
LECTURE NOTES - ADVANCED TOPICS IN MATHEMATICAL

LOGIC
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Abstract. Lecture notes from the summer 2016 in Bonn by Philipp Lücke and Philipp
Schlicht. We study forcing axioms and their applications. The topics include supercom-
pact cardinals, the proper forcing axiom, the forcing axiom for Axiom A forcings of size
continuum, the tree property for ℵ2.
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1. The proper forcing axiom

We give proofs of the consistency of the proper forcing axiom PFA from a supercompact April 12April 12

cardinal and the consistency of the forcing axiom for Axiom A forcing of size continuum
from a weakly compact cardinal.

1.1. Supercompact cardinals. The iterated forcings below use a supercompact cardi-
nal. Supercompact cardinals (and large cardinals in general) state that the universe is
tall in a well-defined sense.

Definition 1.1.1. Suppose that F is a filter on a set S and κ is a cardinal.

(a) F is < κ-complete if for all 〈Xi | i < α〉 with α < κ and Xi ∈ F for all i < α,⋂
i<αXi ∈ F .

(b) F is principal if it {i} ∈ F for some i ∈ S.
(c) κ is measurable if there is a non-principal < κ-complete ultrafilter on κ.

Supercompact cardinals can be defined by filters on Pκ(λ), where κ, λ are cardinals
with κ ≤ λ.

Definition 1.1.2. Suppose that κ, λ are cardinals with κ ≤ λ.

(a) Pκ(λ) = {A ⊆ λ | |A| < κ}.
(b) x̂ = {y ∈ Pκ(λ) | x ⊆ y} ∈ U for x ∈ Pκ(λ).
(c) A filter on Pκ(λ) is uniform if x̂ ∈ U for all x ∈ Pκ(λ).
(d) A filter on Pκ(λ) is fine if it is < κ-complete and uniform.

An example for a filter on Pκ(λ) is the club filter.

Example 1.1.3. Suppose that κ, λ are cardinals with κ ≤ λ. Suppose that C is a subset
of Pκ(λ).

(a) C is unbounded if for every x ∈ Pκ(λ), there is some y ∈ C with x ⊆ y.
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(b) C is closed if for every ⊆-increasing chain 〈xα | α < γ〉 with γ < κ and xα ∈ C for
all α < γ,

⋃
α<γ xα ∈ C.

(c) C is club if it is closed and unbounded.

The club filter ClubPκ(λ) on Pκ(λ) is defined as the set of subsets D of Pκ(λ) such that
there is a club C in Pκ(λ) with C ⊆ D.

Definition 1.1.4. Suppose that κ, λ are cardinals with κ ≤ λ.

(a) Suppose that ~X = 〈Xi | i < λ〉 is a sequence of subsets of Pκ(λ). The diagonal

intersection of ~X is defined as

4 ~X = 4i<λXi = {x ∈ Pκ(λ) | x ∈
⋂
i∈x

Xi}.

(b) Suppose that ~X = 〈Xa | a ∈ Pω(λ) is a sequence of subsets of Pκ(λ). The diagonal

intersection of ~X is defined as

4 ~X = 4a∈Pω(λ)Xa = {x ∈ Pκ(λ) | x ∈
⋂

a∈Pω(λ), a⊆x

Xa}.

(c) Suppose that X ⊆ Pκ(λ). A function f : X → λ is regressive if f(x) ∈ x for all
x ∈ X.

(d) Suppose that X ⊆ Pκ(λ). A function f : X → Pω(λ) is regressive if f(x) ⊆ x for all
x ∈ X.

The following is an analogue to Fodor’s lemma.

Definition 1.1.5. Suppose that κ, λ are cardinals with κ ≤ λ.

(a) Suppose that F is a filter on Pκ(λ). The set F+ of F -positive sets is defined as

F+ = {x ∈ Pκ(λ) | ∀y ∈ F x ∩ y 6= ∅}.
(b) An filter F on Pκ(λ) is normal if it is fine and the following condition holds. Suppose

that X ∈ F+ and f : X → λ is regressive. Then there is a set Y ⊆ X in F+ such
that f � Y is constant.

Example 1.1.6. Suppose that κ, λ are cardinals with κ ≤ λ. Then Club+
Pκ(λ) is the set

of stationary subsets of Pκ(λ).

Lemma 1.1.7. Suppose that κ, λ are cardinals with κ ≤ λ. Suppose that F is a < κ-
complete filter on Pκ(λ). Suppose that γ < κ and 〈Xi | i < γ〉 is a sequence with Xi /∈ F+

for all i < γ. Let X =
⋃
i<γ Xi. Then X /∈ F+.

Proof. There is a set Ci ∈ F with Ci ∩ Xi = ∅ for every i < γ. Let C =
⋂
i<γ Ci ∈ F .

Then C ∩X = ∅. �

Lemma 1.1.8. Suppose that κ, λ are cardinals with κ ≤ λ. Suppose that F is a filter on
Pκ(λ). The following conditions are equivalent.

(1) F is normal.

(2) For every sequence ~X = 〈Xi | i < λ〉 with Xi ∈ F for all i < λ, 4 ~X ∈ F .
(3) If X ∈ F+ and f : X → Pω(λ) is regressive, then there is a set Y ⊆ X in F+ such

that f � Y is constant.

(4) For every sequence ~X = 〈Xa | a ∈ Pω(λ)〉 with Xa ∈ F for all a ∈ Pω(λ), 4 ~X ∈ F .

Proof. Suppose that (1) holds. To prove (2), suppose that ~X = 〈Xi | i < λ〉 and Xi ∈ F
for all i < λ. Suppose that 4 ~X /∈ F . Then Pκ(λ) \ 4 ~X ∈ F+. Let f : Pκ(λ) \ 4 ~X → λ,
where f(x) is defined as the least i ∈ x such that x /∈ Ci. There is some Y ∈ F+ such that
f � Y is constant with value i < λ by the assumption. Then Y ∩Ci = ∅. This contradicts
the fact that Y ∈ F+.
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Suppose that (2) holds. To prove (1), suppose that X ∈ F+ and f : X → λ is regressive.
Suppose that the conclusion of (1) fails. Then for every i ∈ X, there is some set Ci ∈ F
such that f(x) 6= i for all x ∈ Ci. Let Ci = X for i /∈ X. Let C = 4i<λCi ∈ F . Suppose
that x ∈ C. Then f(x) ∈ Ci for all i ∈ x, hence f(x) 6= i. This contradicts the assumption
that f is regressive.

The equivalence of (3) and (4) is analogous.
Suppose that (1) holds. To prove (3), suppose that X ∈ F+ and f : X → Pω(λ)

is regressive. Then there is a set Y ⊆ X in F+ such that f � Y is constant. Let
Xn = {y ∈ Y | |f(y)| = n} for n ∈ ω. There is some n ∈ ω with Xn ∈ F+ by
Lemma 1.1.7. We prove the claim by induction on n. Let g : Xn → λ, g(x) = min(f(x)).
There is a subset Y ∈ F+ of Xn such that g � Y is constant by (1). Let h : Y → λ,
h(x) = f(x) \ {min(x)}. There is some subset Ȳ ∈ F+ of Y such that h � Ȳ is constant.
Hence f � Ȳ is constant.

Moreover (3) implies (1). �

Definition 1.1.9. Suppose that U is an ultrafilter on a set S.

(a) f ∼U g if {x ∈ S | f(x) = g(x)} ∈ U for f, g : S → X.
(b) [f ] = [f ]U = {g : S → V, g has minimal rank with f ∼U g}.
(c) Ult(V,U) = {[f ] | f : S → V }.
(d) [f ] ∈U [g] if {x ∈ S | f(x) ∈ g(x)} ∈ U for f, g : S → X.

