
CLASS FORCING

REGULA KRAPF

We have seen how to modify the continuum function κ 7→ 2κ by forcing both CH and
¬CH. It would be interesting to force generalizations of this such as GCH or forcing
2κ = κ++ for every regular cardinal. However, this is impossible, since every forcing P
satisfies the |P|+-cc and therefore does not modify the continuum function above κ. To
achieve this, we have to generalize forcing and allow proper class partial orders.

1. Gödel-Bernays set theory

Since we will now deal with classes, we will work in a second-order context. We work
in a two-sorted version of L∈ with (lowercase letter) variables for sets and (capital letter)
variables for classes. More precisely, the formulae are given by

• atomic formulae of the form vi ∈ vj , vi = vj , vi ∈Wj ,Wi = Wj

• if ϕ,ψ are formulae then so are ¬ϕ,ϕ ∧ ψ
• if ϕ is a formula then so are ∃viϕ,∃Wiϕ.

By first-order formulae we denote the formulae which have no class quantifiers (but classes
may appear in atomic subformulae).

The theory GB consists of the set axioms given by ZF (where in the schemes of Sep-
aration and Replacement formulae are allowed to have class parameters1) and the class
axioms

• ∀X,Y (X = Y ↔ ∀z(z ∈ X ↔ z ∈ Y ) (Extensionality)
• ∀X(X 6= ∅ → ∃y ∈ X∀z ∈ y(z /∈ X)) (Foundation)
• For every formula ϕ without class quantifiers,

∀X0, . . . , Xn−1∃Y ∀z[z ∈ Y ↔ ϕ(z,X1, . . . , Xn−1)] (first-order Class Comprehension)

Furthermore, we denote by GBC the theory of GB enhanced by global choice, i.e.

∃F [F function ∧ ∀x 6= ∅(x ∈ dom(F ) ∧ F (x) ∈ x)].

As in the case of ZFC, we write GB(C)− for the theory GB(C) without the power set
axiom.

A model of GBC (or one of the weaker subtheories) is of the form M = 〈M, C〉 where M
contains the sets and C contains the classes.

Remark 1.1. If M is a transitive model of ZFC and Def(M) denotes the collection of
classes which are definable over M then 〈M,Def(M)〉 |= GB. This shows that GBC is
conservative over ZFC, i.e. every statement that GBC proves about sets can also be
proven in ZFC.

Date: December 17, 2015.
1e.g. for Separation this means: Whenever ϕ(v0, v1, p0, . . . , pm−1, C0, . . . , Cn−1) is an L∈-

formula with set parameters p0, . . . , pm−1 and class parameters C0, . . . , Cn−1 then {y ∈ x |
ϕ(x, y, p0, . . . , pm−1, C0, . . . , Cm−1)} is a set.

1
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2. Class forcing

Let M = 〈M, C〉 be a model of GB.

Definition 2.1. A class forcing for M is a triple of the form P = 〈P,≤P,1P〉 where
P,≤P∈ C2. A class D ⊆ P is said to be

• dense, if for every p ∈ P there is q ≤P p with q ∈ D.
• dense below p for some p ∈ P, if for every q ≤P p there is r ≤P q with r ∈ D.
• predense, if for every p ∈ P there is q ∈ D such that p and q are compatible.
• predense below p for some p ∈ P, if for every q ≤P p there is r ∈ D which is

compatible with q.

A filter G ⊆ P is M-generic for P, if G ∩D 6= ∅ for each dense class D ∈ C.

Lemma 2.2. Let P be a class forcing for M and G ⊆ P a filter. Then the following
statements are equivalent:

(1) G is M-generic for P.
(2) G ∩D 6= ∅ for every class D ⊆ P in C which is dense below som ep ∈ P.
(3) G ∩D 6= ∅ for every predense class D ⊆ P which is in C.
(4) G ∩D 6= ∅ for every class D ⊆ P in C which is predense below some p ∈ G.

Proof. The equivalence of (1) and (2) is shown in Problem 11, Models of Set Theory I.
We show first that (1) ⇒ (3). Let D ⊆ P be a predense class in C. Then consider

D̄ = {p ∈ P | ∃q ∈ D(p ≤P q)}.
We check that D̄ is dense. Let p ∈ P. Then there is q ∈ D which is compatible with p.
Take r ≤P p, q. Then r ∈ D̄, so D̄ is dense. Pick p ∈ G∩ D̄ and q ∈ D with p ≤P q. Then
q ∈ G ∩D.

