Prof. Dr. Peter Koepke, Regula Krapf Problem sheet 0

Problem 0 (4 points). Two forcing notions \mathbb{P} and \mathbb{Q} are said to be *forcing* equivalent, if every \mathbb{P} -generic extension of M is also a \mathbb{Q} -generic extension of M, and vice versa every \mathbb{Q} -generic extension of M is also a \mathbb{P} -generic extension of M.

Let \mathbb{P} be the forcing notion whose conditions are intervals [p,q] of the real line \mathbb{R} with rational endpoints p < q, partially ordered by inclusion.

- (a) Let G be M-generic for \mathbb{P} . Prove that G can be reconstructed from a single real.
- (b) Show that \mathbb{P} is forcing equivalent to Cohen forcing \mathbb{C} .

Problem 1 (8 Points). Random forcing \mathbb{P} is defined as the set of Borel subsets p of the real line \mathbb{R} with positive Lebesgue measure $\mu(p) > 0$, ordered by inclusion.

- (a) Show that $\langle \mathbb{P}, \leq \rangle$ satisfies the c.c.c.
- (b) Let G be M-generic for \mathbb{P} . Find a canonical real (denoted Random real) which is in M[G] but not in M.
- (c) Let $X = \bigsqcup_{n \in \omega} X_n$ be the disjoint union of Lebesgue measurable sets X_n and $\mu(X) < \infty$. Show that for every $\varepsilon > 0$ there is $n_0 \in \omega$ with $\mu(X) \mu(\bigsqcup_{n < n_0} X_n) < \varepsilon$.
- (d) Given $\varepsilon > 0$, a \mathbb{P} -name σ and $p \in \mathbb{P}$ with $\mu(p) < \infty$ and $p \Vdash_{\mathbb{P}}^{M} \sigma \in \check{\omega}$, prove that there is $n \in \omega$ and $q \leq_{\mathbb{P}} p$ such that $q \Vdash_{\mathbb{P}}^{M} \sigma \leq \check{n}$ and $\mu(p \setminus q) < \varepsilon$.
- (e) Suppose that $\varepsilon > 0$ and $p \Vdash_{\mathbb{P}}^{M} \dot{f} : \omega \to \omega$ with $\mu(p) < \infty$. Prove that there are $q \leq p$ in \mathbb{P} and a ground model function $g : \omega \to \omega$ such that $q \Vdash_{\mathbb{P}}^{M} \forall n \in \omega(\dot{f}(n) \leq g(n))$ and $\mu(p \setminus q) < \varepsilon$.
- (f) Let $f \leq^* g \iff \exists n_0 \in \omega \forall n \geq n_0(f(n) \leq g(n))$ for $f, g \in {}^{\omega}\omega$. Show that \mathbb{P} is ω^{ω} -bounding over M, i.e. if G is M-generic for \mathbb{P} and $f \in ({}^{\omega}\omega)^{M[G]}$, then there is some $g \in ({}^{\omega}\omega)^M$ with $f \leq^* g$.

Problem 2 (4 points). Let \mathbb{C} denote Cohen forcing and let G be M-generic for \mathbb{C} . Consider the Cohen real $c = \bigcup G : \omega \to 2$ and let $c_0, c_1 : \omega \to 2$ be given by $c_0(n) = c(2n)$ and $c_1(n) = c(2n+1)$ for all $n \in \omega$.

- (a) Prove that $\langle c_0, c_1 \rangle$ is *M*-generic for the product $\mathbb{C} \times \mathbb{C}$, i.e. c_0 and c_1 are also Cohen reals.
- (b) Use (a) to show c_1 is not in $M[c_0]$.

Problem 3 (4 points). Let \mathbb{P} be a forcing which satisfies the c.c.c. Show that stationary subset of ω_1 in M remain stationary in \mathbb{P} -generic extensions M[G].

Hint: If \dot{C} is a name for a club subset of ω_1 and $p \Vdash_{\mathbb{P}}^M$ " \dot{C} is club" then prove that $\bar{C} = \{ \alpha < \omega_1 \mid p \Vdash_{\mathbb{P}}^M \alpha \in \dot{C} \} \in M$ is a club subset of ω_1 .

Please hand in your solutions on Monday, 02.11.2015 before the lecture.