We write id for the identity function on S.

Lemma 1.1.10 (Los). Suppose that U is an ultrafilter on a set S.

(1) For every formula ϕ(x0, . . . , xn) and f0, . . . , fn : S → X

Ult(V,U) � ϕ([f0], . . . , [fn])⇔ {x ∈ S | ϕ(f(α0), . . . , f(αn))} ∈ U.
(2) jU : V → Ult(V,U), jU (x) = [cx], cx(i) = x for all i ∈ S, is an elementary embedding.

Proof. (1) This is proved by induction on the complexity of formulas (see [Theorem 12.3,
Jech]).

(2) This follows from (1). �

April 13April 13

Lemma 1.1.11. Suppose that U is an < ω1-complete ultrafilter on a set S. Then
Ult(V,U) is well-founded.

Proof. Suppose that 〈fn | n ∈ ω〉 is a sequence of functions fn : S → V with [fn+1] ∈U [fn]
for all n ∈ ω. Then Sn = {s ∈ S | fn+1(s) ∈ fn(s)} ∈ U for all n ∈ ω. Since U is < ω1-
complete, S̄ =

⋂
n∈ω Sn ∈ U . Let s ∈ S̄. Then 〈fn(s) | n ∈ ω〉 is strictly ∈-decreasing,

contradicting the well-foundedness of ∈. �

If U is an < ω1-complete ultrafilter on a set S, we will identify the ultrapower Ult(V,U)
with its transitive collapse.

Lemma 1.1.12. Suppose that U is an < ω1-complete ultrafilter on a set S. Then
OrdUlt(V,U) = Ord.

Proof. The definition of the class Ord of ordinals is ∆0 and hence absolute between
transitive classes. Hence OrdUlt(V,U) ⊆ Ord.

Claim 1.1.13. OrdUlt(V,U) is transitive.

Proof. Suppose that x ∈ y ∈ OrdUlt(V,U). Since Ult(V,U) is transitive, x ∈ Ult(V,U).

Since Ult(V,U) � OrdUlt(V,U) is transitive, x ∈ OrdUlt(V,U). �

Since jU [Ord] ⊆ OrdUlt(V,U), OrdUlt(V,U) is a proper class. Hence OrdUlt(V,U) = Ord.
�
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Definition 1.1.14. Suppose that j : V →M is an elementary embedding into a transitive
class. Let crit(j) denote the least ordinal α with j(α) 6= α.

Lemma 1.1.15. Suppose that U is a < κ-complete ultrafilter on a set S. Then crit(jU ) ≥
κ.

Proof. We show that [cγ ] = γ for all γ < κ. Suppose that γ < κ and [cα] = α for
all α < γ. Suppose that γ < κ and [f ] ∈ [cγ ]. Then f(i) ∈ γ on a set S in U . Let
Sα = {i ∈ S | f(i) = α} for α < γ. Since U is < κ-complete, Sα ∈ U for some α < γ.
Then [f ] = [cα] = α. Hence [cγ ] = γ. �

Lemma 1.1.16. Suppose that U is an < ω1-complete ultrafilter on a set S, X,Y are sets
and α is an ordinal.

(1) If j[X] ∈ Ult(V,U), Y ⊆ Ult(V,U) and |Y | ≤ |X|, then Y ∈ Ult(V,U).
(2) j[α] ∈ Ult(V,U) if and only if Ult(V,U)α ⊆ Ult(V,U).

Proof. (1) Suppose that Y = {[fx] | x ∈ X}. There is a function g : S → P (X) with
[g] = j[X] by Lemma 1.1.10. Let h : S → V such that h(i) is a function with domain g(i)
and for all x ∈ g(i), h(i)(x) = fx(i).

Then dom([h]) = [g] = j[X] by Lemma 1.1.10. Then [h](j(x)) = [fx] for all x ∈ X by
Lemma 1.1.10, since {i ∈ S | h(i)(cx(i)) = fx(i)} = S ∈ U . Hence ran([h]) = j[X].

(2) This follows from (1). �

Lemma 1.1.17. Suppose that κ, λ are cardinals with κ ≤ λ. Suppose that U is a normal
ultrafilter on Pκ(λ).

(1) crit(j) = κ.
(2) If U is normal, then Ult(V,U)λ ⊆ Ult(V,U).

Proof. (1) crit(j) ≥ κ by Lemma 1.1.15. Let f : Pκ(λ) → κ, f(x) = otp(x). For every

α < κ, [cα] < [f ], since {x ∈ Pκ(λ) | α < otp(x)} ⊇ ˆ(α+ 1) ∈ U . Hence crit(j) = κ.
(2) It is sufficient to show that for every subset Y of Ult(V,U) of size λ, Y ∈ Ult(V,U).

Suppose that 〈aα | α < λ〉 is a sequence with aα = [fα] for α < κ. We define f : Pκ(λ)→
V , f(x) = {fα(x) | α ∈ x}.

Claim. [f ] = {aα | α < λ}.

Proof. Suppose that α < λ. Since U is fine, ˆ{α} = {x ∈ Pκ(λ) | α ∈ x} ∈ U . Hence
[fα] ∈ [f ].

Suppose that [g] ∈ [f ]. Since U is normal, there is some α ∈ x such that for almost all
x ∈ Pκ(λ) (i.e. on a set in U), g(x) = fα(x). Then [g] = [fα] = aα. �

This completes the proof. �

Lemma 1.1.18. Suppose that κ, λ are cardinals with κ ≤ λ. Suppose that U is a normal
ultrafilter on Pκ(λ).

(1) For all X ∈ Pκ(λ), X ∈ U if and only if [id] ∈ j(X).
(2) [id] = j[λ].

Proof. (1) [id] ∈ j(X) holds if and only if {x ∈ Pκ(λ) | x ∈ cX(x)} = X ∈ U by Lemma
1.1.10.

(2) Suppose that α ∈ j[λ]. Suppose that γ < λ and j(γ) = α. Since U is fine,
ˇ{γ} = {x ∈ Pκ(λ) | γ ∈ x} ∈ U . Hence j(γ) = [cγ ] ∈ [id] by Lemma 1.1.10.

Suppose that [f ] ∈ [id]. Then f(x) ∈ x on a set S in U . Since U is normal, there is
a subset T ∈ U of S and some y such that f(x) = y for all x ∈ T . Then y ∈ Pκ(λ) and
[f ] = [cy] = j(y) by Lemma 1.1.10. �

Definition 1.1.19. Suppose that κ, λ are cardinals with κ ≤ λ.
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(i) An elementary embedding j : V → M is called λ-supercompact if M transitive,
Mλ ⊆M , and j(κ) > λ for κ = crit(j).

(ii) A cardinal κ is λ-supercompact for some cardinal λ ≥ κ if and only if there is a
λ-supercompact embedding j with κ = crit(j).

(iii) A cardinal κ is supercompact if it is λ-supercompact for all λ ≥ κ.

Supercompactness is very high in the large cardinal hierarchy. For example, every
supercompact cardinal is measurable and there are many measurable cardinals below it.

Lemma 1.1.20. Suppose that κ, λ are uncountable cardinals with κ ≤ λ. The following
conditions are equivalent.

(a) κ is λ-supercompact.
(b) There is an elementary embedding j : V → M into some transitive class M with

crit(j) = κ, j(κ) > λ and j[λ] ∈M .
(c) There is a normal ultrafilter on Pκ(λ).

