Prof. Dr. Peter Koepke, Regula Krapf

Problem sheet 8

Problem 31 (6 points). Work in a model $\mathbb{M} \models \mathsf{GBC}$.

- (a) Prove that every ccc class forcing is pretame.
- (b) Prove that $\mathbb{P} = \{p : \operatorname{dom}(p) \to 2 \mid \operatorname{dom}(p) \subseteq \operatorname{Ord} \text{ finite}\}$, ordered by reverse inclusion, adds a proper class of Cohen reals.
- (c) Show that pretameness does not imply the preservation of GBC.

Problem 32 (16 points). Let M be a countable transitive model of ZFC. The goal of this excercise is to use class forcing to construct a model of ZFC + GCH. Let $\beth_{\alpha} = 2^{\alpha}$ be the *beth function* defined by the recursion

$$\beth_0 = \aleph_0, \quad \beth_{\alpha+1} = 2^{\beth_\alpha}, \quad \beth_\gamma = \bigcup_{\alpha < \gamma} \beth_\alpha \text{ for } \alpha \in \text{Lim}.$$

Let $\mathbb{P}_{\alpha} = \operatorname{Fn}(\beth_{\alpha}^{+}, \beth_{\alpha+1}, \beth_{\alpha}^{+})$. and let \mathbb{P} denote the *Easton product* of the \mathbb{P}_{α} , i.e. conditions are functions p with dom $(p) \subseteq$ Ord and $p(\alpha) \in \mathbb{P}_{\alpha}$ for each $\alpha \in \operatorname{dom}(p)$ such that for each strongly inaccessible cardinal λ , $|\operatorname{dom}(p) \cap \lambda| < \lambda$. Let

$$\mathbb{P}^{<\alpha} = \{ p \upharpoonright \alpha \mid p \in \mathbb{P} \}$$
$$\mathbb{P}^{\geq \alpha} = \{ p \upharpoonright \operatorname{Ord} \setminus \alpha \mid p \in \mathbb{P} \}$$

- (a) Prove that $|\mathbb{P}^{<\alpha}| \leq \beth_{\alpha+1}$.
- (b) Prove that if α is a successor ordinal or α is a limit such that \beth_{α} is regular then $|\mathbb{P}^{<\alpha}| \leq \beth_{\alpha}$. *Hint: Prove first the successor case.*
- (c) Show that for every ordinal α, ℙ^{≥α} is ⊐⁺_α-closed and for α as in (b), ℙ^{<α} has the ⊐⁺_α-cc. Conclude that ℙ preserves the axioms of GB + AC (and in particular ZFC).
- (d) Suppose that α is a limit ordinal such that \beth_{α} is singular with $cf(\beth_{\alpha}) = \rho$ and $\langle \alpha_i | i < \rho \rangle$ cofinal in \beth_{α} with $\beth_{\alpha_0} > \rho$. Prove that the class

$$\begin{split} D = & \{ p \in \mathbb{P} \mid \exists \langle A_i^{\gamma} \mid i < \rho, \gamma < \beth_{\alpha_i} \rangle (A_i^{\gamma} \text{ maximal antichain in } \mathbb{P}^{<\alpha_i} \land \\ \forall i < \rho \, \forall \gamma < \beth_{\alpha_i} \, \forall q \in A_i^{\gamma} \, \exists \beta (\langle q, p^{\geq \alpha_i} \rangle \Vdash_{\mathbb{P}^{<\alpha_i} \times \mathbb{P}^{\geq \alpha_i}}^M \dot{f}(\check{\gamma}) = \check{\beta})) \} \end{split}$$

is dense for every \mathbb{P} -name \dot{f} for a function $\beth_{\alpha} \to \beth_{\alpha}^+$.

(e) Prove that for every ordinal α, (□⁺_α)^M is a cardinal in M[G], where G is ⟨M, Def(M)⟩-generic for ℙ. Hint: Consider the cases that α is a successor ordinal, α is limit and □_α is regular, and □_α is singular separately.

- (f) Conclude that in M[G], for each ordinal α , $\operatorname{card}(\beth^M_\alpha)^{M[G]} = \aleph^{M[G]}_\alpha$. (g) Show that for each cardinal $\kappa \in M[G]$ which is either of the form $\aleph^{M[G]}_{\alpha+1} =$ $(\beth_{\alpha}^{+})^{M}$ or $\aleph_{\alpha}^{M[G]} = \beth_{\alpha}^{M}$ such that \beth_{α}^{M} is a regular limit ordinal, $M[G] \models$ $2^{\kappa} = \kappa^+.$
- (h) Suppose that $\kappa = \aleph_{\alpha}^{M[G]} = \beth_{\alpha}^{M}$ is a singular limit ordinal. Prove that for each $\lambda < \kappa$, $M[G] \models \kappa^{\lambda} \le \kappa^{+}$.
- (i) Conclude that in $M[G] \models \mathsf{ZFC} + \mathsf{GCH}$.

Hint: for (d) repeat the argument in the proof of Lemma 4.8 in the lecture notes on class forcing ρ -many times, i.e. construct a descending sequence $\langle p_i \mid i < \rho \rangle$ by repeating the argument in Lemma 4.8 at successor steps and consider $\bigcup_{i < a} p_i$. For (g), count nice names for subsets of \beth_{α} .

Please hand in your solutions on Monday, 11.01.2016 before the lecture.