Prof. Dr. Peter Koepke, Regula Krapf

Problem sheet 6

Let $[\omega]^{\omega} = \{x \subseteq \omega \mid |x| = \aleph_0\}$ and $[\omega]^{<\omega} = \{s \subseteq \omega \mid |s| < \aleph_0\}.$

For $x, y \subseteq \omega$ we say that x is almost contained in y, denoted $x \subseteq^* y$, if $x \setminus y$ is finite. A pseudo-intersection of a family $\mathcal{F} \subseteq [\omega]^{\omega}$ is an element $x \in [\omega]^{\omega}$ such that for every $y \in \mathcal{F}$, $x \subseteq^* y$. Furthermore, we say that $\mathcal{F} \subseteq [\omega]^{\omega}$ has the strong finite intersection property (sfip), if every finite subfamily of \mathcal{F} has infinite intersection.

The pseudo-intersection number \mathfrak{p} is defined as the least cardinality of a family $\mathcal{F} \subseteq [\omega]^{\omega}$ which has the sfip but does not have a pseudo-intersection.

Problem 23 (4 points). Let $\mathcal{F}, \mathcal{G} \subseteq [\omega]^{\omega}$ be nonempty families of size $\langle \mathfrak{p}$ such that for all $y \in \mathcal{G}, \{x \cap y \mid x \in \mathcal{F}\}$ has the sfip.

- (a) Let $\mathcal{F}^* = \{\bar{x} \mid x \in \mathcal{F}\} \cup \{\tilde{y} \mid y \in \mathcal{G}\} \cup \{z_n \mid n \in \omega\}$, where for $x \in \mathcal{F}, y \in \mathcal{G}$ and $n \in \omega, \ \bar{x} = \{s \in [\omega]^{<\omega} \mid s \subseteq x\}, \ \tilde{y} = \{s \in [\omega]^{<\omega} \mid s \cap y \neq \emptyset\}$ and $z_n = \{s \in [\omega]^{<\omega} \mid \min s > n\}$. Show that \mathcal{F}^* has the sfip.
- (b) Show that \mathcal{F} has a pseudo-intersection x such that for each $y \in \mathcal{G}, x \cap y$ is infinite.

Problem 24 (6 points). Let $\{I_n \mid n \in \omega\}$ be an enumeration of all open intervals in \mathbb{R} with rational endpoints. Prove the following statements:

- (a) Suppose that $\{D_{\alpha} \mid \alpha < \kappa\}$ is a set of dense open subsets of \mathbb{R} . Let $x_{\alpha} = \{n \in \omega \mid I_n \subseteq D_{\alpha}\}$ for $\alpha < \kappa$ and $y_k = \{n \in \omega \mid I_n \subseteq I_k\}$ for $k \in \omega$. Show that for each $k \in \omega, \{x_{\alpha} \cap y_k \mid \alpha < \kappa\}$ has the sfip.
- (b) Show that $\aleph_1 \leq \mathfrak{p} \leq \operatorname{add}(\mathcal{M})$.

Problem 25 (6 points). Let $\mathcal{F} \subseteq [\omega]^{\omega}$ be a family which satisfies the sfip and consider the forcing notion $\mathbb{P}_{\mathcal{F}}$ whose conditions are pairs $p = \langle s_p, E_p \rangle$ such that s_p is a finite subset of ω and E_p is a finite subset of \mathcal{F} , ordered by

$$p \leq q \iff s_p \supseteq s_q \land E_p \supseteq E_q \land s_p \setminus s_q \subseteq \bigcap E_q.$$

Prove the following statements:

- (a) If G is M-generic for $\mathbb{P}_{\mathcal{F}}$ then in M[G], \mathcal{F} has a pseudo-intersection.
- (b) MA implies that $\mathfrak{p} = 2^{\aleph_0}$.

Problem 26 (4 points). Let $M \models \mathsf{ZFC} + \mathsf{CH} + 2^{\aleph_1} = \aleph_2$. Show that there is a finite support iteration of length ω_2 of forcing notions of the form $\mathbb{P}_{\mathcal{F}}$ as in Problem 25 such that $M[G] \models \mathfrak{p} = 2^{\aleph_0} = \aleph_2$.

Hint: Let $h: \omega_2 \times \omega_2 \to \omega_2$ denote Gödel pairing. Define \mathbb{P}_{γ} -names $\dot{\mathbb{Q}}_{\gamma}$ for a forcing notion and \dot{F}_{γ} for such that $\mathbb{1}_{\mathbb{P}_{\alpha}} \Vdash^M_{\mathbb{P}_{\alpha}} \dot{F}_{\alpha} : ``\check{\omega}_2 \to \mathcal{P}([\omega]^{\omega})$ is a bijection". Suppose that $\dot{\mathbb{Q}}_{\alpha}, \dot{F}_{\alpha}$ are given for $\alpha < \gamma$. If $\gamma = h(\alpha, \beta)$ define $\dot{\mathbb{Q}}_{\gamma}$ using $\dot{F}_{\alpha}(\check{\beta})$.

Please hand in your solutions on Monday, 14.12.2015 before the lecture.

 $\mathbf{2}$