Proof. The implication from (a) to (b) follows from the definition of λ-supercompact
embeddings.

Suppose that (b) holds. Suppose that j is λ-supercompact with crit(j) = κ. Let

U = Uj = {X ⊆ Pκ(λ) | j[λ] ∈ j(X)}.
April 19April 19

Claim 1.1.21. U is a ultrafilter.

Proof. Pκ(λ)) ∈ U , since j(κ) > λ and j[λ] ∈ Pj(κ)(j(λ))M = j(Pκ(λ)). The remaining
properties of ultrafilters follow from the definition of U and from the assumption that j
is elementary. �

Claim 1.1.22. U is non-principal.

Proof. Suppose that x ∈ Pκ(λ) and {x} ∈ U . Then j[λ] ∈ j({x}) = {j(x)} and hence
j[λ] = j(x). Then j(otp(x)) = otp(j(x)) = otp(j[λ]) = λ. This contradicts the assump-
tion that j(κ) > λ. �

Claim 1.1.23. U is < κ-complete.

Proof. Suppose that ~X = 〈Xi | i < γ〉 of sets Xi ∈ U of length γ < κ. Let X =
⋂
i<γ Xi.

Since j(γ) = γ, we have j( ~X) = 〈j(Xi) | i < γ〉 and j(X) =
⋂
i<γ j(Xi). Hence j[λ] ∈

j(X). �

Claim 1.1.24. U is fine.

Proof. Suppose that x ∈ Pκ(λ). Then j(x) = j[x]. Suppose that 〈xα | α < γ〉 enumerates
x. Since j(γ) = γ, j(〈xα | α < γ〉) = 〈j(xα) | α < γ〉 and j(x) = j[x] ⊆ j[λ]. Hence

j[λ] ∈ ˆj(x) = j(x̂). Hence x̂ ∈ U . �

Claim 1.1.25. U is normal.

Proof. Suppose that ~X = 〈Xi | i < λ〉 is a sequence of elements of U . We claim that

j[λ] ∈ j(4 ~X) = 4j( ~X). Suppose that γ ∈ j[λ]. Then there is some α < λ with j(α) = γ.

Since Xα ∈ U , j[λ] ∈ j(Xα) = j( ~X)j(α) = j( ~X)γ . �

Suppose that (c) holds. Suppose that U is a normal ultrafilter on Pκ(λ).

Claim 1.1.26. jU (κ) > λ.

Proof. Let f : Pκ(λ) → κ, f(x) = otp(x). Since [id] = j[λ] and otp(j[λ]) = λ, [f ] = λ by
Los’ theorem. Moreover [f ] ∈ [cκ] by Los’ theorem. �
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This completes the proof. �

Lemma 1.1.27. Suppose that κ is an uncountable cardinal. The following conditions are
equivalent.

(a) κ is measurable.
(b) κ is κ-supercompact.
(c) There is an elementary embedding j : V →M into a transitive class M with crit(j) =

κ.

Proof. Suppose that (a) holds. Suppose that U is a non-principal < κ-complete ultrafilter
on κ. Then jU [κ] = κ. Then jU satisfies (b) by Lemma 1.1.15 and Lemma 1.1.16.

The implication from (b) to (c) follows from Lemma 1.1.20.
Suppose that (c) holds. Then j[κ] = κ. Hence (a) follows from Lemma 1.1.20. �

Theorem 1.1.28. An uncountable cardinal κ is supercompact if and only if for every
η > κ, there is an α < κ and i : Vα → Vη with i(crit(i)) = κ.

Proof. Suppose that j : V → M is |Vη|-supercompact with crit(j) = κ. Then VM
α = Vα

for all α ≤ η by induction on α. Then j � Vη : Vη → VM
j(η) is a element of M .

InM , there is some η̄ and an elementary embedding i : Vη̄ → VM
j(η) with i(crit(i)) = j(κ).

Since j is elementary, in V there is some η̄ and an elementary embedding i : Vη̄ → Vη with
i(crit(i)) = κ.

For the converse, suppose that γ ≥ κ and δ = γ+ω. Suppose that β < κ and i : Vβ → Vδ
with i(crit(i)) = κ. Then β = α + ω for some α < κ. Then i[α] ∈ Pκ(γ). We define an
ultrafilter U on Pcrit(i)(α) by

X ∈ U ⇔ i[α] ∈ i(X).

As in the proof of Lemma 1.1.20, U is a normal ultrafilter on Pcrit(i)(α) in Vβ. Since i
is elementary, there is a normal ultrafilter on Pκ(γ) in Vδ and therefore in V . �

1.2. Some Lemmas on forcing and names. We begin with preliminary results on
forcing names and on iterated forcing. Let P,Q,R, S always denote partial orders and
Ṗ, Q̇, Ṙ, Ṡ names for partial orders. Recall that Hκ = {x | |tc(x)| < κ}, where κ is a
cardinal.

Lemma 1.2.1. If P is a forcing that does not collapse κ and ẋ ∈ Hκ, then p 
 ẋ ∈ Hκ

for any p ∈ P.

Proof. By induction on rk(ẋ). The lemma holds for rk(ẋ) = 0, so suppose that it is true
for all names with rank smaller r = rk(ẋ). Suppose that ẋ ∈ Hκ and write ẋ = {(ẏi, pi) |
i ∈ I} for some indexing set I with |I| = κ. By the induction hypothesis, 1P 
 ẏi ∈ Hκ.
Since |ẋ| < κ and κ remains a cardinal, 1P 
 |ẋ| < κ. Thus 1P 
 ẋ ∈ Hκ. �

The reversal of this result is more interesting.

Lemma 1.2.2. (Goldstern) If κ is regular and P ⊆ Hκ and satisfies the κ-c.c., then for
all p ∈ P: If p 
 σ ∈ Hκ, there is σ̇ ∈ Hκ with p 
 σ = σ̇.

Proof.

Claim. For every x ∈ Hκ, there is some λ < κ and a sequence (xα | α ≤ λ), xα ∈ Hκ

such that: for all α ≤ λ : xα ⊆ {xβ | β < α} and x = xλ.

Proof. We prove this via induction on x, it is clear for x = ∅. Suppose that this holds
for all y ∈ x and take for each y ∈ x an appropriate λy < κ and one such sequence
(xyα | α ≤ λy). Let λ = supy∈x λ

y. λ < κ, since |x| < κ and κ is regular. Let (xα)α<λ be

the concatenation of all the (xyα)α≤λy and finally set xλ = x. This works because every
y ∈ x is at some point in the sequence. �
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Since P satisfies the κ-c.c., it does not collapse κ. Now suppose that p ∈ P and
p 
 σ ∈ Hκ. Then we can find names λ̇, ẋα for the sequence discussed above. There
is an ordinal λ < κ such that p 
 λ̇ ≤ λ̌ and since, in V [G], we may set xα = ∅ for all

λ̇G < α < λ̌G, we can assume that λ̇ = λ̌.

We now inductively define σ̇α. For every β < α, we choose an antichain Aα,βp consisting

of conditions q ≤ p with q 
P σβ ∈ σα} and such that Aα,βp is maximal with this property.

Let σ̇α := {(σ̇β, q) | β < α ∧ q ∈ Aα,βp }. Let σ̇ = σ̇λ. Then by induction, all σ̇α are in Hκ.
We now show that for all α < λ, p 
 σα = σ̇α, in particular p 
 σ = σ̇. To prove this

by induction, suppose that for all β < α, p 
 σβ = σ̇β. Suppose that G is P-generic with
p ∈ G. Then

σ̇Gα =
{
σ̇Gβ | β < α ∧ ∃q ≤ p : q ∈ G ∧ q 
 σβ ∈ σα

}
(by definition)

=
{
σGβ | β < α ∧ ∃q ≤ p : q ∈ G ∧ q 
 σβ ∈ σα

}
(by induction)

= σGα

In the last equality “⊆” holds: If there is a q ≤ p, q ∈ G, q 
 σβ ∈ σα, then σGβ ∈ σGα .

