Prof. Dr. Peter Koepke, Regula Krapf

Problem sheet 10

Problem 37 (6 points). Suppose that \mathbb{P} is a σ -closed forcing.

- (a) Let κ be an uncountable cardinal in M and suppose that $p \Vdash_{\mathbb{P}}^{M}$ " $\dot{C} \subseteq [\check{\kappa}]^{\check{\omega}}$ is club" for some $p \in \mathbb{P}$ and a \mathbb{P} -name \dot{C} . Prove that there is a club $D \subseteq [\kappa]^{\omega}$ in M such that for all $x \in D$ there are sequences $\langle p_n \mid n \in \omega \rangle$ and $\langle x_n \mid n \in \omega \rangle$ such that for all $n \in \omega$, $p_{n+1} \leq_{\mathbb{P}} p_n \leq_{\mathbb{P}} p$, $x_{n+1} \supseteq x_n$, $p_n \Vdash_{\mathbb{P}}^{M} \check{x}_n \in \dot{C}$ and $\bigcup_{n \in \omega} x_n = x$.
- (b) Conclude that \mathbb{P} is proper.

Problem 38 (4 points). The Proper Forcing Axiom (PFA) states that for every proper forcing \mathbb{P} , $\mathrm{FA}_{\aleph_1}(\mathbb{P})$ holds. Its consistency proof uses strong large cardinal assumptions. Show that the if we replace \aleph_1 by \aleph_2 above, the statement becomes false.

Hint: Consider a forcing which collapses \aleph_2 *to* \aleph_1 *.*

Problem 39 (6 points). Let $\mathbb{P} = {}^{<\omega_1}\omega$, ordered by reverse inclusion. We construct a countable support iteration of length ω of subforcings of \mathbb{P} . We define inductively \mathbb{P}_n -names $\dot{\mathbb{Q}}_n$ and \dot{f}_n with the following properties:

- Let $\dot{\mathbb{Q}}_0 = \check{\mathbb{P}}$.
- dom $(\dot{\mathbb{Q}}_n) \subseteq \{\check{p} \mid p \in \mathbb{P}\}$ and $\mathbb{1}_{\mathbb{P}_n} \Vdash_{\mathbb{P}_n}^M ``\dot{\mathbb{Q}}_n$ is dense in $\check{\mathbb{P}}$ ".
- \dot{f}_n is the canonical \mathbb{P}_{n+1} -name for the generic function $f_n : \omega_1 \to \omega$ added by $\dot{\mathbb{Q}}_n$.
- Given $\dot{\mathbb{Q}}_n$, let $\dot{\mathbb{Q}}_{n+1}$ name the set of all $p \in \mathbb{P}$ such that dom(p) is either \emptyset or $\alpha + \dot{f}_n^{G_{n+1}}(\alpha + \omega)$ for some limit ordinal α .

Prove the following statements:

- (a) \mathbb{P} has an antichain of size \aleph_1 .
- (b) If $p \in \mathbb{P}_{\omega}$ and $n+1 \in \operatorname{supp}(p)$ then $p \upharpoonright n+1 \Vdash_{\mathbb{P}_{n+1}}^{M} \operatorname{dom}(p(n+1)) < \operatorname{dom}(p(n))$.
- (c) Each \mathbb{P}_n is σ -closed but \mathbb{P}_{ω} collapses \aleph_1 . *Hint:* Use Problems 16 and 17.

Problem 40 (4 points). Let $\langle \langle \mathbb{P}_{\alpha}, \leq_{\alpha}, \mathbb{1}_{\alpha} \rangle \mid \alpha \leq \kappa \rangle$ denote the countable support iteration of the sequence $\langle \langle \dot{\mathbb{Q}}_{\alpha}, \dot{\leq}_{\alpha} \rangle \mid \alpha < \kappa \rangle$. Assume that each $\dot{\mathbb{Q}}_{\alpha}$ is a full name and $\mathbb{1}_{\alpha} \Vdash_{\mathbb{P}_{\alpha}}^{M}$ " $\dot{\mathbb{Q}}_{\alpha}$ is σ -closed". Prove that \mathbb{P}_{κ} is σ -closed.

