that s∈ (f [m])∗ and
f(m)=F (z, s). By the inductive assumption s∈B∗ and by the assumptions on B

f(m)=F (z, s)∈B.

�
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The class A generated by FS can be seen as a least fixed point with respect to a certain
closure under F . In the above construction, A is reached via derivations “from below”. If
there is some F -closed set z0 then the fixed point can also be reached by intersections “from
above”:

A=
⋂

{y |y is F -closed}.

The intersection on the right-hand side is non-trivial since z0 is a factor of the intersection.

25.2 Gödelization of finite sequences

We want to Gödelize the syntactic notions of first-order logic. In the meta-theory these
are defined using finite sequences. Therefore we have to Gödelize finite sequences.

Definition 123. Let w=w0
wn−1 be a meta-theoretic finite sequence of objects wi which

possess a Gödelization ⌈wi
⌉
. Then the Gödelization of w is defined as

⌈w⌉=
(

⌈w0
⌉
,
 , ⌈wn−1

⌉
)

.

One can show some correctness properties by meta-theoretic induction.

Proposition 124.

a) ⌈w0
wn−1u0
um−1
⌉

=⌈w0
wn−1
⌉

	

⌈u0
um−1
⌉

b) ...

25.3 Finite and infinite sets

Finite sequences can also be used to formalize the notions of finite and infinite.

Definition 125. A set x is finite if there is a finite sequence f ∈V ∗ such that x= ran(f).
For a finite set x define its cardinality by

card(x)= x̄̄=min {n| ∃f :n→ x.x= ran(f)}

A set x is infinite if it is not finite.

Lemma 126.

a) ∅ is finite with card(∅)= 0.

b) {x} and {x, y} are finite with card({x})= 1, and card({x, y})= 2 iff x� y.

c) If x is finite and every element of x is finite then
⋃

x is finite.

d) If x is finite and y⊆ x then y is finite with card(y)6 card(x).

e) If x and y are finite then x ∪ y is finite with card(x ∪ y) = card(x) + card(y) −
card(x∩ y).

f ) If x is finite then P(x) is finite with card(P(x))= 2card(x).

g) If F is a function and x is finite then F [x] is finite with card(F [x])6 card(x).

h) every n∈N is finite with card(n)=n.

i) If N∈ V then N is infinite.

Exercise 15. Prove the Lemma.
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26 Formalizing syntax within ST

We now carry out the syntactic definitions of first-order logic within ST.

Definition 127. Set

a) ⌈≡⌉=8801 (equality),

b) ⌈¬⌉=172 (negation),

c) ⌈→⌉=8594 (implication),

d) ⌈⊥⌉=8869 (false),

e) ⌈∀⌉=8704 (universal quantifier),

f ) ⌈(⌉=40 (left bracket),

g) ⌈ )⌉=41 (right bracket),

h) vn=(0, n, 0) for n∈N (the n-th variable),

i) an n-ary relation symbol is a triple of the form R=(1, x, n) with x∈V and n∈N,

j ) an n-ary function symbol is a triple of the form f = (2, x, n) with x∈V and n∈N.

k) Let Var= {vn|n∈N} be the class of variables.

l) Let S0=
{

⌈≡⌉ ,⌈¬⌉ , ⌈→⌉ ,⌈⊥⌉ , ⌈∀⌉ ,
⌈
(⌉ ,⌈

)

⌉
}

∪Var be the class of basic symbols.

m) A term S is a language if every s∈S is a relation symbol or a function symbol.