Suppose now that (3) holds and let p ∈ G and D ⊆ P be predense below p. Then

D̄ = D ∪ {q ∈ P | q⊥Pp}
is predense, so we can pick q ∈ G ∩ D̄. But then p, q are compatible, so q ∈ G ∩D.

The implication (4) ⇒ (1) is obvious. �

Definition 2.3. Let P be a class forcing for M. A P-name is a class whose elements
are of the form 〈σ, p〉 where σ is a P-name and p ∈ P. We define MP to be the class of
all P-names which are elements of M and CP the collection of P-names which are in C
(denoted class P-names).

Given an M-generic filter G for P and σ ∈MP, we define

σG = {τG | ∃p ∈ G(〈τ, p〉 ∈ σ)}
and similarly we define ΓG for Γ ∈ CP. Furthermore, let

M [G] = {σG | σ ∈MP}
C[G] = {ΓG | Γ ∈ CP}

and M[G] = 〈M [G], C[G]〉.

Definition 2.4. If ϕ ≡ ϕ(v0, . . . , vm−1,Γ0, . . . ,Γn−1) is an L∈-formula with class name
parameters Γ0, . . . ,Γn−1 ∈ CP, p ∈ P and σ0, . . . , σm−1 ∈MP, we write

p M
P ϕ(σ0, . . . , σm−1,Γ0, . . . ,Γn−1)

if for M-generic filter G for P with p ∈ G,

M[G] |= ϕ(σG0 , . . . , σ
G
m−1,Γ

G
0 , . . . ,Γ

G
n−1).

2We will usually identify P with its domain P .
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Definition 2.5. Let M be a model of GB. Let ϕ ≡ ϕ(v0, . . . , vm−1,Γ0, . . . ,Γn−1) be an
L∈-formula with class name parameters Γ0, . . . ,Γn−1 ∈ CP.

(1) We say that P satisfies the definability lemma for ϕ over M if

{〈p, σ0, . . . , σm−1〉 ∈ P ×MP × . . .×MP | p M
P ϕ(σ0, . . . , σm−1,Γ0, . . . ,Γn−1)} ∈ C.

(2) We say that P satisfies the truth lemma for ϕ over M if for all σ0, . . . , σm−1 ∈MP,
~Γ ∈ (CP)n and every filter G which is P-generic over M with

M[G] |= ϕ(σG0 , . . . , σ
G
m−1,Γ

G
0 , . . . ,Γ

G
n−1),

there is p ∈ G with p M
P ϕ(σ0, . . . , σm−1,Γ0, . . . ,Γn−1).

(3) We say that P satisfies the forcing theorem for ϕ over M if P satisfies both the
definability lemma and the truth lemma for ϕ over M.

Question 2.6. Is it true that if M |= GB and P is a class forcing for M then M [G] |= GB
whenever G is M-generic for P? A related question is: Does every class forcing satisfy
the forcing theorem?

The answer is that, in general, the axioms of set theory are not preserved under class
forcing (see e.g. Problem 29). Moreover, there are class forcings for which the forcing the-
orem fails. Before we proceed to more technical results, let us consider an easy application
of class forcing.

Definition 2.7. A class forcing P is < Ord-closed, if for every cardinal κ and for every
descending sequence 〈pα | α < κ〉 there is p ∈ P with p ≤P pα for each α < κ.

Lemma 2.8. Let P be a class forcing which is < Ord-closed. Then the following state-
ments hold:

(1) If G is M-generic for P then M [G] = M .
(2) P preserves the axioms of GB (resp. GB + AC or GBC).

Proof. This follows from Problem 28. �

Definition 2.9. A global well-order for M is a class well-order ≺∈ C of M . Note that
by Problem 27 the existence of a global well-order for M is equivalent to global choice.

Proposition 2.10. There is a class forcing P which adds a global well-order for M . More
precisely, if M |= GB + AC and G is M-generic for P then M[G] |= GBC.

