Einführung in die Mathematische Logik

Sommersemester 2016

ÜbungsaufgabenProf. Dr. Peter KoepkeSerie 10Dr. Philipp Schlicht

Aufgabe 37. Beweisen Sie die folgenden Aussagen in ST.

- (1) (2 Punkte) Wenn x endlich ist, dann ist $\mathcal{P}(n)$ endlich und $|\mathcal{P}(n)| = 2^n$ für alle $n \in \mathbb{N}$.
- (2) (2 Punkte) Wenn F eine Funktion ist (d.h. eine Klassenfunktion) und x endlich ist, dann ist F[x] endlich und $card(F[x]) \leq card(x)$.
- (3) (2 Punkte) Jedes $n \in \mathbb{N}$ ist endlich und $\operatorname{card}(n) = n$.

Wir definieren in ST die Folge $\langle V_n \mid n \in \omega \rangle$ durch Rekursion, wobei $V_0 = \emptyset$ und $V_{n+1} = \mathcal{P}(V_n)$ für alle $n \in \mathbb{N}$. Wir definieren in ST

$$V_{\omega} = \{ x \mid \exists n \in \mathbb{N} \ x \in V_n \}.$$

Wir bezeichnen das Standardmodell von $ST \cup \{\neg Inf\}$ mit V.

Aufgabe 38 (4 Punkte). Es sei \mathcal{M} ein Modell von $ST \cup {\neg Inf}$.

- (1) Konstruieren Sie eine Einbettung $\iota: \mathcal{V} \to \mathcal{M}$.
- (2) Zeigen Sie, dass die Einbettung ι eindeutig bestimmt ist und ihr Bild abwärts abgeschlossen ist, d.h. für alle $x \in |\mathcal{V}|$ und alle $z \in \iota(x)$ existiert ein $y \in |\mathcal{V}|$ mit $\iota(y) = z$.

In der nächsten Aufgabe können Sie die folgende Aussage verwenden. Angenommen, \mathcal{M} ist ein Modell von PA.

- (1) Es gibt eine Einbettung $\iota : \mathbb{N} \to |\mathcal{M}|$ des Standardmodells der Arithmetik in \mathcal{M} .
- (2) Die Einbettung ι ist eindeutig bestimmt und ihr Bild ist abwärts abgeschlossen, d.h. für alle $n \in \mathbb{N}$ und alle $x, y \in |\mathcal{M}|$ mit $\iota(n) = x +^{\mathcal{M}} y$ existiert ein $m \in \mathbb{N}$ mit $\iota(m) = x$.

Aufgabe 39 (4 Punkte). Angenommen $\mathcal{M}=(M,0,1,+,\cdot)$ ist ein abzählbares Modell von PA und $<_M$ ist definiert durch

$$x < y \Leftrightarrow \exists z \neq 0 \ (x + z = y).$$

Angenommen, (M,<) ist nicht isomorph ist zu $(\mathbb{N},<_{\mathbb{N}})$. Zeigen Sie, dass es eine dichte lineare Ordnung $(Q,<_Q)$ ohne Endpunkte gibt, so dass (M,<) isomorph ist ist zu einer linearen Ordnung, die aus einer isomorphen Kopie von $(\mathbb{N},<_{\mathbb{N}})$ beststeht, über der abzählbar viele Kopien von $(\mathbb{Z},<_{\mathbb{Z}})$ liegen, die im Ordnungstyp $(Q,<_Q)$ angeordnet sind.

(Hinweis: zeigen Sie dazu, dass zwischen zwei Kopien von $(\mathbb{Z}, <_{\mathbb{Z}})$ mindestens eine weitere Kopie von $(\mathbb{Z}, <_{\mathbb{Z}})$ liegt).

Aufgabe 40 (4 Punkte). Beweisen Sie, dass die Klasse der Nichtstandardmodelle der Peano-Arithmetik (d.h. die Klasse aller Modelle von PA, die nicht zum Standardmodell der Arithmetik isomorph sind) nicht in der Sprache der Arithmetik $S_{AR} = \{+, \cdot, 0, 1\}$ axiomatisiert werden kann.

Aufgabe 41. Zeigen Sie die folgenden Aussagen für Formeln in der Sprache $\{\in\}$.

(1) (2 Punkte) Es gibt keine Formel $\theta(x,y)$, so dass ST für alle Formeln $\varphi(x)$, $\psi(y)$ beweist, dass

$$\theta(\lceil \varphi \rceil, \lceil \psi \rceil) \Leftrightarrow \{z \mid \varphi(x)\} = \{z \mid \psi(z)\}.$$

(2) (2 Punkte) Es gibt keine Formel $\sigma(x),$ so dass ST für alle Formeln $\varphi(x)$ beweist, dass

$$\theta(\lceil \varphi \rceil) \Leftrightarrow \exists u \ (u = \{z \mid \varphi(x)\})$$

(Hinweis: diese Aufgabe verwendet den Vorlesungsstoff von Mittwoch, den 29. Juni.)

Abgabe: Montag, 04. Juli 2016, in der Vorlesung.