Prof. Dr. Peter Koepke, Regula Krapf

Problem sheet 2

Problem 7 (2 points). Let κ be an infinite cardinal and \mathbb{P} be a κ -closed partial order. Show that $FA_{\kappa}(\mathbb{P})$ holds.

Problem 8 (2 points). Prove that $FA_{2^{\aleph_0}}(Fn(\aleph_0, \aleph_0, \aleph_0))$ is false.

Problem 9 (6 points). A set $X \subseteq \mathbb{R}$ is said to be *nowhere dense*, if there is a dense open set $U \subseteq \mathbb{R}$ which is disjoint from X. A set $X \subseteq \mathbb{R}$ is said to be *meager*, if it is a countable union of nowhere dense sets. Prove the following statements for $X \subseteq \mathbb{R}$:

- (a) X is meager if and only if there is a sequence $\langle U_n \mid n \in \omega \rangle$ of dense open sets such that $X \cap \bigcap_{n \in \omega} U_n = \emptyset$.
- (b) If MA holds then the intersection of less than 2^{\u03c8}0-many dense open sets of reals is dense.
- (c) Conclude that \mathbb{R} is not meager.

Problem 10 (8 points). Let $\kappa < 2^{\aleph_0}$ be an infinite cardinal and $\vec{X} = \langle X_i \mid i < \kappa \rangle$ be a sequence of nowhere dense sets. Let $\mathcal{I} = \{(p,q) \mid p, q \in \mathbb{Q}, p < q\}$ denote the set of open intervals in the real line with rational endpoints. Let $\mathbb{P} = \mathbb{P}_{\vec{X}}$ denote the forcing notion whose conditions are of the form $p = \langle r_p, s_p \rangle$ with the following properties:

- $r_p: \omega \to [I]^{<\omega}$ and $\{n \in \omega \mid r_p(n) \neq \emptyset\}$ is finite;
- $s_p: \omega \to [\kappa]^{<\omega}$ and $\{n \in \omega \mid s_p(n) \neq \emptyset\}$ is finite;
- for all $n \in \omega$ and for all $i \in s_p(n), X_i \cap \bigcup r_p(n) = \emptyset$.

Furthermore, we define $p \leq_{\mathbb{P}} q$ if and only if for all $n \in \omega$, $r_p(n) \supseteq r_q(n)$ and $s_p(n) \supseteq s_q(n)$.

- (a) Prove that \mathbb{P} satisfies the ccc.
- (b) For an interval $I \in \mathcal{I}$ and $n \in \omega$ let $D_{n,I} = \{p \in \mathbb{P} \mid \exists J \in r_p(n) (J \subseteq I)\}$. Show that $D_{n,I}$ is a dense subset of \mathbb{P} .
- (c) Show that for every $i < \kappa$, the set $D_i = \{p \in \mathbb{P} \mid \exists n \in \omega (i \in s_p(n))\}$ is dense in \mathbb{P} .
- (d) If MA holds then unions of less than 2^{\aleph_0} -many meager sets are meager.

Hint for (d): Take a \mathcal{D} -generic filter for $\mathbb{P}_{\vec{X}}$ for some suitable \vec{X} and \mathcal{D} and show that the sets $U_n = \bigcup \bigcup \{r_p(n) \mid p \in G\}$ are dense open.

Please hand in your solutions on Monday, 16.11.2015 before the lecture.