Prof. Dr. Peter Koepke, Regula Krapf Problem sheet 4

Problem 15 (2 points). Find a forcing notion \mathbb{P} which decides the Continuum Hypothesis in the following way: There are \mathbb{P} -generic filters G and H such that $M[G] \models \mathsf{CH}$ and $M[H] \models \neg \mathsf{CH}$.

Problem 16 (8 points). Let $\langle \langle \mathbb{P}_{\alpha}, \leq_{\alpha}, \mathbb{1}_{\alpha} \rangle \mid \alpha \leq \omega \rangle$ denote the finite support iteration of the sequence $\langle \langle \mathbb{Q}_n, \leq_n \rangle \mid n \in \omega \rangle$.

(a) Let $\kappa \geq 2$ be a cardinal in M. Suppose that for each $n \in \omega$,

 $\mathbb{1}_n \Vdash_{\mathbb{P}_n}^M ``\dot{\mathbb{Q}}_n$ has an antichain of size κ ".

Show that every \mathbb{P}_{ω} -generic extension M[G] contains a surjective function $f: \omega \to \kappa$ which is not in M.

(b) Conclude that if for each $n \in \omega$, $\mathbb{1}_n \Vdash_{\mathbb{P}_n}^M$ " $\dot{\mathbb{Q}}_n$ is atomless" and G is M-generic for \mathbb{P}_ω then M[G] contains a Cohen real over M.

Problem 17 (4 points). Let $\langle \langle \mathbb{P}_{\alpha}, \leq_{\alpha}, \mathbb{1}_{\alpha} \rangle \mid \alpha \leq \kappa \rangle$ denote the finite support iteration of the sequence $\langle \langle \dot{\mathbb{Q}}_{\alpha}, \dot{\leq}_{\alpha} \rangle \mid \alpha < \kappa \rangle$. Prove the following statements:

- (a) If κ is finite and $\mathbb{1}_n \Vdash_{\mathbb{P}_n}^M ``\dot{\mathbb{Q}}_n$ is σ -closed" for all $n < \kappa$ then \mathbb{P}_{κ} is σ -closed.
- (b) The analogue of (a) for κ infinite is false.

Problem 18 (6 points). A three-step iteration is an iteration of the form $\langle \langle \mathbb{P}_n, \leq_n, \mathbb{1}_n \rangle \mid n \leq 2 \rangle$. Prove (very rigorously!) that a three-step iteration can be written as a two-step iteration in two different ways.

Please hand in your solutions on Monday, 30.11.2015 before the lecture.