Problem 4 (4 points). If \mathbb{P} is a forcing notion and G is M-generic for \mathbb{P} , we say that $f \in ({}^{\omega}\omega)^{M[G]}$ is a dominating real, if for every $g \in ({}^{\omega}\omega)^{M}$ there is $n_0 \in \omega$ such that for all $n \geq n_0$, g(n) < f(n). Let $[\omega]^{\omega}$ denote the set of infinite subsets of ω . For $x, y \in [\omega]^{\omega}$ we say that x splits y if both $y \cap x$ and $y \setminus x$ are in $[\omega]^{\omega}$. A set $x \in ([\omega]^{\omega})^{M[G]}$ is said to be a splitting real if it splits every set in $([\omega]^{\omega})^{M}$. Prove that if M[G] contains a dominating real then it contains a splitting real.

Hint: If $f \in M[G]$ is dominating, one may assume that f is strictly increasing. Let $f^{n+1}(0) = f(f^n(0))$ and $f^0(0) = 0$ and onstruct a splitting real by taking the union of certain intervals of the form $[f^k(0), f^l(0))$ in a suitable way, where for $n, m \in \omega$, $[n, m) = \{k \in \omega \mid n \leq k < m\}$.

Problem 5 (6 points). Let \mathbb{C} denote Cohen forcing. Prove the following statements:

- (a) C adds splitting reals.
- (b) \mathbb{C} does not add dominating reals.

Hint for (b): Consider an enumeration $\langle p_n \mid n \in \omega \rangle$ of the conditions in \mathbb{C} and $g(n) = \min\{k \in \omega \mid \exists p \leq_{\mathbb{C}} p_n(p \Vdash_{\mathbb{C}} \dot{f}(\check{n}) = \check{k})\}$ for a \mathbb{C} -name \dot{f} for a real.

Problem 6 (6 points). Hechler forcing \mathbb{P} is the forcing notion whose conditions are of the form $p = \langle s_p, E_p \rangle$ such that $s_p : n \to \omega$ for some $n \in \omega$ and $E_p \subseteq {}^{\omega}\omega$ is a finite set of functions from ω to ω . The ordering is given by

$$p \leq_{\mathbb{P}} q \iff s_p \supseteq s_q \wedge E_p \supseteq E_q \wedge \forall f \in E_q \forall n \in \text{dom}(s_p) \setminus \text{dom}(s_q)(f(n) < s_p(n)).$$

- (a) Show that \mathbb{P} satisfies the c.c.c.
- (b) Prove that \mathbb{P} adds a dominating real.
- (c) Prove that \mathbb{P} adds Cohen reals, i.e. whenever G is M-generic for \mathbb{P} , then there is $H \in M[G]$ which is M-generic for $\operatorname{Fn}(\omega, 2, \aleph_0)$.

Please hand in your solutions on Monday, 09.11.2015 before the lecture.