Proof. Let P = {≺∈M | ∃x ∈M(≺ is a well-order of x)}, ordered by end-extension, i.e.
if p, q ∈ P then p ≤P q if and only if dom(p) ⊇ dom(q) and p � dom(q) × dom(q) = q,
where dom(p) is the set well-ordered by p. Note that P is < Ord-closed, so M [G] = M
and M[G] |= GB.

Let G be M-generic for P and consider ≺=
⋃
G. For each x ∈M consider

Dx = {p ∈ P | x ⊆ dom(p)}.
We show that Dx is dense. Let p ∈ P and y = dom(p). Let z = x \ y and let q be a
well-order of z. Then there is a well-order r ∈ P of x ∪ y given by

〈a, b〉 ∈ r ⇐⇒ (a, b ∈ y ∧ 〈a, b〉 ∈ p) ∨ (a, b ∈ z ∧ 〈a, b〉 ∈ q) ∨ (a ∈ y ∧ b ∈ z).
Then r ≤P p and r ∈ Dx.

To see that ≺ is an ordering of M , let x ∈ M be arbitary and pick p ∈ D{x}. Hence
x ∈ dom(p) ⊆ dom(≺). We show that it well-orders M . To see that it is a linear ordering,
let x, y ∈ M . Take p ∈ G ∩D{x,y}. Then either 〈x, y〉 ∈ p or 〈y, x〉 ∈ p. In the first case,
x ≺ y and in the second case, y ≺ x. Moreover, ≺ is a well-order: We have to check that
for every x ∈M , x has a ≺-least element. Pick p ∈ G∩Dx. Then ≺� dom(p)×dom(p) = p
is a well-order on dom(p) ⊇ x. But then x has a p-least element y and in particular y is
also a ≺-least element of x. �
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3. Pretameness

Since fundamental theorems of set forcing such as the forcing theorem and the preser-
vation of the axioms of set theory can fail for class forcing, we are interested in finding a
condition which guarantees that at least GB− is preserved and the forcing theorem holds.

Definition 3.1. Let P be a class forcing for M. We say that P is pretame, if for every
sequence of dense (below p) classes 〈Dα | α < κ〉 in C (i.e. {〈p, α〉 | p ∈ Dα} ∈ C) and for
every p ∈ P there is a sequence 〈dα | α < κ〉 ∈ M and q ≤P p such that each dα ⊆ Dα is
predense below q.

Remark 3.2. Note that if M |= AC then we can always assume I to be a cardinal in the
above definition.

Proposition 3.3 (S. Friedman). If P is pretame then P satisfies the forcing theorem.

Proof. We have to show that p M
P σ ∈ τ and p M

P σ = τ are definable, since the
definability of non-atomic formulae follows by induction on the formula complexity. We
will define a class function F : P×MP ×MP × 2→ 2×M \ {∅}.

We will prove by induction that F (p, σ, τ, 0) = 〈i, d〉 for some d ⊆ {q ∈ P | q ≤P p}
such that either

(1) i = 1 and for every q ∈ d, q M
P σ ∈ τ , or

(2) i = 0 and for every q ∈ d, q M
P σ /∈ τ ;

and similarly F (p, σ, τ, 1) = 〈i, d〉 for some d ⊆ {q ∈ P | q ≤P p} such that either

(3) i = 1 and for every q ∈ d, q M
P σ = τ , or

(4) i = 0 and for every q ∈ d, q M
P σ 6= τ .

Given such a function, we can define the forcing relation by

p M
P σ ∈ τ ⇐⇒ ∀q ≤P p∃d ∈M(F (q, σ, τ, 0) = 〈1, d〉)

p M
P σ = τ ⇐⇒ ∀q ≤P p∃d ∈M(F (q, σ, τ, 1) = 〈1, d〉).

We are left with defining such a function F by induction on the name rank. We start
with defining F (p, σ, τ, 0). By induction, we may assume that for all π ∈ dom(τ) and for
all q ∈ P, F (q, σ, π, 1) has already been defined. There are two cases:

Case 1. There exist 〈π, r〉 ∈ τ and q ≤P p, r such that F (q, σ, π, 1) = 〈1, d〉 for some
d ∈ M . Let α ∈ Ord be minimal such that there is such a d ∈ Vα. Then put
F (p, σ, τ, 0) = 〈1, e〉 where

e =
⋃
{d ∈ Vα | ∃〈π, r〉 ∈ τ ∃q ≤P p, r F (q, σ, π, 1) = 〈1, d〉}.

