
Formale Mathematik

AG 1 des Natur- und Ingenieurwiss. Kolleg VI

Bad Honnef, 21. März 2016

Peter Koepke, University of Bonn, Germany

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

Mathematical formalism

(M. Magidor: How large is the first strongly compact ...)

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

Can mathematics be fully formalized?

A.N.Whitehead, B.Russell, Principia Mathematica:

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

The Gödel completeness theorem

K. Gödel, Die Vollständigkeit der Axiome des logischen Funktionenkalküls

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

The Gödel completeness theorem

K. Gödel, Die Vollständigkeit der Axiome des logischen Funktionenkalküls:

Every valid formula of the restricted functional calculus is provable.

K. Gödel, Über formal unentscheidbare Sätze der Principia mathematica ...:

The development of mathematics towards greater precision has led, as is

well known, to the formalization of large tracts of it, so that one can prove

any theorem using nothing but a few mechanical rules. The most compre-

hensive formal systems that have been set up hitherto are the system of

Principia mathematica (PM) on the one hand and the Zermelo-Fraenkel

axiom system of set theory. These two systems are so comprehensive that

in them all methods of proof today used in mathematics are formalized, that

is, reduced to a few axioms and rules of inference.

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

On the complexity of formal proofs

N. Bourbaki: Theory of Sets

If formalized mathematics were as simple as the game of

chess, then once our chosen formalized language had been

described there would remain only the task of writing out our

proofs in this language, [...] But the matter is far from being as

simple as that, and no great experience is necessary to per-

ceive that such a project is absolutely unrealizable: the tiniest

proof at the beginnings of the Theory of Sets would already

require several hundreds of signs for its complete formalization.

[...] formalized mathematics cannot in practice be written down

in full, [...] We shall therefore very quickly abandon formalized

mathematics, [...]

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

On the complexity of formal proofs

K. Gödel, Über formal unentscheidbare Sätze der Principia mathematica ...:

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

Computer-supported formal mathematics

J. McCarthy: Computer Programs for Checking Mathematical Proofs

Checking mathematical proofs is potentially one of the most

interesting and useful applications of automatic computers. ...

Proofs to be checked by computer may be briefer and easier to

write than the informal proofs acceptable to mathematicians.

This is because the computer can be asked to do much more

work to check each step than a human is willing to do, and this

permits longer and fewer steps.

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

Computer-supported formal proofs

J. Harrison, Handbook of Practical Logic and Automated Reasoning

The inductive data type formula

type (’a)formula = False

| True

| Atom of ’a

| Not of (’a)formula

| And of (’a)formula * (’a)formula

| Or of (’a)formula * (’a)formula

| Imp of (’a)formula * (’a)formula

| Iff of (’a)formula * (’a)formula

| Forall of string * (’a)formula

| Exists of string * (’a)formula;;

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

Computer-supported formal proofs

Recursively defined substitution functions subst and substq

let rec subst subfn fm =

match fm with

False -> False

| True -> True

| Atom(R(p,args)) -> Atom(R(p,map (tsubst subfn) args))

| Not(p) -> Not(subst subfn p)

| And(p,q) -> And(subst subfn p,subst subfn q)

| Or(p,q) -> Or(subst subfn p,subst subfn q)

| Imp(p,q) -> Imp(subst subfn p,subst subfn q)

| Iff(p,q) -> Iff(subst subfn p,subst subfn q)

| Forall(x,p) -> substq subfn mk_forall x p

| Exists(x,p) -> substq subfn mk_exists x p

and substq subfn quant x p =

let x’ = if exists (fun y -> mem x (fvt(tryapplyd subfn y (Var y))))

(subtract (fv p) [x])

then variant x (fv(subst (undefine x subfn) p)) else x in

quant x’ (subst ((x |-> Var x’) subfn) p);;

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

Computer-supported formal proofs ...

The Prolog-like prover meson

let puremeson fm =

let cls = simpcnf(specialize(pnf fm)) in

let rules = itlist ((@) ** contrapositives) cls [] in

deepen (fun n ->

mexpand rules [] False (fun x -> x) (undefined,n,0); n) 0;;

let meson fm =

let fm1 = askolemize(Not(generalize fm)) in

map (puremeson ** list_conj) (simpdnf fm1);;

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

... proof of the Kepler conjecture in HOL Light

|- the_kepler_conjecture <=>

(!V. packing V

==> (?c. !r. &1 <= r

==> &(CARD(V INTER ball(vec 0,r))) <=

pi * r pow 3 / sqrt(&18) + c * r pow 2))

|- the_nonlinear_inequalities /\

import_tame_classification

==> the_kepler_conjecture

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

The Isabelle system

Developed by L. Paulson and others (since 1980s)

Interactive and programable system for the development of

proofs

Generic system allowing various logics, e.g., first-order logic

(FOL) and higher-order logic (HOL)

