Dr. Philipp Lücke	Problem sheet 11
-------------------	------------------

Problem 37 (14 Points). A tree \mathbb{T} of height ω_1 is a *Kurepa tree* if $|[\mathbb{T}]| > \omega_1$ and $|\mathbb{T}(\alpha)| < \omega_1$ for all $\alpha < \omega_1$.

Define \mathbb{P} to be the partial order whose conditions are pairs $p = \langle T_p, f_p \rangle$ such that there is an $\alpha_p < \omega_1$ with

- (a) $T_p \subseteq {}^{<\alpha_p}2$ is countable and closed under initial segments.
- (b) $f_p : \omega_2 \xrightarrow{part} \alpha_p 2$ is a countable partial function with $f(\gamma) \upharpoonright \alpha \in T_p$ for all $\alpha < \alpha_p$ and $\gamma \in \text{dom}(f_p)$.

and whose ordering $p \leq_{\mathbb{P}} q$ is given by

$$\alpha_q \leq \alpha_p \wedge T_q = T_p \cap {}^{<\alpha_q} 2 \wedge \operatorname{dom}(f_q) \subseteq \operatorname{dom}(f_p) \wedge \forall \gamma \in \operatorname{dom}(f_q) f_q(\gamma) = f_p(\gamma) \upharpoonright \alpha_q.$$

- (1) Show that \mathbb{P} is $<\omega_1$ -closed.
- (2) Show that, if (CH) holds, then \mathbb{P} satisfies the ω_2 -chain condition. (Hint: Show that the set $\{T_p \mid p \in \mathbb{P}\}$ has cardinality ω_1 in this case and then use the Δ -system lemma)
- (3) Given $\alpha < \omega_1$ and $\gamma < \delta < \omega_2$, show that the set

$$D_{\alpha,\gamma,\delta} = \{ p \in \mathbb{P} \mid \alpha < \alpha_p, \ \gamma, \delta \in \operatorname{dom}(f_p), \ f_p(\gamma) \neq f_p(\delta) \}$$

is dense in \mathbb{P} .

(4) Prove that the consistency of ZF implies the consistency of the theory

ZFC + "There is a Kurepa tree".

Problem 38 (4 Points). Show that a subset A of \mathcal{N} contains a perfect subset if and only if there is a sequence $\vec{t} = \langle t_s \in {}^{<\omega}\omega \mid s \in {}^{<\omega}2 \rangle$ with the following properties.

- (1) If $s \in {}^{<\omega}2$, then $t_s \subsetneq t_{s^{\frown}\langle 0 \rangle}$, $t_s \subsetneq t_{s^{\frown}\langle 1 \rangle}$, $\ln(t_{s^{\frown}\langle 0 \rangle}) = \ln(t_{s^{\frown}\langle 1 \rangle})$ and $t_{s^{\frown}\langle 0 \rangle} \neq t_{s^{\frown}\langle 1 \rangle}$.
- (2) If $x \in \mathcal{C}$, then $\bigcup_{n < \omega} t_{x \upharpoonright n} \in A$.

Problem 39 (6 Points). Show that every uncountable Polish space contains a subset without the perfect set property. (Hint: First show that every uncountable closed subset of \mathcal{N} contains a subset without the perfect set property by using an enumeration $\langle \vec{t}_{\gamma} | \gamma < 2^{\omega} \rangle$ of all sequences with the properties listed in Problem 38)

Problem 40 (8 Extra Points). Work in the theory

ZF + "Every subset of N has the perfect set property"

and prove that there is no injection $i: \omega_1 \longrightarrow {}^{\omega}\omega$.

Please hand in your solutions on Wednesday, July 08, before the lecture.