Dr. Philipp Lücke	Problem sheet 9
-------------------	-----------------

Problem 30 (4 Points). Let M be a transitive model of ZFC and G be $\operatorname{Fn}(\omega_1, 2, \omega)^M$ generic over M. Show that there is an $A \in \mathcal{P}(\omega_1^M) \cap M[G]$ with the property that,
whenever $\omega \leq \gamma < \omega_1^M$ and $G_0 \times G_1$ is the filter on $(\operatorname{Fn}(\gamma, 2, \omega) \times \operatorname{Fn}(\omega_1 \setminus \gamma, 2, \omega))^M$ induced by G, then $A \notin M[G_0] \cup M[G_1]$.

Problem 31 (Almost disjoint coding forcing, 8 Points). Given a subset A of ${}^{\omega}\omega$, we define \mathbb{P}_A to be the partial order whose conditions are pairs $p = (c_p, X_p)$ with

- X_p is a finite subset of A.
- $c_p : {}^{<\omega}\omega \xrightarrow{part} 2$ is a finite partial function.

such that $p \leq_{\mathbb{P}_A} q$ holds if and only if the following statements hold.

(1) $c_q \subseteq c_p$ and $X_q \subseteq X_p$.

(2) If
$$x \in X_q$$
 and $l < \omega$ with $x \upharpoonright l \in \operatorname{dom}(c_p) \setminus \operatorname{dom}(c_q)$, then $c_p(x \upharpoonright l) = 1$.

Prove the following statements.

(a) Given $x \in A$ and $t \in {}^{<\omega}\omega$, the set

$$\{p \in \mathbb{P}_A \mid x \in X_p \land t \in \operatorname{dom}(c_p)\}$$

is dense in \mathbb{P}_A .

- (b) \mathbb{P}_A satisfies the countable chain condition.
- (c) Given $y \in {}^{\omega}\omega \setminus A$ and $k < \omega$, the set

 $\{p \in \mathbb{P}_A \mid \exists l < \omega \ [k < l \land y \upharpoonright l \in \operatorname{dom}(c_p) \land c_p(y \upharpoonright l) = 0]\}$

is dense in \mathbb{P}_A .

Let M be a transitive model of ZFC, $A \in \mathcal{P}({}^{\omega}\omega) \cap M$ and G be \mathbb{P}^{M}_{A} -generic over M.

(d) There is a function $C: {}^{<\omega}\omega \longrightarrow 2$ in M[G] such that the equivalence

 $x \in A \iff \exists N < \omega \ \forall n < \omega \ [N < n \longrightarrow C(x \upharpoonright n) = 1]$

holds for every $x \in \mathcal{P}(^{\omega}\omega) \cap M$.

Problem 32 (5 Points). Let K be a countable field. Equip the set Aut(K) of all automorphisms of K with the topology whose basic open sets are of the form

$$N_s = \{\pi \in \operatorname{Aut}(K) \mid s \subseteq \pi\}$$

for some finite partial function $s: K \xrightarrow{partial} K$.

(1) Show that the resulting topological space is a Polish space (Hint: View Aut(K) as a subset of $^{\omega}\omega$ and let d denote the metric defined in Proposition 6.1.10.(iv). Consider the function $d_*(\pi,\sigma) = d(\pi,\sigma) + d(\pi^{-1},\sigma^{-1})$).

(2) Show the function

 $\circ: \operatorname{Aut}(K) \times \operatorname{Aut}(K) \longrightarrow \operatorname{Aut}(K); (\pi, \sigma) \mapsto \pi \circ \sigma$

is continuous with respect to this topology.

Problem 33 (7 Points). Prove Proposition 6.1.3. from the lecture course:

- (1) Given a Polish space X, there is a complete metric d on X such that d is compatible with X and $d(x, y) \leq 1$ for all $x, y \in X$. (Hint: Pick a compatible complete metric d and conider the function $d_*(x, y) = \frac{d(x, y)}{1+d(x, y)}$)
- (2) The product of countably-many Polish spaces is a Polish space. (Hint: Given a sequence $\langle X_n \mid n < \omega \rangle$ of Polish spaces, pick a sequence $\langle d_n \mid n < \omega \rangle$ of compatible complete metrics with $d_n(x,y) \leq 1$ for all $n < \omega$ and $x, y \in X_n$ and consider the function $d_*(\vec{x}, \vec{y}) = \sum_{n < \omega} 2^{-n-1} \cdot d_n(\vec{x}(n), \vec{y}(n)))$

Please hand in your solutions on Wednesday, June 24, before the lecture.

 $\mathbf{2}$