In the last equaliy “⊇” holds: Suppose V [G] |= τG ∈ σGα , then τG = σGβ for some β < α.

Hence there is q ∈ Aα,βp , q ∈ G that forces τ = σβ. �
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The following result shows that we can compute the forcing relation for a forcing P ∈ Hκ

in Hκ.

Lemma 1.2.3. If κ is regular and P ∈ Hκ has the κ-c.c., then for any formula ϕ(x0, ..., xn),
any p ∈ P and any names σ0, ..., σn with p 
 σ0, ..., σn ∈ Hκ, there are names σ̇0, ..., σ̇n ∈
Hκ such that p 
 σi = σ̇i for all i ≤ n and

(p 
 Hκ |= ϕ(σ0, ..., σn))⇔ (Hκ |= p 
 ϕ(σ̇0, ..., σ̇n)).

Proof. We assume that n = 0 and let σ = σ0, σ̇ = σ̇0. We prove the claim by induction on
the complexity of formulas. By Lemmas 1.2.2 and 1.2.1 we may set σ̇ = σ. The induction
step for ∧ is trivial.

We begin with atomic formulas. Let ϕ(x, y) = x ∈ y, since we can write x = y
equivalently as ∀z : z ∈ x↔ z ∈ y and Hκ satisfies Extensionality. Obviously, p 
 ”Hκ |=
ẋ ∈ ẏ” iff p 
 ẋ ∈ ẏ. So it suffices to show p 
 ẋ ∈ ẏ ⇔ Hκ |= p 
 ẋ ∈ ẏ. We do
an induction over the rank of ẏ: If rk(ẏ) = 0, ẏ is (a name for) the empty set, so both
p 
 ẋ ∈ ẏ and Hκ |= p 
 ẋ ∈ ẏ are false. Now consider rk(ẏ) > 0. Suppose p 
 ẋ ∈ ẏ.
Then Dẋ,ẏ = {r | ∃(ż, q) ∈ ẏ : r ≤ q ∧ r 
 ẋ = ż} is dense below p. We can write Dẋ,ẏ as
{r | ∃(ż, q) ∈ ẏ : r ≤ q ∧ ∀ȧ : (r 
 ȧ ∈ ẋ)↔ (r 
 ȧ ∈ ż)}. So we can apply the inductive

hypothesis and obtain DHκ
ẋ,ẏ = Dẋ,ẏ and hence Hκ |= “Dẋ,ẏ is dense below p”. Thus

Hκ |= p 
 ẋ ∈ ẏ. The backwards direction follows since the statement is Σ2.
Suppose that ϕ = ¬ψ and that the lemma holds for ψ. For the backward direction

suppose Hκ |= p 
 ¬ψ. If p 
 ¬(Hκ |= ψ), we are done. Otherwise there is some q ≤ p
that forces Hκ |= ψ, which by the induction hypothesis yields Hκ |= q 
 ψ, contradicting
the assumption. The forward direction is similar.

Lastly assume ϕ = ∃xψ and that the lemma holds for ψ. Then:

p 
 Hκ |= ∃xψ(x)

⇔ ∃ẋ ∈ Hκ : p 
 Hκ |= ψ(ẋ) (by Lemmas 1.2.2 , 1.2.1, the max. principle)

⇔ ∃ẋ ∈ Hκ : Hκ |= p 
 ψ(ẋ) (by induction hypothesis)

⇔ Hκ |= ∃ẋ : p 
 ψ(ẋ)

⇔ Hκ |= p 
 ∃xψ(x) (by the maximality principle).
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�

Lemma 1.2.4. Suppose that κ > ω1 is regular. Let Pκ be a countable support iteration
of length κ such that all stages satisfy the κ-cc. Then Pκ satisfies the κ-cc.

Proof. Assume A = (pξ | ξ < κ) is an antichain in Pκ. We may assume its indices have
uncountable cofinality. Let F (ξ) = min{α | supp(pξ) ∩ ξ ⊆ α}. Since Pκ has countable
supports, F is regressive. By Fodor’s Lemma, e.g., [?, Theorem 8.7], there is a stationary
S ⊆ κ and γ < κ with F [S] = {γ}. Construct {αi | i ∈ S} = S′ ⊆ S, |S′| = κ with
∀ξ < ζ ∈ S′ : supp(pξ) ⊆ ζ by recursion:

αi = min(S \ (sup
j<i

(supp(pαj ) ∪ αj))).

Note that if ξ < ζ ∈ S′, then supp(pξ) ⊆ ζ and supp(pζ) ∩ ζ ⊆ γ, therefore supp(pξ) ∩
supp(pζ) ⊆ γ.

Since Pγ satisfies the κ-cc, there are ξ < ζ ∈ S′ and r′ ∈ Pγ such that r′ ≤ pξ � γ, pζ � γ.
Define a condition q = (q(α) | α < κ) ∈ Pκ by:

q(α) =


r′(α), α < γ,

pξ(α), α ≥ γ ∧ α ∈ supp(pξ),

pζ(α), α ≥ γ ∧ α ∈ supp(pζ),

1, otherwise.

This is well-defined, since above γ the supports of pζ and pξ are disjoint. But then
q ≤ pξ and q ≤ pζ , i.e., A is no antichain, contradicting our assumption. �

The lemma is false for κ = ω1.

Exercise 1.2.5. (1) Show that the countable support iteration of the forcing {p, q, 1}
with p ⊥ q of length ω is not c.c.c.

(2) Show that any countable support iteration of nonatomic forcings of length ω is not
c.c.c.

Lemma 1.2.6. Let M be a transitive model of ZFC with Ord ⊆M , P ∈M a λ+-cc forcing
notion, G some P-generic filter on M and λ a cardinal. In V [G], if V |= Mλ ⊆ M then
M [G]λ ⊆M [G].

Proof. We work in V [G]. Let c = (cα | α < λ) be a λ-sequence such that for all α < λ,
cα ∈ M [G]. For each α < λ, let ċα be a P-name with ċα

G = cα. Let ȧ be a P-name with
ȧG = (ċα | α < λ). Choose a p ∈ G with p 
 ∀α < λ̌ : ȧ(α) ∈MP in V .

Working in V , for each α < λ, there is a maximal antichain Aα below p such that
every q ∈ Aα decides ȧ(α), i.e., for some x ∈ M , q 
 ȧ(α) = x̌. Define σ = {( ˇ(α, x), q) |
α < λ, q ∈ Aα, q 
 ȧ(α) = x̌}. Then p 
 σ = ȧ. Notice that |σ| ≤ λ, since for each α,
|Aα| ≤ λ. Thus σ ∈M .

in V [G] again, (ċα | α < λ) = ȧG = σG ∈ M [G]. We can compute c = (cα | α < λ) =
(ċα

G | α < λ) from (ċα | α < λ) and G. Hence by Replacement, c ∈M [G]. �

Exercise 1.2.7. Prove Lemma 1.2.6 without using names for names.

Lemma 1.2.8. Let λ be a cardinal and Mλ ⊆ M for some model M with Ord ⊆ M .
Then HM

λ+ ⊇ Hλ+.