Note that the basic symbols, the relation symbols, and the function symbols are all
pairwise distinct. We also have an unlimited supply of relation and function symbols. The
(set-theoretic) numbers that we have chosen for the symbols ≡,¬,
 are their numbers in
the Unicode font. This choice is in principle rather arbitrary. It is often convenient to use
the metatheoretic symbols ≡, ¬, 
 as abbreviations for their Gödelizations. So (v3 ≡ v4)
is a formula in the language of set theory, and at the same time it denotes a unique class
term which is the finite sequence

(v3≡ v4) = ((, v3,≡, v4, ))

= (40, (0, 3, 0), 8801, (0, 4, 0), 41)

We have encoutered such “overloading” of notation already with other set-theoretic form-
alizations: 5 can denote the meta-theoretic number “five” or the class term 5. Whether
(v3≡ v4) is to be read as an ∈-formula or as a settheoretic term should be derivable from
the context. Simple meta-theoretic properties should, however, “reflect” from the meta-
theory into ST:

if vn∈Var then ST⊢ vn∈Var .

”vn∈Var” on the left-hand side is a meta-theoretical syntactical property. ”vn∈Var” on the
right-hand side is an ∈-formula which can be proved in ST, due to the simple definition of
the term Var.

Definition 128. (In ST) Let S be a language. A word over S is a finite sequence

w:n→S0∪S.

for some number n∈N which is the length of w. Let S∗ be the class of all words over S.
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Consider a meta-theoretic language S and let ⌈S⌉ be a “Gödelization” of S such that
for every symbol s in S :

⌈s⌉∈⌈S⌉.

Then for every meta-theoretic word w over S we have

ST⊢⌈w⌉ is a word over⌈S⌉.

Definition 129. The class TS of all S-terms is the smallest subclass of S∗ such that

a) x∈TS for all variables x∈Var;

b) ft0
 tn−1 ∈ TS for all n ∈N, all n-ary function symbols f = (2, y, n) ∈ S, and all

t0,
 , tn−1∈T S.

Let ⌈S⌉ be a “Gödelization” of S such that for every n-ary function symbol s in S :

⌈s⌉∈⌈S⌉ is of the form ⌈s⌉=
(

2, x,⌈n⌉
)

.

In the above situation of the Gödelization of a language we have for every meta-theoretic
S-term t that

ST⊢⌈ t⌉ is an ⌈S⌉-term.

This can be proved by a meta-theoretic induction on the length of derivations of t. The
Gödelization of a derivation is again a derivation in ST, and every member of the derivation
is an ⌈S⌉-term.

In ST one can prove the unique readability of terms.

Lemma 130. For every term t∈T S exactly one of the following holds:

a) t∈Var;

b) there is a uniquely defined function symbol f = (2, y, n)∈ S and a uniquely defined

sequence t0,
 , tn−1∈T S of terms such that t= ft0
 tn−1 .

Definition 131. The class LS of all S-formulas is the smallest class such that

a) ⊥∈LS ;

b) t0≡ t1∈LS for all S-terms t0, t1∈T S ;

c) Rt0
 tn−1∈LS for all n-ary relation symbols R=(1, y, n)∈S and all S-terms t0,
 ,

tn−1∈ TS ;

d) ¬ϕ∈LS for all ϕ∈LS ;

e) (ϕ→ ψ)∈LS for all ϕ, ψ ∈LS ;

f ) ∀vnϕ∈LS for all ϕ∈LS and all vn=(0, n, 0)∈Var.

Assuming a “correct” Gödelization of the language S we have for every meta-theoretic
S-formula ϕ that

ST⊢⌈ ϕ⌉ is an ⌈S⌉-formula.

And in ST one prove the unique readability of formulas. Then simple syntactic recursions
can be formalized in ST.
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Definition 132. For t ∈ T S define var(t) ⊆ {vn|n ∈ N} by recursion on (the lengths of)
terms:

− var(x)= {x};

− var(c)= ∅;

− var(ft0
 tn−1)=
⋃

i<n
var(ti).

Definition 133. Für ϕ ∈ LS define the set of free variables free(ϕ) ⊆ {vn|n ∈ N} by
recursion on (the lengths of) formulas:

− free(t0≡ t1)= var(t0)∪ var(t1);

− free(Rt0
 tn−1)= var( t0)∪
 ∪ var(tn−1);

− free(¬ϕ)= free(ϕ);

− free(ϕ→ ψ)= free(ϕ)∪ free(ψ).

− free(∀xϕ)= free(ϕ) \ {x}.