Case 2. Suppose that Case 1 fails. For each 〈π, r〉 ∈ τ , consider

Dπ,r =
⋃
{d ∈M | ∃q ≤P r F (q, σ, π, 1) = 〈0, d〉} ∪ {q ≤P p | q⊥Pr}.

We show that Dπ,r is dense below p. Let q ≤P p. If q⊥Pr then we are done.
Otherwise take s ≤P q, r. Since Case 1 fails, F (s, σ, π, 1) = 〈0, d〉 for some d ∈
M \ {∅}. Since d is nonempty, take t ∈ d. Then t ∈ Dπ,r and t ≤P s ≤P q. By
pretameness there are conditions q ≤P p and 〈dπ,r | 〈π, r〉 ∈ τ〉 ∈ M such that
each dπ,r is a subset of Dπ,r which is predense below q. Now let α ∈ Ord be
minimal such that there is such q in Vα. Then put F (p, σ, τ, 0) = 〈0, e〉 where

e = {q ∈ Vα ∩ P | ∃〈dπ,r | 〈π, r〉 ∈ τ〉 ∈M(dπ,r predense subset of Dπ,r below q)}.

We are left with checking (1) and (2). Suppose that F (p, σ, τ, 0) = 〈1, e〉. We have to
check that for every q ∈ e, q M

P σ ∈ τ . Take q ∈ d and an M-generic filter G with q ∈ G.
Since we are in Case 1, there is 〈π, r〉 ∈ τ and s ≤P p, r with F (s, σ, π, 1) = 〈1, d〉 for some
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d and q ∈ d. Then q ≤P s and so s ∈ G. But by induction, since rank(π) < rank(τ),
q M

P σ = π and so σG = πG ∈ τG.
Secondly, assume that F (p, σ, τ, 0) = 〈0, e〉 and let q ∈ e and G an M-generic filter for

P. Now by Case 2 there is a sequence 〈dπ,r | 〈π, r〉 ∈ τ〉 of sets dπ,r ⊆ Dπ,r which are
predense below q. Suppose for a contradiction that M [G] |= σG ∈ τG. Then there is
〈π, r〉 ∈ τ with r ∈ G and σG = πG. Since dπ,r is predense below q there is s ∈ dπ,r ∩G.
Then s is compatible with r and so there are d ∈M and t ≤P r with F (t, σ, π, 1) = 〈0, d〉
and s ∈ d. By induction, s M

P σ 6= π, contradicting that σG = πG.
Now we define F (p, σ, τ, 1). Again, we may assume that for every π ∈ dom(σ ∪ τ) and

for every q ∈ P, F (q, π, σ, 0) and F (q, π, τ, 0) have already been defined. As above, me
make a case distinction:

Case 1. There exist 〈π, r〉 ∈ σ ∪ τ , q ≤P p, r, i ∈ 2, d, e ∈ M and s ∈ d such that
F (q, π, σ, 0) = 〈i, d〉 and F (s, π, τ, 0) = 〈1 − i, e〉. Then let α ∈ Ord be minimal
with the property that such e as above exists in Vα. Then put F (p, σ, τ, 1) = 〈0, f〉,
where

f =
⋃
{e ∈ Vα | ∃〈π, r〉 ∈ σ ∪ τ ∃q ≤P p, r ∃i ∈ 2 ∃d ∈M ∃s ∈ d
(F (q, π, σ, 0) = 〈i, d〉 ∧ F (s, π, τ, 0) = 〈1− i, e〉)}.

Case 2. Suppose that Case 1 fails. For each 〈π, r〉 ∈ σ ∪ τ let

Dπ,r =
⋃
{e | ∃q ≤P r ∃i ∈ 2∃d∃s ∈ d(F (q, π, σ, 0) = 〈i, d〉 ∧ F (s, π, τ, 0) = 〈i, e〉}
∪ {q ∈ P | q⊥Pr}.