Proof. Let x ∈ Hλ+ and set µ := |tc({x})| ≤ λ. Find a bijection f : |tc({x})| → tc({x})
with f(∅) = x. Now define a relation R on µ by αRβ ↔ f(α) ∈ f(β). Then, (µ,R)
has the transitive collapse (tc({x},∈). By assumption Mλ ⊆ M , hence R ∈ M . We can
reconstruct x from R as the transitive collapse. �
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Exercise 1.2.9. Every measurable cardinal is inaccessible.

Lemma 1.2.10. Suppose that κ ≤ λ are cardinals, U is a normal ultrafilter on Pκ(λ)
and j = jU .

(a) Suppose that f, g : Pκ(λ)→ κ.
(i) [f ] = [g] ⇐⇒ j(f)(j[λ]) = j(g)(j[λ]).
(ii) [f ] ∈ [g] ⇐⇒ j(f)(j[λ]) ∈ j(g)(j[λ]).

(b) [f ] = j(f)(j[λ]).
(c) j(κ) > λ.

Proof. (a) This follows from the definition of U .
(b) The map π : {[g] | [g] ∈ [f ]} → j(f)(j[λ]), π([g]) = j(f)(j[λ]) is an isomorphism by

(a).
(c) Let f : Pκ(λ)→ κ, f(x) = otp(x). Since [id] = j[λ], [f ] = λ. Moreover [f ] < [cκ] =

j(κ). �

Definition 1.2.11. Suppose that κ ≤ λ are regular uncountable cardinals.

(a) Let [λ]κ = Pκ+(λ) denote the set of subsets of λ of size ≤ κ.
(b) A subset S of [λ]κ is stationary if S ∩ C 6= ∅ for every club subset C of [λ]κ.

Definition 1.2.12. (a) We say that M is an elementary submodel of N if (M,∈) is an
elementary submodel of (N,∈).

(b) Suppose that P is a forcing and M is an elementary submodel of Hλ for some cardinal
λ a condition q ∈ P is (M,P)-generic (an (M,P)-master condition)) if for every
maximal antichain A ∈M , the set A ∩M is predense below q.

Lemma 1.2.13. Suppose that P is a forcing. The following conditions are equivalent.

(a) If λ is an uncountable regular cardinal, S is a stationary subset of [λ]ω and G is
P-generic over V , then S is stationary in V [G].

(b) P is proper, i.e. for λ = (2|P|)+, there is a club of elementary substructures M of
Hλ such that for every p ∈M , there is an (M,P)-generic condition q ≤ p.

(c) There is some λ0 ∈ Card such that for all regular λ ≥ λ0, there is a club of elemen-
tary substructures M of Hλ such that for every p ∈ M , there is an (M,P)-generic
condition q ≤ p.

Proof. See [Jech, chapter 31] � citecite

1.3. Consistency of the proper forcing axiom. April 26April 26

Axiom 1.3.1 (Proper Forcing Axiom (PFA)). If (P, <) is a proper forcing notion and D,
|D| = ℵ1, is a collection of predense subsets of P, then there exists a D-generic filter on P.

Axiom 1.3.2 (Bounded Fragments of PFA). Let λ be a cardinal.

(i) PFAλ is the following axiom: Let (P, <) be a proper partial order and D, |D| = ℵ1

be collection of predense subsets of P such that for all D ∈ D, |D| ≤ λ. Then there
exists a D-generic filter on P.

(ii) A counterexample to PFAλ is a proper partial order (P, <) such that there is a
collection D with |D| = ℵ1 of predense subsets of P such that for all D ∈ D, |D| ≤ λ
and there exists no D-generic filter on P.

Definition 1.3.3. Suppose that {Pα | α < λ} is a set of forcing notions. The lottery sum
of the Pα is their disjoint union P with a new 1 such that 1 > p for all p ∈ Pα, α < λ.

Lemma 1.3.4. Lottery sums of proper forcings are themselves proper.
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Proof. Let P be the lottery sum of (Qα | α < κ). Let G be P-generic. Since elements of
G are pairwise compatible and if p, q ∈ P, p ∈ Qα, q ∈ Qβ, α 6= β, p, q are incompatible,
G ⊆ Qα ∪ {1} for some α. A set D is clearly dense in P if and only if D ∩Qα is dense in
Qα for all α < κ. Hence G is a Qα-generic filter for some α, i.e., stationary sets of [λ]ω

for regular uncountable cardinals λ are preserved between V and V [G]. �

Definition 1.3.5. Suppose that C is a class. An element x of C is hereditarily minimal
in C if |tc(x)| ≤ |tc(y)| for all y ∈ C. The hereditary size of x is |tc(x)|.

We can now define a general scheme for the iterations which we will use.

Definition 1.3.6. Suppose that κ, λ are cardinals with ω < λ < κ. The minimal coun-
terexample iteration Pκ = PPFAλ

κ for PFA of length κ is the countable support iteration of

(Pα, Q̇β | α ≤ κ, β < κ), where Pα and Q̇α are defined by induction: Let ~Q = 〈Q̇β | β < λ〉
be an enumeration of all names Q̇ of minimal hereditary size smaller than κ such that
1P 
 Q̇ is a counterexample to PFAλ of minimal hereditary size smaller than κ. Let Q̇α

be the canonical Pα-name for the lottery sum of ~Q.

We will only consider iterations of inaccessible length κ.

Lemma 1.3.7. If κ is inaccessible and α < κ, then |Pα| < κ.

Proof. This is shown by induction on α. If α = 0, then Pα is a union of forcings of
hereditary size γ < κ, so Pα ⊆ Hγ+ . Therefore |Pα| ≤

∣∣Hγ+
∣∣ ≤ 2γ < κ.

If α = β + 1, then Pβ forces that Q̇α is a union of forcing notions with hereditary size

γ < κ, so exactly as above, 1β 

∣∣∣Q̇α

∣∣∣ ≤ ∣∣Hγ+
∣∣ ≤ 2γ . Hence Pα ≤ |Pβ| · 2γ < κ.

Suppose that γ < κ is a limit and that for all α < γ, |Pα| < κ. Since κ is regular,
there is some λ such that for all α < γ, |Pα| < λ. We have |Pγ | ≤ Πα<γ |Pα|, since
p 7→ (p � α)α<γ is injective. Hence Πα<γ |Pα| ≤ Πα<γλ = λγ < κ. �

Pκ is absolute between transitive models M of ZFC that contain Hκ as a subset, by the
following lemma.

Lemma 1.3.8. Suppose that κ is inaccessible. If M is transitive with Hκ ⊆ M , then
PMκ = Pκ.

Proof. The point is that if P is a forcing in Hκ, then it is proper if and only if it is proper
in Hκ. Using this, we will show that the definition of the sequence (Pα | α < κ) is absolute
between Hκ and V , where the Pα are the initial segments of Pκ.

If γ is a limit and Pα = PMα for all α < γ, then Pγ = PMγ . Suppose that α = β + 1 and

PMβ = Pβ. We need to show that Q̇M
α = Q̇α.

Claim 1.3.9. Suppose that Q̇ is a Pα-name for a forcing. Then p 
Pα Q̇ is proper ⇐⇒
Hκ � (p 
Pα Q̇ is proper) ⇐⇒ M � (p 
Pα Q̇ is proper).

Proof. This follows from Lemma 1.2.3 and the definition of properness, since κ is inac-
cessible. �

This implies that Q̇α = Q̇Hκ
α = Q̇M

α . �

Theorem 1.3.10. If κ is λ-supercompact, then PPFA
κ forces that PFA holds for all proper

forcings P with 2|P| ≤ λ.

