Einführung in die Mathematische Logik Sommersemester 2016

ÜbungsaufgabenProf. Dr. Peter KoepkeSerie 11Dr. Philipp Lücke

Aufgabe 41. Zeigen Sie die folgenden Aussagen für Formeln in der Sprache $\{\in\}$.

(1) (2 Punkte) Es gibt keine Formel $\theta(x, y)$, so dass ST für alle Formeln $\varphi(x)$, $\psi(y)$ beweist, dass

$$\theta(\lceil \varphi \rceil, \lceil \psi \rceil) \Leftrightarrow \{z \mid \varphi(x)\} = \{z \mid \psi(z)\}.$$

(2) (2 Punkte) Es gibt keine Formel $\theta(x)$, so dass ST für alle Formeln $\varphi(x)$ beweist, dass

$$\theta(\lceil \varphi \rceil) \Leftrightarrow \exists u \ (u = \{z \mid \varphi(z)\}).$$

Aufgabe 42 (4 Punkte). Es es S eine erststufige Sprache, die ein zweistelliges Relationssymbol \triangleleft enthält, und Φ eine Menge von S-Sätzen, so dass $(|\mathfrak{M}|, \triangleleft^{\mathfrak{M}})$ für jedes Modell \mathfrak{M} von Φ eine lineare Ordnung ist. Beweisen Sie, dass für jedes unendliche Modell \mathfrak{M} von Φ ein S-Modell \mathfrak{N} mit den folgenden Eigenschaften existiert.

- (1) Es existiert eine ordnungserhaltende Einbettung von $(\mathbb{Q}, <)$ nach $(|\mathfrak{N}|, <^{\mathfrak{N}})$.
- (2) Es existiert eine elementare Einbettung von \mathfrak{M} nach \mathfrak{N} .

(Tipp: Erweitern Sie zunächst S um Konstantensymbole für Elemente von $|\mathfrak{M}|$ und betrachten Sie die Theorie von \mathfrak{M} in der erweiterten Sprache. Verwenden Sie dann den Kompaktheitssatz).

Aufgabe 43. Zeigen Sie, dass die Beweisbarkeitsrelation $pv_{ST}(\lceil \cdot \rceil)$ die sogenannten $L\ddot{o}b$ -Axiome erfüllt:

- (1) (2 Punkte) Wenn ST $\vdash \varphi$ für eine \in -Formel φ , dann ST $\vdash pv_{\text{ST}}(\ulcorner \varphi \urcorner)$.
- (2) (2 Punkte) ST $\vdash (pv_{ST}(\lceil \varphi \rceil) \land pv_{ST}(\lceil \varphi \rightarrow \psi \rceil)) \rightarrow pv_{ST}(\lceil \psi \rceil)$ für alle \in Formeln φ und ψ .
- (3) (2 Punkte) ST $\vdash pv_{ST}(\lceil \varphi \rceil) \to pv_{ST}(\lceil pv_{ST}(\lceil \varphi \rceil) \rceil)$ für jede \in -Formel φ .

(Tipp: Orientieren Sie sich am Beweis von Satz 146 aus der Vorlesung).

Aufgabe 44 (4 Punkte). Definieren Sie eine \in -Formeln φ und ψ mit den folgenden Eigenschaften:

- (1) ST beweist, dass φ eine Surjektion von ω auf V_{ω} definiert.
- (2) ST beweist, dass ψ eine Injektion von V_{ω} nach ω definiert.

(Tipp: Definieren Sie die Surjektion rekursiv und kodieren Sie die Elemente einer Menge in V_{ω} durch die Primfaktoren einer natürlichen Zahl).

Aufgabe 45. Es bezeichne S die Erweiterung der Sprache der Zahlentheorie um ein zweistelliges Funktionssymbol exp. Die Theorie PA_{exp} besteht aus den Axiomen von PA, dem Induktionsschema für alle S-Formeln und den Axiomen

- $\forall n \exp(n,0) = 1$.
- $\forall m, n \exp(n, m+1) = \exp(n, m) \cdot n$.
- (1) (4 Punkte) Zeigen Sie, dass die Theorie PA_{exp} genau dann konsistent ist, wenn die Theorie $ST \cup \{\neg Inf\}$ konsistent ist (Tipp: Gegeben ein Modell \mathfrak{M} von PA_{exp} , betrachten Sie die definierbare zweistellige Relation

$$mEn \iff \mathfrak{M} \models \exists k, r \ [k > 0 \land r < \exp(2, m) \land n = k \cdot \exp(2, m) + r]$$

und zeigen Sie induktiv, dass alle Axiome von ST in $(|\mathfrak{M}|, E)$ gelten. Verwenden Sie Resultate aus der Vorlesung für die Rückrichtung).

- (2) (1 Punkt) Zeigen Sie, dass $ST \cup \{Inf\} \vdash Con(\lceil PA \rceil)$.
- (3) (1 Punkt) Zeigen Sie, dass ST \vdash Inf äquivalent zur Inkonsistenz von ST ist.

Abgabe: Montag, 11. Juli 2016, in der Vorlesung.