Large scale formalizations: part of Kepler conjecture project

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

The Isabelle system

Backward proving through application of proof methods

Reducing goal to subgoals and eventually to empty list of sub-

goals

Limited insight in the “real proof”

Forward proving through Isar proof language

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

Isabelle and set theory

Advanced set theory has been formalized in Isabelle

Set theory can be formalized in several ways: ZF / NGB in FOL

/ HOL

Inference between Isabelle’s logic / type theory with set theo-

retic axioms

Requires further analysis, especially for axiomatic investiga-

tions

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

(Un-)Naturality of formal mathematics

Freek Wiedijk, The QED manifesto revisited

The other reason that there has not been much progress on the

vision [...] is that currently formalized mathematics does not

resemble real mathematics at all. Formal proofs look like com-

puter program source code. For people who do like reading

program source code that is nice, but most mathematicians [...]

do not fall in that class.

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

Apply-style Isabelle

lemma iterates_omega_fixedpoint:

"[| Normal(F); Ord(a) |] ==> F(F^\<omega> (a)) = F^\<omega> (a)"

apply (frule Normal_increasing, assumption)

apply (erule leE)

apply (simp_all add: iterates_omega_triv [OF sym]) (*for subgoal 2*)

apply (simp add: iterates_omega_def Normal_Union)

apply (rule equalityI, force simp add: nat_succI)

apply clarify

apply (rule UN_I, assumption)

apply (frule iterates_Normal_increasing, assumption, assumption, simp)

apply (blast intro: Ord_trans ltD Ord_iterates_Normal Normal_imp_Ord [of F])

done

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

Forward proving in Isar

lemma UNIV_is_not_in_ZF: "UNIV \<noteq> explode R"

proof

let ?Russell = "{ x. Not(Elem x x) }"

have "?Russell = UNIV" by (simp add: irreflexiv_Elem)

moreover assume "UNIV = explode R"

ultimately have russell: "?Russell = explode R" by simp

then show "False"

proof(cases "Elem R R")

case True

then show ?thesis

by (insert irreflexiv_Elem, auto)

next

case False

then have "R \<in> ?Russell" by auto

then have "Elem R R" by (simp add: russell explode_def)

with False show ?thesis by auto

qed

qed

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

The Naproche project: Natural language proof checking

− combining formal mathematics with computer linguistics

− joint with M. Cramer and B. Schröder

− development of a mathematical authoring system with a

LATEX-quality graphical interface

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

Mathematical statements

“V contains every set.”� “Fido chases every cat.”

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

Linguistic analysis

“Fido chases every cat.”

S: all(Y,cat(Y),chases(fido,Y))

NP: fido

|

|

Fido

VP: all(Y,cat(Y),chases(X,Y))

V: chases(X,Y)

|

chases

NP: all(Y,cat(Y),...)

D: all(...,...,...)

every

N: cat(Y)

cat.

∀Y (cat(Y)→ chases(fido, Y)).

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

Linguistic analysis

“V contains every set.”

S: all(Y,set(Y),contains(V,Y))

NP: V

|

|

V

VP: all(Y,set(Y),contains(X,Y))

V: contains(X,Y)

|

contains

NP: all(Y,set(Y),...)

D: all(...,...,...)

every

N: set(Y)

set.

∀Y (set(Y)→V ⊇Y).

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

The Language of Mathematics

- Mohan Ganesalingam: The Language of Mathematics ,

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

Andrei Paskevich’ System of Automatic Deduction (SAD)

- started by Victor Glushkov, continued with Alexander Lyaletski

and Konstantin Verchinine

- simple phrase structure grammar

- http://nevidal.org/sad.en.html

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

Linguistically improved SAD example: Cantor’s theorem

The power set of A is the set of subsets of A. Let P(A)
denote the power set of A.

Theorem 1. There is no surjection from A onto the power set

of A.

Proof. Assume F is a surjection from A onto P(A). Let

B = {x∈A |x � F (x)}.

B ∈P(A). Take a∈A such that B = F (a).

a∈B iff a � F (a) iff a � B.

Contradiction. �

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

Outlook

− Combine techniques from various formal mathematics systems to

obtain power and naturalness

− Will this lead to acceptance by mathematical practioneers?

− J. Avigad: On a personal note, I am entirely convinced that formal

verification of mathematics will eventually become commonplace.

− D. Scott: Big Proofs will soon show that computers and logic have to

be used TOGETHER to make progress in certain areas of mathe-

matics. That is, we need to show convincingly how

COMPUTER-ASSISTED PROOFS APPLY TO MATHEMATICS.

We are almost there [...].

Peter Koepke: Formale Mathematik. Bad Honnef, 21.3.2016

Auf eine erfolgreiche AG “Formale Mathematik!