Proof. Let j : V → M be a λ-supercompact embedding with crit(j) = κ, λ < j(κ),
Mλ ⊆M .

Suppose that 〈Pα, Q̇α | α < κ〉 is the iteration defined above. Suppose that Q̇ and Ḋ are

Pκ-names and p0 ∈ Pκ forces that Q̇ is a counterexample to PFA of minimal hereditary
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size with 2|Q̇| ≤ λ, Ḋ is a sequence of length ω1 of open dense subsets of Q̇ and there is
no Ḋ-generic centered set. Moreover, suppose that Q̇ is of minimal hereditary size.

Since Pα ∈ Hκ ⊆ M for all α < κ, Pκ ⊆ M . Moreover j(Pα) = Pα for all α < κ, since
j � Hκ = id. In M , the forcing j(Pκ) is, by elementarity, a countable support iteration of
length j(κ) > λ and Pκ is an initial segment of j(Pκ), since crit(j) = κ.

Suppose that H is j(Pκ)-generic over V with j(p0) ∈ H. Then H is j(Pκ)-generic
over M . We work in V [H]. Let H<κ denote the restriction of H to P<κ. Then H<κ is

Pκ-generic over V . Let Hκ denote the restriction of H to Q̇H<κ . Then Hκ is Q̇H<κ-generic
over V [G<κ].

Let G = H<κ, P = Q̇H<κ , D = (Dα | α < ω1) = ḊG. Then P ∈M [G] by Lemma 1.2.8.

Claim 1.3.11. In M [G], P violates PFA, is of minimal hereditary size with that property
and P ∈ Hj(κ).

Proof. We first claim that |tc(P)| = |P|. Otherwise, take a bijection f : P→ α = |P| and
define a relation <α on α by β <α γ iff f−1(β) <P f

−1(γ). (α,<α) is a forcing notion
equivalent to P but of smaller hereditary size tc(α) = α, contradicting the assumption.

We now show that P is proper in M [G]. Let µ = (|P|)+. Since we now know |tc(P)| =
|P| < µ, P ∈ Hµ. Choose a club C ⊆ [Hµ]ω witnessing that P is proper in V [G]. Note
that

|C| ≤ |Hµ| ≤ 2<µ = 2|P| ≤ λ
and therefore by Lemma 1.2.8, C ∈ M [G] and hence C witnesses that P is proper in
M [G].

Also, V [G] and M [G] have the same ℵ1, since Pκ is proper (as a countable support

iteration of proper forcing notions). Hence, |D|M [G] = ℵM [G]
1 . For all α < ω1, Dα ⊆ P ∈

M [G], |Dα| ≤ |P| ≤ λ, i.e., Dα ∈M [G]. Thus, since ℵ1 < λ, D ∈M [G].
Furthermore, |tc(P)| < λ < j(κ), so P ∈ Hj(κ). Finally, if there were a hereditary

smaller counterexample in M [G], it would be in V [G] and be a counterexample to PFA
there, because M [G] is sufficiently closed to contain filters witnessing the contrary and
clubs witnessing properness. Hence this would contradict the hereditarily minimality of
P. �

We now work in V [H]. We define j∗ as follows. April 27April 27

j∗ : V [G]→M [H],

j∗(σG) = j(σ)H .

Claim 1.3.12. j∗ is well-defined and elementary and extends j.

Proof. To show that j∗ is well-defined, let σ, τ be Pκ-names with σG = τG. Then there
is p ∈ G such that p 
 σ = τ , i.e., j(p) 
 j(σ) = j(τ).

Suppose that p = (pα | α < κ). Then there is some β < κ with pγ = 1 for all γ with
β ≤ γ < κ. Since crit(j) = κ, j(p)(γ) = 1 for all γ with β ≤ γ < j(κ). Hence j(p) ∈ H.

To show that j∗ is elementary, let ϕ = ϕ(x) be a formula, σ a Pκ-name and suppose
that V [G] |= ϕ(σG). Then there is some p ∈ G with p 
 ϕ(σ), i.e., j(p) 
 ϕ(j(σ)). As
above j(p) ∈ H.

Moreover j∗ extends j, since j∗(x) = j∗(x̌G) = j(x̌)H = ˇj(x)
H

= j(x) for x ∈ V . �

As in (i), D is a family of size ℵ1 of dense subsets of P in M [H]. We show that there is
a (j∗(P), j∗(D))-generic filter in M [H]. Notice that j∗ � P ∈M [H] by Lemma 1.2.6, since
|P| < λ. Gκ ⊆ P and therefore by Replacement j∗[Gκ] ∈M [H].

Since j∗(ω1) = ω1, j∗(D) = {j∗(D) | D ∈ D}. Since Gκ is P-generic over V [G],
it intersects every D ∈ D. Thus for every D ∈ D there is some xD ∈ Gκ such that
V [G] |= xD ∈ D, so by elementarity, M [H] |= j∗(xD) ∈ j∗(D).



12 PHILIPP SCHLICHT

Therefore the filter on j∗(P) generated by j∗[Gκ] in M [H] intersects every D ∈ j∗(D).
Hence, by elementarity, there is a filter on P in V [G] which intersects every D ∈ D. �

The classical result follows immediately.

Corollary 1.3.13. If κ is a supercompact cardinal, then 1Pκ forces PFA. Hence PFA is
consistent relative to the existence of a supercompact cardinal.

Definition 1.3.14. Suppose that κ is a cardinal and P is a forcing.

(a) P is < κ-closed if for every strictly decreasing sequence 〈pα | α < γ〉 with γ < κ,
there is some p ∈ P such that for all α < γ, p ≤ pα.

(b) A set C ⊆ P is directed iff for all a, b ∈ C there is c ∈ C with c ≤ a, b.
(c) P is < κ-directed closed if for every directed subset C of P with |C| < κ, there is

some p ∈ P such that for all q ∈ C, p ≤ q.

Theorem 1.3.15 (Paul Larson). PFA is preserved by < ω2-directed closed forcing.

Proof. Suppose that P is < ω2-directed closed. Suppose that Q̇ is a P-name and 1P forces
that Q̇ is a P-name for a proper forcing. Then P ∗ Q̇ is proper. Suppose that Ḋ is a
P-name for a sequence of length ω1 of open dense subsets of P. Since P ∗ Q̇ is proper and
hence preserves ω1, there is a sequence 〈Ḋα | α < ω1〉 of P-names such that 1P forces that

Ḋ = 〈Ḋα | α < ω1〉.
Let Dα = {(p, q̇) | p 
P q̇ ∈ Ḋα} for α < ω1. Since Ḋα is name for an open dense set,

Dα is open dense for each α < ω1.
Suppose that p0 ∈ P. By PFA applied to P/p0 = {q ∈ P | q ≤ p0}, there is a filter G in

P/p0 such that G ∩Dα 6= ∅ for all α < ω1. Let D̄ =
⋃
α<ω1

Dα.

Claim 1.3.16. G ∩ D̄ is directed.

Proof. Suppose that p, q ∈ G ∩ D̄. Suppose that p ∈ Dα and q ∈ Dβ. Since G is a filter,
there is some r ≤ p, q in G. Then r ∈ G ∩Dα ∩Dβ ⊆ G ∩ D̄. �

Claim 1.3.17. There is a directed subset F of G ∩ D̄ of size ω1 such that for all α < ω1,
G ∩Dα 6= ∅.

