Prof. Dr. Peter Koepke, Regula Krapf

Problem sheet 9

Problem 33 (4 points). Let d, e, f be F-codes.

(a) Show that the following statements are absolute between transitive models M of ZFC:

 $x \in d^M, \quad d^M \neq \emptyset, \quad d^M \subseteq e^M, \quad x \in \mathbb{R} \setminus d^M, \quad d^M = e^M \cap f^M.$

(b) Find a property of *F*-codes which is not absolute between transitive models of ZFC.

Suppose that S is an uncountable set and $\kappa > \omega$ is a cardinal. Suppose that $A \subseteq [S]^{<\kappa} = \{X \subseteq S \mid |X| < \kappa\}$ or $A \subseteq [S]^{\kappa} = \{X \subseteq S \mid |X| = \kappa\}.$

- (1) A is unbounded if for all $x \in [S]^{<\kappa}$ (or $[S]^{\kappa}$) there is $y \in A$ with $x \subseteq y$.
- (2) A is closed if for all \subseteq -chains $\langle x_{\alpha} \mid \alpha < \gamma \rangle$ of sets in A, i.e. $x_{\alpha} \subseteq x_{\beta}$ for $\alpha < \beta$, with $\gamma < \kappa$ (resp. $\gamma \leq \kappa$), $\bigcup_{\alpha < \gamma} x_{\alpha} \in A$.
- (3) A is stationary if $A \cap C \neq \emptyset$ for every club (closed unbounded) $C \subseteq [S]^{<\kappa}$ (or $[S]^{\kappa}$).
- (4) A is directed if for all $x, y \in A$ there is $z \in A$ such that $x \cup y \subseteq z$.

Problem 34 (6 points). If $f: [S]^{<\omega} \to [S]^{<\kappa}$ then we define

$$C_f = \{ x \in [S]^{<\kappa} \mid \forall e \in [x]^{<\omega} (f(e) \subseteq x) \}$$

the set of closure points of f.

- (a) Suppose that $C \subseteq [S]^{<\kappa}$ is closed and $A \subseteq C$ is directed with $|A| < \kappa$. Show that $\bigcup A \in C$.
- (b) Show that for every club subset of $[S]^{<\kappa}$ there is $f: [S]^{<\omega} \to [S]^{<\kappa}$ such that $C_f \subseteq C$.
- (c) Show that for every function $f: [S]^{<\omega} \to [S]^{<\kappa}$, C_f is club in $[S]^{<\kappa}$.

Hint for (b): Construct f by induction on |e| such that $f(e) \in C$ with $e \subseteq f(e)$ and $f(d) \subseteq f(e)$ for $d \subseteq e$.

Problem 35 (6 Points). Suppose that $\kappa \leq \lambda \leq \mu$ are uncountable regular cardinals. For $Y \subseteq [\mu]^{<\kappa}$, the *projection* of Y to λ is defined as

$$Y_{\lambda} = \{ y \cap \lambda \mid y \in Y \}.$$

For $X \subseteq [\lambda]^{<\kappa}$, the *lifting* of X to μ is defined as

$$X^{\mu} = \{ x \in [\mu]^{<\kappa} \mid x \cap \lambda \in X \}.$$

Prove the following statements:

- (a) If S is stationary in $[\mu]^{<\kappa}$, then S_{λ} is stationary in $[\lambda]^{<\kappa}$.
- (b) If C is club in $[\mu]^{<\kappa}$, then C_{λ} contains a club in $[\lambda]^{<\kappa}$.
- (c) If S is stationary in $[\lambda]^{<\kappa}$, then S^{μ} is stationary in $[\mu]^{<\kappa}$.

Hint for (b): Use Problem 34.

A forcing \mathbb{P} is said to be *proper*, if for every uncountable cardinal κ , every stationary subset of $[\kappa]^{\omega}$ remains stationary in every \mathbb{P} -generic extension of M.

Problem 36 (4 points). Suppose that \mathbb{P} is proper and G is M-generic for \mathbb{P} .

- (a) Show that for countable every set $X \in M[G]$ of ordinals there is a set $Y \in M$ such that Y is countable in M and $X \subseteq Y$.
- (b) Conclude that \mathbb{P} preserves \aleph_1 .

Please hand in your solutions on Monday, 18.01.2015 before the lecture.