For Φ⊆LS define the class free(Φ) of free variables as

free(Φ)=
⋃

ϕ∈Φ

free(ϕ) .

Definition 134. For a term s∈T S, pairwise distinct variables x0,
 , xr−1 and terms t0,
 ,
tr−1∈ TS define the (simultaneous) substitution

s
t0
 .tr−1

x0
xr−1

of t0,
 , tr−1 for x0,
 , xr−1 by recursion:

a) x
t0
 .tr−1

x0
 xr−1
=

{

x, if x� x0,
 , x� xr−1

ti , if x= xi
for all variables x;

b) (fs0
 sn−1)
t0
 .tr−1

x0
 xr−1
= fs0

t0
 .tr−1

x0
 xr−1

 sn−1

t0
 .tr−1

x0
 xr−1
for all n-ary function symbols

f ∈S .

One can check again, that Gödelizations commute with forming the set of free variables
and with substitution.

Definition 135. A finite sequence (ϕ0,
 , ϕn−1, ϕn) of S-formulas is called a sequent. The
initial segment Γ=(ϕ0,
 , ϕn−1) is the antecedent and ϕn is the succedent of the sequent.
We usually write ϕ0
 ϕn−1ϕn or Γϕn instead of (ϕ0,
 , ϕn−1, ϕn). To emphasize the last
element of the antecedent we may also denote the sequent by Γ′ ϕn−1 ϕn with Γ′=(ϕ0,
 ,

ϕn−2).

Again, if Γϕ is a meta-theoretic sequence then

ST⊢⌈Γϕ⌉ is a sequence.

Definition 136. The sequent calculus consists of the following (sequent-)rules:

− monotonicity (MR)
Γ ϕ

Γ ψ ϕ

− assumption (AR)
Γ ϕ ϕ
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− →-introduction (→I)
Γ ϕ ψ

Γ ϕ→ ψ

− →-elimination (→E)
Γ ϕ

Γ ϕ→ ψ

Γ ψ

− ⊥-introduction (⊥I)
Γ ϕ

Γ ¬ϕ
Γ ⊥

− ⊥-elimination (⊥E)
Γ ¬ϕ ⊥
Γ ϕ

− ∀-introduction (∀I)
Γ ϕ

y

x

Γ ∀xϕ
, if y � free(Γ∪{∀xϕ})

− ∀-elimination (∀E)
Γ ∀xϕ

Γ ϕ
t

x

, if t∈TS

− ≡-introduction (≡I)
Γ t≡ t

, if t∈ TS

− ≡-elimination (≡E)

Γ ϕ
t

x

Γ t≡ t′

Γ ϕ
t′

x

The provability relation is the smallest subclass pr ⊆Seq(S) which is closed under these
rules. For A an arbitrary class of formulas and ϕ a formula define the binary relation “ϕ
is provable from A”

pv(A, ϕ)=∃n∈N∃(ϕi)i<n (∀i <nϕi∈A∧ (ϕ0,
 , ϕn−1, ϕ)∈pr) .

A derivation, or a formal proof, in the sequent calculus is a finite sequence of sequents
according to the above derivation rules. If such a derivation D ends in a sequent (ϕ0,
 ,

ϕn−1, ϕ) with ∀i < nϕi∈A then we write

pf(D,A, ϕ).

Finally, we formalize consistency of first-order theories by

Con(A)=¬pv
(

A, ⌈⊥⌉
)

Proposition 137. Suppose that A is a meta-theoretical class of formulas with a Gödeliz-

ation ⌈A⌉ such that for any meta-theoretical formula ϕ∈A we have ST⊢ ⌈ϕ⌉∈ ⌈A⌉ . Then

a) If D is, meta-theoretically, a formal proof of ϕ within A, then ST⊢pf
(

⌈D⌉,⌈A⌉,⌈ϕ⌉
)

.

b) If A⊢ ϕ, meta-theoretically, then ST⊢ pv
(

⌈A⌉,⌈ ϕ⌉
)

.