Proof. We construct a sequence 〈Fn | n ∈ ω〉 such that |Fn| = ω1 for all n ∈ ω. We choose
a subset F0 of G ∩ D̄ such that F0 ∩Dα 6= ∅ for all α < ω1. Suppose that Fn is defined.
We choose a subset Fn+1 of G ∩ D̄ such that Fn ⊆ Fn+1 and for all p, q ∈ Fn, there is
some r ≤ p, q in Fn+1. Let F =

⋃
n∈ω Fn. �

Since F is directed, there is a condition p1 ≤ p0 with p1 ≤ q for all q ∈ F . Let
Ḣ = {(q̇, r) | ∃q̇ | (r, q̇) ∈ F}.

Claim 1.3.18. p1 forces that Ḣ is directed.

Proof. Suppose that G is P-generic over V . Suppose that (q̇, r), (ṫ, s) ∈ Ḣ and r, s ∈ G.
Since F is directed, there is some (u, v̇) ∈ F with (u, v̇) ≤ (r, q̇), (s, ṫ). Since p1 ≤ u,

p1 
 v̇ ≤ q̇, ṫ and p1 
 v̇ ∈ Ḣ. �

Claim 1.3.19. p1 forces that for all α < ω1, Ḣ ∩ Ḋα 6= ∅.

Proof. Suppose that (s, ṫ) ∈ F ∩Dα. Since p1 ≤ s, p1 
P ṫ ∈ Ḣ ∩ Ḋα. �

The upwards closure of a directed set is a filter. Hence p1 forces that there is a Ḋ-generic
filter. Since p0 was arbitrary, 1P forces that there is a Ḋ-generic filter. �
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1.4. Axiom A forcings of size continuum. We prove the consistency of the proper
forcing axiom restricted to Axiom A forcings of size continuum relative to a weakly com-
pact cardinal. This is a result of Baumgartner.citecite

Definition 1.4.1. A κ-model is a transitive model M of ZFC− (i.e. ZFC without the
power set axiom) of size κ such that κ ⊆M , κ ∈M and M<κ ⊆M .

Definition 1.4.2. (a) A filter F on κ is uniform if for all α < κ, [α, κ) ∈ F .
(b) An inaccessible cardinal κ has the filter property if for all X ⊆ P (κ) of size κ, there

is a < κ-complete uniform filter F such that for every A ∈ X, A ∈ F or κ \A ∈ F .

Lemma 1.4.3. Suppose that κ is inaccessible. The following conditions are equivalent.

(a) κ is weakly compact, i.e. κ→ (κ)2
2.

(b) κ has the tree property, i.e. every κ-tree T has a cofinal branch.
(c) κ has the filter property.
(d) For every κ-model M , there is an elementary embedding j : M → N into a transitive

model N with crit(j) = κ.
(e) For every κ-model M , there is an elementary embedding j : M → N into a transitive

model N with crit(j) = κ and j,M ∈ N (this is called the Hauser property) .

Proof. The equivalence of (a) and (b) was proved in models of set theory.
(b)⇒(c) Suppose that X = {Aα | α < κ}. We define Aiα = Aα if i = 0 and Aiα = κ\Aα

if i = 1. Let At =
⋂
t(α)=iA

i
α for t ∈ 2<κ. We define T = {t ∈ 2<κ | |At| = κ}.

Claim 1.4.4. ht(T ) = κ.

Proof. For all α < κ, κ =
⋃
t∈2α At, since for each β < κ we can choose t ∈ 2α with

t(ᾱ) = 0 if β ∈ Aᾱ and t(ᾱ) = 0 otherwise for ᾱ < α. Then β ∈ At.
Since κ is inaccessible and hence 2α < κ, there is some t ∈ 2α with |At| = κ. �

The tree property inplies that there is some b ∈ [T ]. Let F = {Y ⊆ κ | ∃α, β <
κ Ab�α ∩ [β, κ) ⊆ Y }.

(c)⇒(d) By Los’ theorem, the ultrapower embedding jF : M → ult(M,F ) is elementary.
Since F is < κ-complete, ult(M,F ) is well-founded and crit(jF ) = κ as in the results about
ultrafilters.

(d)⇒(e) Suppose that M is a κ-model. There is a κ-model M ′ such that M ∈ M ′ May 3May 3

and M ′ � |M | = κ, for instance a Skolem hull of M ∪ {M} in Hκ+ . By (d), there
is an elementary embedding j : M ′ → N ′ into a transitive model N ′ with crit(j) = κ.
Suppose that f : κ → M is an enumeration of M in M ′. Then j(f) : j(κ) → j(M) is an
enumeration of j(M) in N ′. Since crit(j) = κ, j(f) � κ is an enumeration of j[M ] in N ′.
We can define j � M from M and j[M ], hence j � M ∈ N ′. Since j is elementary and
M<κ ⊆M , N is closed under < j(κ)-sequences in N ′. Hence M, j �M ∈ N .

(e)⇒(b) Suppose that (T,<T ) is a κ-Aronszajn tree. We can assume that T = κ.
There is a κ-model M with (M,∈) ≺ (Hκ+ ,∈), for instance a Skolem hull. Suppose that
j : M → N is an elementary embedding into a transitive model N with crit(j) = κ.

In N , j(T ) = (j(κ), j(<T )) is a j(κ)-Aronszajn tree of height ht(j(T )) = j(κ) > κ.
Then <T= j(<T ) ∩ κ. Let T (α) = {s ∈ T | lhT (s) = α} denote the α-th level of T .

There is some α ∈ j(T )(κ). We claim that the set of its predecessors predj(T )(α) is a
branch in T .

Claim 1.4.5. For every α < κ, j(T )(α) = T (α).

Proof. If β ∈ T (α), then β = j(β) ∈ j(T )(j(α)) = T (α).
Suppose that β ∈ j(T )(α) = j(T )(j(α)). Let γ = sup{s ∈ T | s ∈ T (α)}. Since T is

a κ-tree, γ < κ. Then sup{s ∈ j(T ) | s ∈ j(T )(α)} = j(γ) = γ < κ. Hence β ≤ γ < κ.
Since β = j(β) ∈ j(T )(α), β ∈ T (α). �
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This contradicts the assumption that T is a κ-Aronszajn tree. �

The following type of forcing was defined by Baumgartner before proper forcing was
defined by Shelah. It implies properness, and many important proper forcings satisfy
Axiom A.

Definition 1.4.6. A forcing P is satisfies Axiom A if there is a sequence 〈≤n | n ∈ ω〉 of
partial orders on P with the following properties.

(a) p ≤0 q ⇒ p ≤ q and p ≤n+1 q ⇒ p ≤n q for all n ∈ ω.
(b) if 〈pn | n ∈ ω〉 is a sequence with p0 ≥0 p1 ≥1 p2 . . . then there is a condition q such

that q ≤n pn for all n.
(c) If p ∈ P, A ⊆ P is a maximal antichain below p and n < ω, then there is a q ≤n p

such that
|{a | a ∈ A ∧ a and q are compatible}| ≤ ω.

Now we can state the axiom we are interested in.

Definition 1.4.7. (a) The Axiom A Forcing Axiom AAFA is the restriction of PFA to
Axiom A forcings.

(b) AAFA(c) is the restriction of AAFA to forcings of size ≤ c = 2ω.

Lemma 1.4.8. Every ccc forcing is Axiom A.

Proof. Let ≤n be equality for all n ∈ ω. �

Lemma 1.4.9. Every σ-closed forcing is Axiom A.

Proof. Let ≤n be ≤ for all n ∈ ω. �

Lemma 1.4.10. Suppose that ϑ is an uncountable cardinal and M ≺ Hϑ. If A ∈M and
|A| ≤ ω, then A ⊆M .