Since Case 1 fails, each Dπ,r is dense below p. By pretameness there are conditions
q ≤P p and 〈dπ,r | 〈π, r〉 ∈ σ ∪ τ〉 ∈ M such that each dπ,r is a subset of Dπ,r

which is predense below q. Now let α ∈ Ord be minimal such that there is such q
in Vα. Then put F (p, σ, τ, 0) = 〈1, f〉 where

f = {q ∈ Vα∩P | ∃〈dπ,r | 〈π, r〉 ∈ σ∪τ〉 ∈M(dπ,r predense subset of Dπ,r below q)}.
It remains to check (3) and (4). Suppose first that F (p, σ, τ, 1) = 〈1, f〉 and let q ∈ f .
Since we are in Case 2, this means that there is a sequence 〈dπ,r | 〈π, r〉 ∈ σ ∪ τ〉 ∈ M
such that each dπ,r is a subset of Dπ,r which is predense below q. Now let G be M-generic
for P with q ∈ G. Suppose that σG 6= τG. Then there is 〈π, r〉 ∈ σ ∪ τ such that r ∈ G
and either πG ∈ σG \ τG or πG ∈ τG \ σG. Without loss of generality, we may assume the
former. Now by predensity of dπ,r there is s ∈ dπ,r∩G ⊆ Dπ,r∩G. But then by definition
of Dπ,r there are d, e ∈ M, i ∈ 2 and t ≤P r and u ∈ d such that F (t, π, σ, 0) = 〈i, d〉 and
F (u, π, τ, 0) = 〈i, e〉 and s ∈ e. If i = 0 then, since s ∈ e, s M

P π /∈ σ and so πG /∈ σG, a
contradiction. Otherwise, since s ∈ e, s ≤P u and so u ∈ G. But u ∈ d and so u ≤P t and
in particular, t ∈ G. Moreover, by induction we have t M

P π ∈ τ and therefore πG ∈ τG
contradicting our assumption.

For (4), suppose that F (p, σ, τ, 1) = 〈0, f〉 and q ∈ f . Then we are in Case 1, and so
there are 〈π, r ∈ σ ∪ τ, s ≤P p, r, i ∈ 2, d, e ∈ M and t ∈ d such that F (s, π, σ, 0) = 〈i, d〉
and F (t, π, τ, 0) = 〈1 − i, e〉 and q ∈ e. Let G be M-generic for P with q ∈ G. Suppose
first that i = 1. Then q M

P π /∈ τ and so πG /∈ τG. Since q ∈ e, q ≤P t and so t ∈ G. But

t ∈ d and so t M
P π ∈ σ, hence πG ∈ σG. In particular, σG 6= τG as desired. The case

that i = 0 is similar.
We now define the forcing relation for atomic formulae containing classes. We claim

that p M
P σ ∈ Γ if and only if the class

D = {q ≤P p | ∃〈τ, r〉 ∈ Γ(q ≤P r ∧ q M
P σ = τ)} ∈ C

is dense below p. Suppose first that p M
P σ ∈ Γ and let q ≤P p. Take an M-generic filter

G for P with q ∈ G. Then p ∈ G and so σG ∈ ΓG. Let 〈π, r〉 ∈ Γ such that r ∈ G and
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σG = πG. Since G is a filter, q and r are compatible and therefore there is s ≤P q, r with
s ∈ G. In particular, s ∈ D. Conversely, suppose that G is M-generic for P with p ∈ G.
By genericity, we can take q ∈ D ∩ G. But then there is 〈π, r〉 ∈ Γ such that q ≤P r.
Hence r ∈ G and so σG = τG ∈ ΓG.

Finally, we define p M
P Γ = Π for class P-names Γ,Π. But this is equivalent to

stipulating that for all 〈σ, s〉 ∈ Γ and for all 〈τ, t〉 ∈ Π and for all q ≤P p, s and for all
r ≤P r, t there are q̄ ≤P q and r̄ ≤P r such that q̄ M

P σ ∈ Π and r̄ M
P τ ∈ Γ.

This shows that the definability lemma holds for atomic formulae. For composite
formulae, we can proceed by induction on the formula complexity, since at every step only
finitely many new quantifiers are added. The truth lemma follows from the definability
lemma as in set forcing. �

Remark 3.4. Problem 29 shows that the converse is false. However, there are class forcings
which do not satisfy the forcing theorem. Moreover, if P is non-pretame then there is a
class forcing Q and a dense embedding P → Q such that Q does not satisfy the forcing
theorem.

Proposition 3.5. If P is pretame and G is M-generic for P then M[G] |= GB−. If M is
a model of global choice then so is M[G].