Proof. For b) observe that if A⊢ϕ in the metatheory then there must be a meta-theoretical
formal derivation of ϕ0
 ϕn−1ϕ where ϕ0,
 , ϕn−1∈A . �

Note that from the meta-theoretical consistency of A we can in general not infer
that ST ⊢ Con

(

⌈A⌉
)

; consistency is usually not expressed by some finite witness (like a
derivation) but by a model which may not be transferable into ST.
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27 ST in ST

Definition 138. Let ⌈∈⌉=(1, 8712, 2) be the Gödelization of the standard ∈-symbol of set

theory. Let ⌈L∈⌉=
{⌈
∈⌉

}

be the Gödelized language of set theory.

Definition 139. Gödelize the axioms of ST as follows:

a) Let ⌈Ext ⌉=⌈∀x∀y(∀z(z ∈x↔ z ∈ y)→ x≡ y)⌉

b) Let ⌈Pair ⌉=⌈∀x∀y∃z∀w (w ∈ z↔w≡ x∨w≡ y)⌉

c) Let ⌈Union ⌉=⌈∀x∃y∀z(z ∈ y↔∃w(w ∈x∧ z ∈w))⌉

d) Let ⌈Pot ⌉=⌈∀x∃y∀z(z ∈ y↔∀w(w ∈ z→w ∈x))⌉

e) Let

⌈Sep⌉=
{

∀x1
∀xn∀x∃y∀z (z ∈ y↔z ∈x∧ ϕ(z, x1,
 , xn)) | ϕ(z, x1,
 , xn)∈
⌈L∈⌉

}

.

Here ⌈Sep⌉ is the image of ⌈L∈⌉ under the recursively defined syntactic function

ϕ(z, x1,
 , xn)� ∀x1
∀xn∀x∃y∀z (z ∈ y↔z ∈ x∧ ϕ(z, x1,
 , xn));

this function identifies the variables z, x1, 
 , xn in ϕ, forms the concatenation
∀x∃y∀z (z∈ y↔z∈x∧ϕ(z,x1,
 ,xn)) and prefixes it with the quantifiers ∀x1
∀xn .

f ) Let

⌈Rep⌉ =
{

∀x1
∀xn(∀x∀y∀y ′((ϕ(x, y, x1, 
 , xn) ∧ ϕ(x, y ′, x1, 
 , xn))→ y ≡ y ′)→

∀u∃v∀y (y ∈ v↔∃x(x∈ u∧ ϕ(x, y, x1,
 , xn))))| ϕ(x, y, x1,
 , xn)∈
⌈L∈⌉

}

.

g) Let

⌈Found⌉=
{

∀x1
∀xn(∃xϕ(x, x1,
 , xn)→∃x(ϕ(x, x1,
 , xn)∧ ∀x′(x′∈ x→¬ϕ(x′,

x1,
 , xn))))| ϕ(x, x1,
 , xn)∈
⌈L∈⌉

}

.

h) Let
⌈ST⌉=

{

⌈Ext⌉, ⌈Pair⌉, ⌈Union⌉, ⌈Pot⌉
}

∪ ⌈Sep⌉∪ ⌈Rep⌉∪ ⌈Found⌉.

Since provability from (Gödelized) set theory will be our main concern, we define

Definition 140. Write pvST(ϕ) for pv
(

⌈ST⌉, ϕ
)

and pfST(D, ϕ) for pf
(

D, ⌈ST⌉, ϕ
)

.

These Gödelizations satisfy the usual correctness properties:

Proposition 141.

a) If ϕ is a meta-theoretical ∈-formula then ST⊢⌈ ϕ⌉∈⌈L∈⌉.

b) If ϕ is a meta-theoretical axiom of ST then ST⊢⌈ ϕ⌉∈⌈ST⌉.

c) If D is, meta-theoretically, a formal proof of ϕ within ST, then ST⊢pfST
(

⌈D⌉,⌈ϕ⌉
)

.
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d) If ST⊢ ϕ, meta-theoretically, then ST⊢pvST
(

⌈ϕ⌉
)

.

