Dr. Philipp Lücke	Problem sheet 8
-------------------	-----------------

Problem 27 (6 Points). Prove Lemma 5.16. from the lecture course: Let $\pi : \mathbb{P} \to \mathbb{Q}$ be a dense embedding of partial orders. If $\varphi(v_0, \ldots, v_{n-1})$ is an \mathcal{L}_{\in} -formula, then

 $p \Vdash_{\mathbb{P}}^{*} \varphi(\tau_{0}, \dots, \tau_{n-1}) \iff \pi(p) \Vdash_{\mathbb{O}}^{*} \varphi(\pi_{*}(\tau_{0}), \dots, \pi_{*}(\tau_{n-1}))$

for all $p \in \mathbb{P}$ and $\tau_0, \ldots, \tau_{n-1} \in \mathbb{V}^{\mathbb{P}}$. (Hint: Use Problem 22 in the nontrivial direction of the \exists -case.)

Problem 28 (8 Points). Prove the Product Lemma (Theorem 5.2.5. from the lecture course): Let M be a transitive model of ZFC and $\mathbb{P}_0, \mathbb{P}_1 \in M$ be partial orders with maximal elements. Then the following statements are equivalent for every filter $G_0 \times G_1$ on $\mathbb{P}_0 \times \mathbb{P}_1$.

- (1) $G_0 \times G_1$ is $(\mathbb{P}_0 \times \mathbb{P}_1)$ -generic over M.
- (2) G_0 is \mathbb{P}_0 -generic over M and G_1 is \mathbb{P}_1 -generic over $M[G_0]$.
- (3) G_1 is \mathbb{P}_1 -generic over M and G_0 is \mathbb{P}_0 -generic over $M[G_1]$.

(Hint: Use Lemma 4.1.5. from the lecture course and Problem 22.)

Problem 29 (Mathias forcing, 10 Points). Fix a non-principal ultrafilter \mathcal{U} on ω . Let $\mathbb{P}_{\mathcal{U}}$ denote the partial order consisting of conditions $p = (s_p, A_p)$ such that $s_p : n_p \longrightarrow \omega$ is a strictly increasing function with $n_p < \omega$ and $A_p \in \mathcal{U}$ ordered by

 $p \leq_{\mathbb{P}_{\mathcal{U}}} q \iff s_q \subseteq s_p \ \land \ A_p \subseteq A_q \ \land \ \forall k \in \mathrm{dom}(s_p) \setminus \mathrm{dom}(s_q) \ s_p(k) \in A_q.$

(1) Show that $\mathbb{P}_{\mathcal{U}}$ satisfies the countable chain condition.

Let M be a transitive model of ZFC, \mathcal{U} be a non-principal ultrafilter on ω in Mand G be $\mathbb{P}_{\mathcal{U}}$ -generic over M.

- (2) Show that $s_G = \bigcup_{p \in G} s_p$ is a strictly increasing function with domain ω .
- (3) Prove that

$$\mathcal{U} = \{A \in \mathcal{P}(\omega) \cap M \mid \operatorname{ran}(s_G) \setminus A \text{ is finite}\}.$$

Please hand in your solutions on Wednesday, June 17, before the lecture.