Proof. All set axioms except for Replacement, Separation, Union have exactly the same
proof as for set forcing. We prove Replacement: Suppose that

M[G] |= ∀x ∈ σG ∃!y ϕ(x, y, τG,ΓG),

where τG is a set parameter and ΓG is a class parameter. Let p ∈ G with p M
P ∀x ∈

σ ∃!y ϕ(x, y, τ,Γ). Now for each 〈π, r〉 ∈ σ, the class

Dπ,r = {q ∈ P | (q ≤P p, r ∧ ∃µ ∈MP(q M
P ϕ(π, µ, τ,Γ)) ∨ q⊥Pr}

is dense below p. Now for each α ∈ Ord let

eαπ,r = {q ∈ Dπ,r ∩ Vα | q ≤P r → ∃µ ∈MP ∩ Vα(q M
P ϕ(π, µ, τ,Γ))} ∈M.

We claim that the class

E = {q ∈ P | ∃α ∈ Ord∀〈π, r〉 ∈ σ(eαπ,r is predense below q)}
is dense below p. Now let q ≤P p. By pretameness there is r ≤P q and there are sets
dπ,r ⊆ Dπ,r which are predense below r. Now let α = rank(〈dπ,r | 〈π, r〉 ∈ σ〉). Then
each dπ,r is a subset of eπ,r and so eπ,r is also predense below r. In particular, r ∈ E. By
genericity, pick q ∈ E ∩G and α ∈ Ord witnessing that q ∈ E. Then put

ν = {〈µ, s〉 | µ, s ∈ Vα ∧ ∃〈π, r〉 ∈ σ(s ≤P r ∧ s M
P ϕ(π, µ, τ,Γ))}.

It is easy to check that νG = ran(f), where f : σG →M [G] is the function x 7→ y, where
y ∈M [G] is unique such that M[G] |= ϕ(x, y, τG,ΓG).

Separation follows from Replacement, and Union follows from Separation: Let σ ∈MP.
Then τ =

⋃
dom(σ) ∈ MP and so

⋃
σG = {x ∈ τG | ∃y ∈ σG(x ∈ y)} ∈ M [G] using

Separation.
Foundation and extensionality for classes are clear. For class comprehension, note that

Γ = {〈σ, p〉 | p M
P ϕ(σ,Γ0, . . . ,Γn−1)} is a class name for the class {x | ϕ(x,ΓG0 , . . . ,Γ

G
n−1)}.

For global choice, suppose that ≺ is a global well-order in C. Then

x C y ⇐⇒ ∃σ ∈MP[x = σG ∧ ∀τ ∈MP(y = τG → σ ≺ τ)]

defines a global-wellorder of M [G] in C[G]. �

Proposition 3.6. Let P be a class forcing such that for each p ∈ P there is an M-generic
filter G ⊆ P with p ∈ G such that M[G] |= GB−. Then P is pretame.

Proof. This is exactly Problem 30. �
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Corollary 3.7. A class forcing P is pretame if and only if it preserves GB−.

4. Easton’s Theorem

Definition 4.1. An Easton index function is a class function F : dom(F ) → Card such
that for κ, λ ∈ dom(F ),

• κ is a regular cardinal
• cf(F (κ)) > κ
• if κ < λ then F (κ) ≤ F (λ).

Definition 4.2. Let F be an Easton index function. The associated Easton forcing PF
be the class forcing with conditions p with dom(p) ⊆ dom(F ) and for each κ ∈ dom(p),
p(κ) ∈ Fn(F (κ)× κ, 2, κ) and for all regular cardinals λ,

|dom(p) ∩ λ| < λ.

The ordering of PF is given by reverse inclusion.

Definition 4.3. Let F be an Easton index function, p ∈ PF and λ a regular cardinal.
Then we define

p≤λ = p � λ+, p>λ = p � Ord \ λ+.
Furthermore, let

P≤λF = {p≤λ | p ∈ PF }, P>λF = {p>λ | p ∈ PF }.

Remark 4.4. If p ∈ PF then p = p≤λ∪p>λ. In particular, this shows that PF is isomorphic

to P≤λF × P>λF .

Lemma 4.5. Let λ be a regular cardinal. Then P>λ is λ+-closed.