We shall later deal with the question whether ST⊢Con
(

⌈ST⌉
)

, i.e., whether set theory
can prove its own consistency.

28 The undefinability of truth

The proof of the following fix point theorem is based on the trick

ϕ(v0(v0))(ϕ(v0(v0)))↔ ϕ(ϕ(v0(v0))(ϕ(v0(v0))))

which can be adapted to our domain.

Theorem 142. Let ϕ(v0) be an ∈-formula. Then there is an ∈-sentence θ without free
variables which is a fix point of ϕ , i.e.,

ST⊢ θ↔ ϕ(⌈θ⌉).

The sentence θ can be viewed as expressing “this sentence has the property ϕ” or “I
have the property ϕ”. The sentence is “reflexive” in the sense that it talks about “itself”.
Such reflexivity is the base for paradoxa and incompleteness.

Proof. For an ∈-formula χ(v0) and another ∈-formula χ′, χ( ⌈χ′⌉) is obtained by inserting

the abstraction term ⌈χ′⌉ in χ . By the recursive elimination rules for abstraction terms,
χ( ⌈χ′⌉) is an ∈-formula. The operation χ, χ′

� χ(⌈χ′⌉) is a straightforward but tedious
syntactic manipulation of symbol sequences which can be defined (“Gödelized”) in ST. So
there is a canonical abstraction term Sub(v0, v1) such that

ST⊢Sub:⌈L∈⌉×⌈L∈⌉→⌈L∈⌉

where for all metatheoretic ∈-formulas χ, χ′ :

ST⊢Sub
(

⌈χ⌉, ⌈χ′⌉
)

=⌈ χ(⌈χ′⌉)⌉.

Then let

ψ(v0)= ϕ(Sub(v0, v0)).

In ST, we have the equivalences

ψ( ⌈ψ⌉)↔ϕ
(

Sub
(

⌈ψ⌉, ⌈ψ⌉
))

↔ϕ
(

⌈ψ(⌈ψ⌉)⌉
)

.

Then θ= ψ( ⌈ψ⌉) is a fix point of ϕ . �

The operation v0(v0) of “selfapplication” is more common in computing, where a pro-
gram is also considered as data and a program can take itself as input. Another theory
where such constructions can be carried out is the λ-calculus.

Definition 143. An ∈-formula ψ(v0) is a definition of truth in ST if for all ∈-sentences θ :

ST⊢ (θ↔ ψ(⌈θ⌉)).

Using the fix point theorem we can easily show Tarski’s theorem on the undefinability
of truth:
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Theorem 144. If ST is consistent, there is no definition of truth.

Proof. Assume that ψ(v0) were a definition of truth. By the fix point theorem there is
an ∈-sentence θ such that

ST⊢ (θ↔¬ψ(⌈θ⌉)).

Since ψ(v0) is a definition of truth we also have

ST⊢ (θ↔ ψ(⌈θ⌉)).

Together

ST⊢ (¬ψ(⌈θ⌉)↔ ψ(⌈θ⌉)),

contradiction. �

29 Gödel’s incompleteness theorems

Naively, one might identify mathematical truth with provability: a theorem is “true” if it
has a proof. Then the formula pvST(v0) looks like a good candidate for a definition of truth.
The contradiction in the proof of the indefinability of truth was obtained by a fixed point
for the negated property. This would be a sentence θ such that

ST⊢ θ↔¬pvST(
⌈θ⌉),

expressing “this sentence is not provable”. One would expect that ST is not able to prove
θ nor ¬θ, unless ST is inconsistent so that it would prove everything.

Suppose that ST ⊢ θ. Then ST ⊢ pvST(
⌈θ⌉). Hebce ST ⊢ ¬θ, and ST would be incon-

sistent. Suppose that ST⊢¬θ. Then ST⊢pvST(
⌈¬θ⌉). If this would imply ST⊢¬pvST(

⌈θ⌉),
we would obtain the contradiction ST⊢ θ.

We shall make this idea exact by modifying the formula pvST(v0) a bit.

