Models of Set Theory II - Winter 2015/2016

Let $[\omega]^{\omega}=\left\{x \subseteq \omega| | x \mid=\aleph_{0}\right\}$ and $[\omega]^{<\omega}=\left\{s \subseteq \omega| | s \mid<\aleph_{0}\right\}$.
For $x, y \subseteq \omega$ we say that x is almost contained in y, denoted $x \subseteq^{*} y$, if $x \backslash y$ is finite. A pseudo-intersection of a family $\mathcal{F} \subseteq[\omega]^{\omega}$ is an element $x \in[\omega]^{\omega}$ such that for every $y \in \mathcal{F}, x \subseteq^{*} y$. Furthermore, we say that $\mathcal{F} \subseteq[\omega]^{\omega}$ has the strong finite intersection property (sfip), if every finite subfamily of \mathcal{F} has infinite intersection.

The pseudo-intersection number \mathfrak{p} is defined as the least cardinality of a family $\mathcal{F} \subseteq[\omega]^{\omega}$ which has the sfip but does not have a pseudo-intersection.

Problem 23 (4 points). Let $\mathcal{F}, \mathcal{G} \subseteq[\omega]^{\omega}$ be nonempty families of size $<\mathfrak{p}$ such that for all $y \in \mathcal{G},\{x \cap y \mid x \in \mathcal{F}\}$ has the sfip.
(a) Let $\mathcal{F}^{*}=\{\bar{x} \mid x \in \mathcal{F}\} \cup\{\tilde{y} \mid y \in \mathcal{G}\} \cup\left\{z_{n} \mid n \in \omega\right\}$, where for $x \in \mathcal{F}, y \in \mathcal{G}$ and $n \in \omega, \bar{x}=\left\{s \in[\omega]^{<\omega} \mid s \subseteq x\right\}, \tilde{y}=\left\{s \in[\omega]^{<\omega} \mid s \cap y \neq \emptyset\right\}$ and $z_{n}=\left\{s \in[\omega]^{<\omega} \mid \min s>n\right\}$. Show that \mathcal{F}^{*} has the sfip.
(b) Show that \mathcal{F} has a pseudo-intersection x such that for each $y \in \mathcal{G}, x \cap y$ is infinite.

Problem 24 (6 points). Let $\left\{I_{n} \mid n \in \omega\right\}$ be an enumeration of all open intervals in \mathbb{R} with rational endpoints. Prove the following statements:
(a) Suppose that $\left\{D_{\alpha} \mid \alpha<\kappa\right\}$ is a set of dense open subsets of \mathbb{R}. Let $x_{\alpha}=\left\{n \in \omega \mid I_{n} \subseteq D_{\alpha}\right\}$ for $\alpha<\kappa$ and $y_{k}=\left\{n \in \omega \mid I_{n} \subseteq I_{k}\right\}$ for $k \in \omega$. Show that for each $k \in \omega,\left\{x_{\alpha} \cap y_{k} \mid \alpha<\kappa\right\}$ has the sfip.
(b) Show that $\aleph_{1} \leq \mathfrak{p} \leq \operatorname{add}(\mathcal{M})$.

Problem 25 (6 points). Let $\mathcal{F} \subseteq[\omega]^{\omega}$ be a family which satisfies the sfip and consider the forcing notion $\mathbb{P}_{\mathcal{F}}$ whose conditions are pairs $p=\left\langle s_{p}, E_{p}\right\rangle$ such that s_{p} is a finite subset of ω and E_{p} is a finite subset of \mathcal{F}, ordered by

$$
p \leq q \Longleftrightarrow s_{p} \supseteq s_{q} \wedge E_{p} \supseteq E_{q} \wedge s_{p} \backslash s_{q} \subseteq \bigcap E_{q} .
$$

Prove the following statements:
(a) If G is M-generic for $\mathbb{P}_{\mathcal{F}}$ then in $M[G], \mathcal{F}$ has a pseudo-intersection.
(b) MA implies that $\mathfrak{p}=2^{\aleph_{0}}$.

Problem 26 (4 points). Let $M \models \mathrm{ZFC}+\mathrm{CH}+2^{\aleph_{1}}=\aleph_{2}$. Show that there is a finite support iteration of length ω_{2} of forcing notions of the form $\mathbb{P}_{\mathcal{F}}$ as in Problem 25 such that $M[G] \models \mathfrak{p}=2^{\aleph_{0}}=\aleph_{2}$.
Hint: Let $h: \omega_{2} \times \omega_{2} \rightarrow \omega_{2}$ denote Gödel pairing. Define \mathbb{P}_{γ}-names $\dot{\mathbb{Q}}_{\gamma}$ for a forcing notion and \dot{F}_{γ} for such that $\mathbb{1}_{\mathbb{P}_{\alpha}} \Vdash_{\mathbb{P}_{\alpha}}^{M} \dot{F}_{\alpha}: " \check{\omega}_{2} \rightarrow \mathcal{P}\left([\omega]^{\omega}\right)$ is a bijection". Suppose that $\dot{\mathbb{Q}}_{\alpha}, \dot{F}_{\alpha}$ are given for $\alpha<\gamma$. If $\gamma=h(\alpha, \beta)$ define $\dot{\mathbb{Q}}_{\gamma}$ using $\dot{F}_{\alpha}(\check{\beta})$.

Please hand in your solutions on Monday, 14.12.2015 before the lecture.