Revision exercises

 $\mathbf{2}$

Problem 41 (6 points). A Ramsey ultrafilter is an ultrafilter $\mathcal{U} \subseteq [\omega]^{\omega}$ which contains all co-finite subsets of ω and such that for every colouring $\pi : [\omega]^2 \to 2$ there is $x \in \mathcal{U}$ such that $\pi \upharpoonright [x]^2$ is constant. For $x, y \in [\omega]^{\omega}$ we say that x is almost included in y, denoted $x \subseteq^* y$, if $x \setminus y$ is finite. Now let \mathbb{U} denote the forcing $\langle [\omega]^{\omega}, \subseteq^*, \omega \rangle$. Prove the following statements:

- (a) \mathbb{U} is σ -closed. *Hint:* Use some previous exercise on Sheet 6.
- (b) Show that if G is M-generic for \mathbb{U} then G is a Ramsey ultrafilter.

Problem 42 (8 points). Let \mathfrak{m} denote the least cardinal κ such that MA_{κ} fails. Let μ denote the Lebesgue measure on \mathbb{R} . For $\varepsilon > 0$ let \mathbb{P}_{ε} be the forcing whose conditions are open sets $p \subseteq \mathbb{R}$ with $\mu(p) < \varepsilon$, ordered by reverse inclusion.

- (a) Let $\{p_{\xi} \mid \xi < \omega_1\} \subseteq \mathbb{P}_{\varepsilon}$ and $\delta > 0$ such that $\mu(p_{\xi}) < \varepsilon 3\delta$ for all $\xi < \omega_1$. Show that there are $\xi, \eta < \omega_1$ with $\xi \neq \eta$ such that p_{ξ} and p_{η} are compatible. Conclude that \mathbb{P}_{ε} is ccc.
- (b) Show that if G is M-generic for \mathbb{P}_{ε} then $\mu(\bigcup G) \leq \varepsilon$.
- (c) Let $N \subseteq \mathbb{R}$ with $\mu(N) = 0$. Show that $D_N = \{p \in \mathbb{P}_{\varepsilon} \mid p \supseteq N\}$ is dense.
- (d) Show that $\mathfrak{m} \leq \operatorname{add}(\mathcal{N})$.

Hint for (a), (b): Approximate conditions using unions of rational intervals.

Problem 43 (4 points). Let \mathbb{P} be κ -distributive and $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}}^{M}$ " $\dot{\mathbb{Q}}$ is $\check{\kappa}$ -distributive". Prove that $\mathbb{P} * \dot{\mathbb{Q}}$ is κ -distributive.

Problem 44 (8 points). Suppose that $\mathbb{M} = \langle M, \mathcal{C} \rangle \models \mathsf{GBC}$. We say that a class forcing \mathbb{P} satisfies the

- Ord-cc, if every antichain of \mathbb{P} is set-sized (i.e. an element of M).
- maximality principle, if for every first-order formula $\varphi(x)$ (possibly with class name parameters) and for every $p \in \mathbb{P}$, if $p \Vdash_{\mathbb{P}}^{\mathbb{M}} \exists x \varphi(x)$ there is $\sigma \in M^{\mathbb{P}}$ such that $p \Vdash_{\mathbb{P}}^{\mathbb{M}} \varphi(\sigma)$.

Prove the following statements:

- (a) If $\sigma \in M^{\mathbb{P}}$ and G is M-generic for \mathbb{P} then $\operatorname{rank}(\sigma^G) \leq \operatorname{rank}(\sigma)$.
- (b) \mathbb{P} satisfies the Ord-cc if and only if it satisfies the maximality principle.
- (c) Conclude that the maximality principle can fail for class forcings.

Please hand in your solutions on Monday, 01.02.2015 before the lecture.