Prof. Dr. Peter Koepke, Regula Krapf

Problem sheet 5

Problem 19 (2 points). Let $\langle \langle \mathbb{P}_{\alpha}, \leq_{\alpha}, \mathbb{1}_{\alpha} \rangle \mid \alpha \leq \kappa \rangle$ denote the finite support iteration of the sequence $\langle \langle \dot{\mathbb{Q}}_{\alpha}, \leq_{\alpha} \rangle \mid \alpha < \kappa \rangle$. Let G be M-generic for \mathbb{P}_{κ} and G_{α}, H_{α} be the derived generic filters for \mathbb{P}_{α} resp. $\dot{\mathbb{Q}}_{\alpha}^{G_{\alpha}}$. Show that for each $\alpha \leq \kappa$, $M[G_{\alpha}] = M[\langle H_{\beta} \mid \beta < \alpha \rangle]$, where $M[\langle H_{\beta} \mid \beta < \alpha \rangle]$ is the smallest model N of ZFC with $M \cup \{\langle H_{\beta} \mid \beta < \alpha \rangle\} \subseteq N$.

Problem 20 (6 points). Let \mathbb{P} and \mathbb{Q} denote forcing notions for M. A projection from \mathbb{P} to \mathbb{Q} is a map $\pi : \mathbb{P} \to \mathbb{Q}$ such that

- (1) $\pi(\mathbb{1}_{\mathbb{P}}) = \mathbb{1}_{\mathbb{Q}}$
- (2) If $p_0 \leq_{\mathbb{P}} p_1$ then $\pi(p) \leq_{\mathbb{Q}} \pi(q)$
- (3) If $p \in \mathbb{P}$ and $q \in \mathbb{Q}$ such that $q \leq_{\mathbb{Q}} \pi(p)$ then there is $\bar{p} \leq_{\mathbb{P}} p$ with $\pi(\bar{p}) \leq_{\mathbb{Q}} q$.

Suppose that $\pi : \mathbb{P} \to \mathbb{Q}$ is a projection. Prove the following statements:

- (a) If G is M-generic for \mathbb{P} then the pointwise image of G under π generates an M-generic filter on \mathbb{Q} .
- (b) Suppose that H is M-generic for \mathbb{Q} and let $\mathbb{P}/H = \{p \in \mathbb{P} \mid \pi(p) \in H\}$ with the ordering inherited from \mathbb{P} . If G is M[H]-generic for \mathbb{P}/H then G is M-generic for \mathbb{P} .
- (c) Show that if $\langle \langle \mathbb{P}_{\alpha}, \leq_{\alpha}, \mathbb{1}_{\alpha} \rangle \mid \alpha \leq \kappa \rangle$ is a finite support iteration then the restriction maps $\mathbb{P}_{\beta} \to \mathbb{P}_{\alpha}$ for $\alpha < \beta \leq \kappa$ are projections.

Let \mathbb{R} denote the set of reals. A set $\mathcal{I} \subseteq \mathcal{P}(\mathbb{R})$ is said to be an *ideal* on \mathbb{R} , if it has the following properties:

- (1) if $X, Y \in \mathcal{I}$ then $X \cup Y \in \mathcal{I}$.
- (2) if $X \in \mathcal{I}$ and $Y \subseteq X$ then $Y \in \mathcal{I}$.
- (3) for each $x \in \mathbb{R}, \{x\} \in \mathcal{I}$
- (4) $\mathbb{R} \notin \mathcal{I}$.

Let \mathcal{I} be an ideal on \mathbb{R} . We define

- $\operatorname{cov}(\mathcal{I}) = \min\{\operatorname{card}(\mathcal{A}) \mid \mathcal{A} \subseteq \mathcal{I} \land \bigcup \mathcal{A} = \mathbb{R}\}$
- $\operatorname{non}(\mathcal{I}) = \min\{\operatorname{card}(X) \mid X \subseteq \mathbb{R} \land X \notin \mathcal{I}\}.$

Let \mathcal{N} denote the ideal of null sets (i.e. Lebesgue measure zero sets) and let \mathcal{M} denote the ideal of meager sets.

Problem 21 (4 points). Let $\mathbb{P} = \operatorname{Fn}(\aleph_1 \times \omega, 2, \aleph_0)$ denote the forcing notion for adding \aleph_1 -many Cohen reals. Prove the following statements:

- (a) If G is M-generic for \mathbb{P} then M[G] contains an \aleph_1 -sequence of measure 0 sets whose union is \mathbb{R} .
- (b) It is consistent that $\aleph_1 = \operatorname{cov}(\mathcal{N}) < \operatorname{non}(\mathcal{N}) = 2^{\aleph_0}$.

We define two more *cardinals invariants*. A family $\mathcal{F} \subseteq {}^{\omega}\omega$ is said to be *dominating*, if for every $g \in {}^{\omega}\omega$ there is $f \in \mathcal{F}$ such that $g \leq_* f$. Furthermore, \mathcal{F} is said to be *unbounded*, if \mathcal{F} has no upper bound with respect to \leq_* .

- The dominating number \mathfrak{d} is the least size of a dominating family in ${}^{\omega}\omega$.
- The bounding number \mathfrak{b} is the least size of an unbounded family in ${}^{\omega}\omega$.

Problem 22 (6 points). Prove the following statements:

- (a) $\mathfrak{b} \leq \operatorname{non}(\mathcal{M}).$
- (b) $\mathfrak{b} \leq \mathrm{cf}(\mathfrak{d}).$
- (c) $\operatorname{cov}(\mathcal{M}) \leq \mathfrak{d}$.