Theorem 145. If ST is consistent then ST is incomplete, i.e., there is an ∈-sentence ϕ
such that ST0 ϕ and ST0¬ϕ.

Proof. A formal proof from ⌈ST⌉ consists of a combination of natural numbers: symbols
are (triples of) natural numbers, formula are finite sequences of symbols, sequents are finite
sequences of formulas, and formal proofs are finite sequences of sequents. We can rank
proofs by the largest natural number involved in it.

Define the rank of a formula ϕ as rk(ϕ)=max {n∈N | vn occurs in ϕ}+ length(ϕ).
Define the rank of a sequent ϕ0
 ϕl−1 as rk(ϕ0
 ϕl−1)=maxi<l rk(ϕi)+ l .
Define the rank of a formal proof s0
 sk−1 as rk(s0
 sl−1)=maxi<l rk(si)+ l .
The rank function can be defined metatheoretically as well as in ST with usual reflection

properties. Metatheoretically, for every natural number n there are only finitely many
formulas, sequents, and formal proofs of rank 6n . This fact reflects down to ST: there is
a metatheoretical list D0,
 ,Dm−1 of formal proofs of rank 6n such that

ST⊢pf(D)∧ rk(D)6 ⌈n⌉→D= ⌈D0
⌉
∨D= ⌈D1

⌉
∨
 ∨D= ⌈Dm−1

⌉
.

Let us now assume for a contradiction that ST is complete and consistent. We show that
the formula

ψ(v0)= ∃D(pf(D, v0)∧∀D ′(rk(D ′)6 rk(D)→¬pf(D ′,¬v0))),

expressing that v0 is proved “before” ¬v0 is proved, is a definition of truth.
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Let θ be an ∈-sentence.
Case 1 . ST⊢ θ. Then there is a metatheoretic formal proof D for θ in ST. Let n= rk(D)
and let D0,
 ,Dm−1 the list of metatheoretic formal proofs of rank 6n as above. Since ST
is assumed to be consistent, Di with i < m is not a formal proof of ¬θ. This is a simple

syntactic property which reflects to ST: ¬pf
(

⌈Di
⌉
,⌈¬θ⌉

)

. By reflection and the properties

of the list D0,
 , Dm−1

pf( ⌈D⌉,⌈ θ⌉)∧∀D ′
(

rk(D ′)< rk(D)→¬pf
(

D ′,⌈¬θ⌉
))

.

Hence ST⊢ ψ( ⌈θ⌉) and so ST⊢ θ↔ ψ( ⌈θ⌉).
Case 2 . ST0θ. Since ST is assumed to be complete, ST⊢¬θ. Then there is a metatheoretic
formal proof D ′ for ¬θ in ST. Let n= rk(D ′) and let D0,
 ,Dm−1 the list of metatheoretic
formal proofs of rank 6n as above. Since ST is assumed to be consistent, Di with i < m

is not a formal proof of θ.

Work in ST. Assume for a contradiction that ψ( ⌈θ⌉). Take a derivation D such that

pf(D,⌈ θ⌉). Then D �

⌈Di
⌉
for i < m and so rk(D) > ⌈n⌉. rk

(

⌈D ′⌉
)

< rk
(

⌈D⌉
)

and

pf(⌈D ′⌉,⌈ θ⌉). This implies ¬ψ( ⌈θ⌉).

Hence ST⊢¬ψ( ⌈θ⌉) and so ST⊢ θ↔ ψ( ⌈θ⌉).

But this contradicts the undefinability of truth. �

Analysing the proof, we can concretely exhibit an “undecided” sentence θ.

Theorem 146. If ST is consistent then one can construct an ∈-sentence θ such that
ST0 θ and ST0¬θ.

Proof. As in the proof of the previous theorem let

ψ(v0)= ∃D(pf(D, v0)∧∀D ′(rk(D ′)6 rk(D)→¬pf(D ′,¬v0))),

be the formula “v0 is proved, before ¬v0”.
By the proof of the fix point theorem one can concretely construct a sentence θ from

the formula ψ such that

ST⊢ θ↔¬ψ
(

⌈θ⌉
)

.