Proof. Let 〈pi | i < λ〉 be a descending sequence in P>λ. Let p =
⋃
i<λ pi. Then dom(p) =⋃

i<λ dom(pi) ⊆ Ord \ λ+. Now if κ ∈ dom(p) then κ ≥ λ+ and so

|dom(p(κ))| = |
⋃
i<λ

dom(pi(κ))| < κ

since κ is regular.
Moreover, if κ ≥ λ+ is a regular cardinal, then

|dom(p) ∩ κ| = |
⋃
i<λ

dom(pi) ∩ κ| < κ.

This shows that p ∈ P>λ and p ≤P>λ pi for each i < λ. �

Lemma 4.6. For every regular cardinal λ, P≤λ satisfies the λ+-cc.

Proof. For p ∈ P≤λ let

d(p) =
⋃
{{κ} × dom(p(κ)) | κ ∈ dom(p) ∩ λ+}.

Then by assumption, |d(p)| < λ. Now suppose that A ⊆ P≤λ is an antichain of size λ+.
Since M |= GCH, λ<λ = λ and so we can apply the ∆-System Lemma. There is B ⊆ A
of size λ+ such that

{d(p) | p ∈ B}
forms a ∆-system with root r, i.e. for all p, q ∈ B with p 6= q, d(p) ∩ d(q) = r. So |r| < λ

and using the GCH we have 2|r| ≤ λ. But then there is C ⊆ B of size λ+ such that for
all p, q ∈ C and for all 〈κ, x〉 ∈ r, p(κ)(x) = q(κ)(x). But then all elements of C are
compatible, a contradiction. �

We will use a class version of the Product lemma:
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Lemma 4.7. Let P = P0×P1, where P0,P1 are class forcings for M such that P0 satisfies
the forcing theorem. Then the following statements hold:

(1) If G0 is M-generic for P0 and G1 is M[G0]-generic then G0×G1 is M-generic for
P.

(2) If G is M-generic for P then G is of the form G0 × G1, where G0 is M-generic
for P0 and G1 is M[G0]-generic for P1.

Proof. The proof is the same as for set forcing. �

Lemma 4.8. Let P and Q be class forcings such that P×Q satisfies the forcing theorem,
P is λ+-closed and Q satisfies the λ+-cc. If G × H is M-generic for P × Q then every
function f : λ→M in M [G×H] is in M [H]. In particular,

PM [G×H](λ) = PM [H](λ).

Proof. Let ḟ ∈ MP×Q be a name such that ḟG×H = f . Without loss of generality, we
may assume that 1P×Q M

P ḟ : λ̌→ X̌ for some X ∈M . For α < λ, consider

Dα = {p ∈ P | ∃A ⊆ Q(A max. antichain ∧ ∀q ∈ A∃x ∈ X(〈p, q〉 MP×Q ḟ(α̌) = x̌))}.
Clearly, each Dα is open. It is also dense: Let p ∈ P. By induction, we construct
a descending sequence 〈pi | i < δ〉 of conditions in P and a sequence 〈qi | i < δ〉 of
conditions in Q and 〈xi | i < δ〉 of sets in X such that δ < λ+ for all i < δ,

〈pi, qi〉 MP×Q ḟ(α̌) = x̌ for some x ∈ X

and 〈qi | i < δ〉 enumerates a maximal antichain in Q. Since 1P×Q MP×Q ḟ : λ̌→ X̌ there

are 〈p0, q0〉 ≤P×Q 〈p,1Q〉 and x0 ∈ X with 〈p0, q0〉 MP×Q ḟ(α̌) = x̌0.

Suppose that 〈pi | i < γ〉, 〈qi | i < γ〉, 〈xi | i < γ〉 have already been defined for
some γ < λ+. Since P is λ+-closed there is p̄γ such that p̄γ ≤P pi for each i < γ. If
{qi | i < γ} is a maximal antichain then p̄γ ∈ Dα and we are done. Otherwise, there is
q̄γ ∈ Q which is incompatible with each qi, i < γ. Now choose 〈pγ , qγ〉 ≤P×Q 〈p̄γ , q̄γ〉 with

〈pγ , qγ〉 MP×Q ḟ(α̌) = x̌γ for some xγ ∈ X.

Since Q satisfies the λ+-cc, there must be some stage δ < λ+ such that {qi | i < δ} is
a maximal antichain. But then p̄δ as defined above strenghtens p and lies in Dα.