Proof. Since M � |A| ≤ ω, there is a surjective function f : ω → A with f ∈ M . Since
ω ⊆M , ran(f) = A ⊆M . �

Lemma 1.4.11. Every Axiom A forcing is proper.

Proof. Suppose that ϑ ≥ (2|P|)+ is a regular cardinal. Suppose that M ≺ Hϑ is countable
with P ∈M and p ∈ P.

We define a decreasing sequence 〈pn | n ∈ ω〉 with pn+1 ≤n pn for all n ∈ ω. Suppose
that 〈An | 1 ≤ n < ω〉 enumerates the set of all maximal antichains A ∈M .

Let p0 = p. If pn is defined, find some pn+1 ≤n pn such that |{a ∈ An | a ‖ pn+1}| ≤ ω.
Let q ≤ pn for all n ∈ ω.

Claim 1.4.12. q is (M,P)-generic.

Proof. For every n ∈ ω, the set Aqn = {a ∈ An | a ‖ q} is predense below q, since An is
predense. Since |Aqn| ≤ |{a ∈ An | a ‖ pn+1}| ≤ ω, Aqn ⊆M by Lemma 1.4.10. �

This completes the proof. �

Lemma 1.4.13. The following conditions are equivalent.

(a) Condition 1.4 in Axiom A.
(b) If p 
P α̇ ∈ Ord and n ∈ ω, then there is some q ≤n p and a countable set C of

ordinals with q 
 α̇ ∈ Č.

Proof. See lecture notes. �add lateradd later

Lemma 1.4.14. Suppose that P satisfies Axiom A and 1P forces that Q̇ satisfies Axiom
A. Then P ∗ Q̇ satisfies Axiom A.
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Proof. Suppose that 〈≤n| n ∈ ω〉 witnesses that P satisfies Axiom A. Suppose that 1P
forces that 〈≤̇n | n ∈ ω〉 witnesses that Q̇ satisfies Axiom A. We define (p, q̇) ≤n (r, ṡ) as
p ≤n q and p 
P q̇≤̇nṡ.

Suppose that 〈(pn, q̇n) | n ∈ ω〉 is a sequence with (pn+1, q̇n+1) ≤n (pn, q̇n) for all n ∈ ω.
Find p ∈ P such that p ≤n pn for all n ∈ ω. Find a P-name q̇ such that p 
P q̇ ≤ q̇n for
all n ∈ ω. Then (p, q̇) ≤n (pn, q̇n) for all n ∈ ω.

For condition in Axiom A, use Lemma 1.4.13. � add lateradd later

We use the following variation of the iteration in Definition 1.3.6. May 4May 4

Definition 1.4.15. The forcing PAAFA
κ is defined by modifying Definition 1.3.6 by only

using names for Axiom A forcings and adding the forcings Add(ω, 1) and Col(ω1, α) to

the sequence ~Q = 〈Q̇β | β < λ〉 of minimal counterexamples in step α for all α with
ω1 ≤ α < κ.

Theorem 1.4.16. If κ is weakly compact, then PAAFA
κ , forces AAFA(c) with c = ℵ2.

Proof. Suppose that Pκ = PAAFA
κ and 〈Pα, Q̇α | α < κ〉 is the iteration defined above. Pκ

has the κ-cc by Lemma 1.2.4.
Suppose the theorem is false. Let p ∈ Pκ such that p0 forces that (Q̇, Ḋ) is a hereditarily

minimal counterexample to AAFA(c) Let Ȧ be a name for a sequence of partial orders on

Q̇ witnessing Axiom A.

Claim 1.4.17. 1P forces that c = κ = ℵ2.

Proof. We leave this as an exercise. �

We can assume that p0 
 Q̇, Ȧ ⊆ κ. Thus by Lemma 1.2.2 we can suppose that
Q̇, Ȧ ⊆ Hκ. Let λ be regular and large enough such that Hλ knows that Q̇ is a name for
an Axiom A forcing as witnessed by Ȧ. Let X ≺ Hλ with Hκ ⊆ X, Pκ, Q̇, Ḋ, Ȧ, κ ∈ X,
X<κ ⊆ X and |X| = κ.

Let X → M be the Mostowski collapse of X, then M is a κ-model. Notice that since
Q̇ ⊆ Hκ ⊆ X is in the transitive part of X, π(Q̇) = Q̇ ∈M . Likewise Ḋ ∈M , Ȧ ∈M and
Pκ ∈ M . Now let j : M → N be a weak compactness embedding for κ with the Hauser
property as in Lemma 1.4.3 (e).

Claim 1.4.18. If Ḡ is Pκ-generic over V , then ȦḠ = A = (≤n| n ∈ ω) witnesses that Q
satisfies Axiom A in N [Ḡ].

Proof. We have M [Ḡ] ∈ N [Ḡ] by the Hauser property and since N [Ḡ] is transitive it
contains all the sets we require (since we put them in M [Ḡ]). (a) and (b) in Definition
1.4.6 are clear. For 1.4, Let p, n,A be as required. Then, in V [Ḡ], there is some q ≤n p
such that |{a | a ∈ A, a and q are compatible}| ≤ ω. Since N [Ḡ] and V [Ḡ] agree on ℵ1

(since Pκ is proper) and on the computation of that set (since Q ⊆ N [Ḡ]), this is also
true in N [Ḡ]. �

Claim 1.4.19. If Ḡ is Pκ-generic over V , then Q appears in the lottery sum in step κ in
Pj(κ) in N [Ḡ].

Proof. Since Pκ has the κ-cc, we have H
V [Ḡ]
κ = H

N [Ḡ]
κ by Lemma 1.2.1 and Lemma 1.2.2.

Hence in N [Ḡ], there is no counterexample to AAFA(c) that is smaller than |Q|. Moreover
|tc(Q)| < κ+ ≤ j(κ) and Q satisfies Axiom A by the previous claim. �

Since Pα ∈ Hκ ⊆ M for all α < κ, Pκ ⊆ M . Moreover j(Pα) = Pα for all α < κ, since
j � Hκ = id. In M , the forcing j(Pκ) is, by elementarity, a countable support iteration of
length j(κ) > κ and Pκ is an initial segment of j(Pκ), since crit(j) = κ.
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Let H be j(Pκ)-generic over V with j(p0) ∈ H. Then H is j(Pκ)-generic over N . We
work in V [H]. Let H<κ denote the restriction of H to P<κ. Then H<κ is Pκ-generic over

V . Let Hκ denote the restriction of H to Q̇H<κ . Then Hκ is Q̇H<κ-generic over V [G<κ].

Let G = H<κ, P = Q̇H<κ , D = (Dα | α < ω1) = ḊG.
Now consider j(Pκ). Pκ is an initial segment of j(Pκ) which in turn is an iteration

of length j(κ) in N . Hence we can find some q ≤ pa1j(κ) that chooses Q from the
lottery sum in the κ-th step. As in the proof of Theorem 1.3.10, j lifts to an embedding
j∗ : M [G]→ N∗ = N [H] by mapping j∗(σG) = j(σ)G∗H∗I .

Since j∗, H ∈ N∗, the set j∗[H] is an element of N∗ and is directed, hence it generates a
filter on j∗(Q). Since H is P-generic over M , for each D ∈ D, there is some xD ∈ D ∩H.
Hence, by elementarity, N∗ |= j∗(xD) ∈ j∗(D). Thus the filter generated by j∗[H] is
(j∗(Q), j∗(D))-generic. Again by elementarity, there must be a (Q,D)-generic filter in
M [G]. This filter would also be in V [G] and contradict that Q is a counterexample to
AAFA(c). �
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