This sentence expresses “I cannot be proved before my negation”. To show that θ is not
decided by ST we reuse the arguments from the proof of the incompleteness theorem.
(1) ST0 θ.
Proof . Assume ST⊢ θ. Let D be a metatheoretic formal proof for θ in ST. Let n= rk(D)
and let D0,
 ,Dm−1 the list of metatheoretic formal proofs of rank 6n as above. Since ST
is assumed to be consistent, Di with i <m is not a formal proof of ¬θ. As above,

pf( ⌈D⌉,⌈ θ⌉)∧∀D ′
(

rk(D ′)< rk(D)→¬pf
(

D ′,⌈¬θ⌉
))

.

Hence ST⊢ ψ( ⌈θ⌉). By the fix point property, ST⊢¬θ and so ST is inconsistent. qed(1)
(2). ST0¬θ.
Proof . Assume ST ⊢ ¬θ. Let D ′ be a metatheoretic formal proof for ¬θ in ST. Let
n= rk(D ′) and letD0,
 ,Dm−1 the list of metatheoretic formal proofs of rank 6n as above.
Since ST is assumed to be consistent, Di with i <m is not a formal proof of θ.

Work in ST. Assume for a contradiction that ψ( ⌈θ⌉). Take a derivation D such that

pf(D,⌈ θ⌉). Then D �

⌈Di
⌉
for i < m and so rk(D) > ⌈n⌉. rk

(

⌈D ′⌉
)

< rk
(

⌈D⌉
)

and

pf(⌈D ′⌉,⌈ θ⌉). This implies ¬ψ( ⌈θ⌉).
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Hence ST⊢¬ψ( ⌈θ⌉). By the fix point property, ST⊢ θ and so ST is inconsistent. �

Con
(

⌈ST⌉
)

formalizes that the system ST is consistent. Gödel’s second incomplete-

ness theorem states that ST cannot prove its own consistency, i.e., that “by finitary means”
mathematics cannot prove the consistency of ST and therefore not the consistency of
mathematics.

Theorem 147. If ST is consistent then ST0Con
(

⌈ST⌉
)

.

Proof. By the fix point theorem there is an ∈-sentence θ such that

ST⊢ (θ↔¬pvST(
⌈θ⌉)).

The sentence θ formalizes “this sentence is not provable”.
(1) If ST is consistent then ST0 θ.
Proof . Assume ST ⊢ θ. Then ST ⊢ pvST(

⌈θ⌉). By the fix point property, ST ⊢ ¬θ. Hence
ST is inconsistent. qed(1)

(2) ST⊢Con
(

⌈ST⌉
)

→¬pvST(
⌈θ⌉).

Proof . This is the reflection of (1) into ST. Work in ST and assume pvST
(

⌈θ⌉
)

. Take a
derivation of ⌈θ⌉. This can be Gödelized within the theory ST so that

pvST
(⌈
pvST

(

⌈θ⌉
)

⌉
)

.

Reflecting the fix point property yields

pvST
(⌈(

θ↔¬pvST(
⌈θ⌉)

)

⌉
)

.

By the properties of the pvST-predicate we also have

pvST
(

⌈¬θ⌉
)

,

so that Con
(

⌈ST⌉
)

is false. qed(2)

Assume now that ST⊢Con(⌈ST⌉). By (2), ST⊢¬pvST(
⌈θ⌉). By the fix point property,

ST⊢ θ. So by (1), ST is inconsistent. �

Gödel’s incompleteness theorems have a number of mathematical consequences and
extensions. They relate to other limiting results in logic and computability theory and they
also influence general discussions about the limits of knowledge.

Corollary 148. There is an ∈-sentence θ such that if ST is consistent, then both ST∪{θ}
and ST∪ {¬θ} are also consistent.

Instead of ST∪{θ} let us also write ST+ θ

Corollary 149. If ST is consistent then ST+¬Con
(

⌈ST⌉
)

is consistent.

