Prof. Dr. Peter Koepke, Regula Krapf

Problem sheet 7

Problem 27 (4 points). Let $\mathbb{M} = \langle M, \mathcal{C} \rangle$ be a model of GB. Show that the following statements are equivalent:

- (1) $\mathbb{M} \models \mathsf{GBC}$.
- (2) \mathcal{C} contains a global well-order of M.
- (3) \mathcal{C} contains a bijection between M and Ord.

Problem 28 (8 points). Let \mathbb{P} be a class forcing for $\mathbb{M} = \langle M, \mathcal{C} \rangle \models \mathsf{GB} + \mathsf{AC}$. For $A \in M$ with $A \subseteq \mathbb{P}$ and $p \in \mathbb{P}$ we say that p decides A, if for every $a \in A$, either $p \leq_{\mathbb{P}} a$ or $p \perp_{\mathbb{P}} a$. We say that \mathbb{P} has the set decision property, if for every $p \in \mathbb{P}$ and for every $A \subseteq \mathbb{P}$ with $A \in M$ there is $q \leq_{\mathbb{P}} p$ which decides A.

- (a) Suppose that \mathbb{P} has the set decision property. Show that \mathbb{P} does not add any new sets, i.e. if G is \mathbb{M} -generic for \mathbb{P} then M[G] = M.
- (b) Show that every class forcing with the set decision property satisfies the forcing theorem for the atomic formulae " $v_0 \in v_1$ " and " $v_0 = v_1$ ". (Note that from this it follows that the forcing theorem holds for all formulae.)
- (c) Prove that every < Ord-closed class forcing has the set decision property.
- (d) Conclude that every < Ord-closed class forcing preserves all axioms of GB + AC.

Hint for (a): For $p \in \mathbb{P}$ and $\sigma \in M^{\mathbb{P}}$, consider

$$\sigma^p = \{\tau^p \mid \exists q(\langle \tau, q \rangle \in \sigma \land p \leq_{\mathbb{P}} q)\}.$$

Problem 29 (8 points). Let $\operatorname{Col}_*(\omega, \operatorname{Ord})$ denote the class forcing with conditions $p : \operatorname{dom}(p) \to \operatorname{Ord}$ with $\operatorname{dom}(p) \subseteq \omega$ finite, ordered by reverse inclusion, and let $\operatorname{Col}_*(\omega, \operatorname{Ord})$ denote the subforcing of $\operatorname{Col}(\omega, \operatorname{Ord})$ of conditions p with $\operatorname{dom}(p) \in \omega$. Prove the following statements:

- (a) $\operatorname{Col}(\omega, \operatorname{Ord})$ and $\operatorname{Col}_*(\omega, \operatorname{Ord})$ are not pretame.
- (b) Power set fails in every $Col(\omega, Ord)$ -generic extension.
- (c) $\operatorname{Col}_*(\omega, \operatorname{Ord})$ has the set decision property.
- (d) Conclude that there exists a dense embedding $\mathbb{P} \to \mathbb{Q}$ of class forcings such that \mathbb{P} and \mathbb{Q} are not forcing equivalent, i.e. they do not generate the same generic extensions.

Problem 30 (2 points). Let \mathbb{P} be a class forcing for $\mathbb{M} = \langle M, \mathcal{C} \rangle \models \mathsf{GBC}$ and suppose that for every $p \in \mathbb{P}$ there is an \mathbb{M} -generic filter $G \subseteq \mathbb{P}$ with $p \in G$ such that $\mathbb{M}[G]$ is a model of GBC^- . Then \mathbb{P} is pretame.

Hint: Given dense classes $\langle D_i | i < \kappa \rangle$ consider the function which maps some $i < \kappa$ to the least rank of an element in $D_i \cap G$.

Please hand in your solutions on Monday, 21.12.2015 before the lecture.