Moreover, since P is λ+-closed, D =
⋂
α<λDα is dense. By genericity pick p ∈ G ∩D.

For each α < λ we can choose a maximal antichain Aα ⊆ Q and a family {xαp,q | q ∈
Aα} ⊆ X such that

〈p, q〉 MP×Q ḟ(α̌) = x̌αp,q
for each q ∈ Aα. By genericity of H, for each α < λ there is a unique qα ∈ Aα ∩H. But
then we have

f(α) = xαp,qα
and so f ∈M [H]. �

Proposition 4.9. Let M |= GB + AC + GCH and let F be an Easton index function
in C. If G is M-generic for PF then M[G] |= GB + AC and for each κ ∈ dom(F ),
M [G] |= 2κ = F (κ). Moreover, PF preserves all cardinals and cofinalities.

Proof. For the sake of notational simplicity, we will write P for PF and correspondingly

P≤λ and P>λ instead of P≤λF and P>λF . Note that since P is isomorphic to P>λ × P≤λ, we

can write G as G>λ ×G≤λ and we have M [G] = M [G>λ][G≤λ].
To see that P is pretame, let p ∈ P and 〈Di | i < λ〉 be a sequence of dense classes

below p and suppose that λ is a regular cardinal. Let 〈qi | i < λ〉 be an enumeration of
P≤λ and let h : λ× λ→ λ be Gödel pairing. We define a descending sequence 〈pi | i < λ〉
of conditions in P such that p≤λi = p≤λ for each i < λ.
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• Let p0 = p.
• Given 〈pj | j < i〉 let p̄i =

⋃
j<i pi. Then p̄i ∈ P since P>λ is λ+-closed. Suppose

that i = h(i0, i1). Then choose pi ≤P p̄i with p≤λi = p≤λ such that there is some
ri ∈ Di1 with qi0 ∪ r ≤P ri, if possible. Otherwise pi = p̄i.

Now let p̄ =
⋃
i<λ pi and di = {rj | rj ∈ Di}. Then di is predense below p̄: Suppose that

r ≤P p̄. Let s ≤P r with s ∈ Di. Let j < λ such that s≤λ = qj . Put k = h(j, i). Then
pk∪qj ≤P rk and rk ∈ Di. In particular, s ≤P pk∪qj ≤P rk and s ≤P r, so r is compatible
with rk ∈ di.

Furthermore, P preserves the power set axiom: Note that it is enough to check that for
every regular cardinal λ, P(λ) exists. Now observe that by Lemma 4.8,

PM [G](λ) = PM [G≤λ](λ)

but this exists since P≤λ is a set-sized forcing.
Next, suppose that κ is a regular cardinal in M . We need to check that κ is regular in

M [G]. Suppose for a contradiction that there is some map f : λ → κ in M [G] for some
regular M -cardinal λ < κ. By Lemma 4.8, f ∈ M [G≤λ]. But P≤λ is a set forcing which
satisfies the λ+-cc, so κ is remains regular in M [G≤λ].

We check that for each regular κ ∈ dom(F ), (2κ)M [G] = F (κ). Fix κ ∈ dom(F ). Note

that by Lemma 4.8, (2κ)M [G] = (2κ)M [G≤κ]. Since Gκ = {p(κ) | p ∈ G} ∈ M [G≤κ] is
M-generic for Fn(F (κ) × κ, 2, κ) and this forcing adds F (κ)-many Cohen subsets of κ,

(2κ)M [G≤κ] ≥ F (κ). For the converse, note that in M ,

|P≤κ| = 2<κ · F (κ)<κ = F (κ)

since M |= GCH and cof(F (κ)) > κ. But then since P≤κ has the κ+-cc, by Theorem
4.2.16 (Models of Set Theory I),

(2κ)M [G≤κ] ≤ ((|P≤κ|<κ+)κ)M = F (κ)κ = F (κ)

as desired.
�

Corollary 4.10 (Easton’s Theorem). Let M |= ZFC + GCH and let F be a definable
Easton index function. If G is 〈M,Def(M)〉-generic for PF then M [G] |= ZFC and for
each κ ∈ dom(F ), M [G] |= 2κ = F (κ). �

Corollary 4.11. If ZFC is consistent then so is ZFC + ∀κ regular(2κ = κ++). �
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