If ST is consistent, then a (metatheoretic) standard model of ST satisfies also

Con
(

⌈ST⌉
)

. A model of ST+ ¬Con
(

⌈ST⌉
)

is thus a nonstandard model in which there
is a nonstandard object which is a formal proof inconsistency proof of ⌈ST⌉. From out-
side the nonstandard model this proof appears to be a fascinating infinite object that
locally respects the rules of the sequent calculus but which ends in ⊥ . Although much
more complex it may be pictured like a nonstandard natural number ∞ which is reached
by a process which locally is just the successor operation n� n+1 but ends in ∞.
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30 Zermelo-Fraenkel set theory

“in der Mathematik giebt es kein
Ignorabimus!”. David Hilbert
(1900)

“Wir müssen wissen, wir werden
wissen”. David Hilbert (1930)

A naive reaction to the incompleteness theorems might be: if θ is not decided by ST,

maybe one can adjoin θ or Con
(

⌈ST⌉
)

to obtain completeness. However:

Theorem 150. Let ST′ be a consistent extension of ST by a finite list θ0,
 , θn−1 ∈ L∈

of axioms. Let ⌈ST′ ⌉ be the Gödelization of ST′. Then

a) Truth is undefinable in ST′.

b) ST′ is incomplete.

c) ST′
0Con

(

⌈ST′ ⌉
)

.

Proof. Redo the above proofs with pf
(

D,⌈ST′⌉, ϕ
)

and pv
(

⌈ST′⌉, ϕ
)

instead of pfST(D,

ϕ) and pvST(ϕ). �

The same holds if ST′ is an extension of ST by some Gödelizable schema of axioms.

Definition 151. Let S and T be theories in the language of set theory which extend ST.
We say that S has greater consistency strength than T if S ⊢Con(T ).

The ordering of theories by their consistency strengths is a major topic in axiomatic
set theory.

A particularly interesting extension of ST is Zermelo-Fraenkel set theory

ZF=ST+ Inf.

ZF implies that N is a set. The usual number systems Z, Q, R, C can be obtained set-
theoretically from N (this will be discussed in the lecture course “Set Theory”). Together
with the abstract notions of relation and functions which are already available in ST this
indicates that ZF can be used as a foundation for “mathematics”. Usually one also adds
the axiom of choice to ZF in the form of Zorn’s lemma:

ZFC=ZF+Zorn’s lemma.

By the above theorems, ZFC is an incomplete theory (if it is consistent), but there are no
further generally accepted axioms that one could add. So one can say

Mathematics =ZFC.

Theorem 152. Assume that the theory ZFC is consistent. Then

a) ZFC⊢Con
(

⌈PA⌉
)

.

b) ZFC0Con
(

⌈ZFC⌉
)

.

Proof. We have seen before that N,+, ·, 0, 1 satisfy the Peano axioms. Since N is a set
in ZFC we can reflect those arguments into ZFC to show that

(N,+, ·, 0, 1)� ⌈PA⌉.
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Then PA is consistent within ZFC. �

The incompleteness theorems for ZFC can be read as incompleteness theorems for all
of mathematics: we assume that ZFC is consistent. Then

1. mathematics (=ZFC) is incomplete;

2. mathematics cannot prove the consistency of mathematics (ZFC0Con
(

⌈ZFC⌉
)

).

As emphasized by 2., we can only assume (believe?) the consistency of mathematics. And
then there are mathematical statements that cannot be decided by the axioms. Gödel’s
arguments produce artificial statements, often called Gödel sentences , that are left unde-
cided by the axioms. Indeed one can show in the theory of models of set theory, that there
are natural set theoretical properties which are left open by ZF(C):

if ZF is consistent then ZF+ZL and ZF+¬ZL

are consistent, where ZL denotes Zorn’s Lemma.
The incompleteness theorems of ZFC, rather than the original Gödel theorems, present

a strong philosophical and epistomological barrier, which has given rise to deep philosoph-
ical theories.
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