Problem sheet 6

Problem 22 (4 Points). Let $\varphi(v_0, \ldots, v_n)$ be an \mathcal{L}_{\in} -formula, \mathbb{P} be a partial order, $p \in \mathbb{P}$ and $\sigma_0, \ldots, \sigma_n, \tau_0, \ldots, \tau_n \in V^{\mathbb{P}}$ with

$$p \Vdash_{\mathbb{P}}^* \varphi(\sigma_0, \ldots, \sigma_n) \land \sigma_0 = \tau_0 \land \ldots \land \sigma_n = \tau_n.$$

Show that $p \Vdash_{\mathbb{P}}^* \varphi(\tau_0, \ldots, \tau_n)$.

Problem 23 (6 Points). Prove the Maximality Principle: Let $\varphi(v_0,\ldots,v_n)$ be an \mathcal{L}_{\in} -formula. If \mathbb{P} is a partial order, $p \in \mathbb{P}$ and $\tau_0,\ldots,\tau_{n-1} \in V^{\mathbb{P}}$ such that $p \Vdash_{\mathbb{P}}^* \exists x \ \varphi(x,\tau_0,\ldots,\tau_{n-1})$ holds, then there is $\sigma \in V^{\mathbb{P}}$ with $p \Vdash_{\mathbb{P}}^* \varphi(\sigma,\tau_0,\ldots,\tau_{n-1})$ (Hint: Set $D = \{q \leq_{\mathbb{P}} p \mid \exists \rho \in V^{\mathbb{P}} q \Vdash_{\mathbb{P}}^* \varphi(\rho,\tau_0,\ldots,\tau_{n-1})\}$. Let $\langle a_{\alpha} \mid \alpha < \lambda \rangle$ enumerate a maximal antichain in D and pick a sequence $\langle \rho_{\alpha} \in V^{\mathbb{P}} \mid \alpha < \lambda \rangle$ with $a_{\alpha} \Vdash_{\mathbb{P}}^* \varphi(\rho_{\alpha},\tau_0,\ldots,\tau_{n-1})$ for every $\alpha < \lambda$. Use these sequences to construct a name σ with the desired properties).

Problem 24 (14 Points + 16 Bonus Points). Let $\mathbb{B} = \langle \mathbb{B}, \leq, \wedge, \vee, 0, 1, ' \rangle$ be a complete boolean algebra and let \mathbb{B}^* denote the corresponding partial order (see Problem 20). By induction on the structure of \mathcal{L}_{\in} -formulas, we define $[\![\varphi(\tau_0, \ldots, \tau_{n-1})]\!]_{\mathbb{B}} \in \mathbb{B}$ for every \mathcal{L}_{\in} -formula $\varphi(v_0, \ldots, v_{n-1})$ and $\tau_0, \ldots, \tau_{n-1} \in \mathbb{V}^{\mathbb{B}^*}$.

(i) By simultaneous induction on the well-founded relation " $a \in tc(b)$ ", we define

$$\llbracket\ "\tau_0\in\tau_1"\ \rrbracket_{\mathbb{B}}\ =\ \sup_{\mathbb{B}}\{r\wedge\llbracket\ "\tau_0=\rho"\ \rrbracket_{\mathbb{B}}\mid (\rho,r)\in\tau_1\}$$

and

$$\llbracket \ "\tau_0 = \tau_1" \ \rrbracket_{\mathbb{B}} = \bigwedge_{i < 2} \inf_{\mathbb{B}} \{ \ r' \lor \llbracket \ "\rho \in \tau_i" \ \rrbracket_{\mathbb{B}} \mid (\rho, r) \in \tau_{1-i} \}$$

- (ii) $\llbracket \neg \varphi(\tau_0, \dots, \tau_{n-1}) \rrbracket_{\mathbb{B}} = \llbracket \varphi(\tau_0, \dots, \tau_{n-1}) \rrbracket'_{\mathbb{B}}$
- (iii) $[\![\varphi_0(\tau_0,\ldots,\tau_{n-1})\land\varphi_1(\tau_0,\ldots,\tau_{n-1})]\!]_{\mathbb{B}} = [\![\varphi_0(\tau_0,\ldots,\tau_{n-1})]\!]_{\mathbb{B}}\land [\![\varphi_1(\tau_0,\ldots,\tau_{n-1})]\!]_{\mathbb{B}}.$
- (iv) $\llbracket\exists x \ \varphi(x, \tau_0, \dots, \tau_{n-1})\rrbracket_{\mathbb{B}} = \sup_{\mathbb{B}} \{\llbracket \varphi(\rho, \tau_0, \dots, \tau_{n-1})\rrbracket_{\mathbb{B}} \mid \rho \in V^{\mathbb{B}^*} \}.$
 - (1) Prove that the equivalence

$$p \Vdash_{\mathbb{R}^*}^* \varphi(\tau_0, \dots, \tau_{n-1}) \iff p \leq \llbracket \varphi(\tau_0, \dots, \tau_{n-1}) \rrbracket_{\mathbb{R}}$$

holds for every \mathcal{L}_{\in} -formula $\varphi(v_0,\ldots,v_{n-1}),\,\tau_0,\ldots,\tau_{n-1}\in V^{\mathbb{B}^*}$ and $p\in\mathbb{B}^*$.

(2) Prove that $V^{\mathbb{B}^*}$ is full, i.e. for every \mathcal{L}_{\in} -formula $\varphi(v_0, \ldots, v_n)$ and all $\tau_0, \ldots, \tau_{n-1} \in V^{\mathbb{B}^*}$, there is $\sigma \in V^{\mathbb{B}^*}$ with

$$\llbracket\exists x \ \varphi(x, \tau_0, \dots, \tau_{n-1})\rrbracket_{\mathbb{B}} = \llbracket \varphi(\sigma, \tau_0, \dots, \tau_{n-1})\rrbracket_{\mathbb{B}}.$$

- (3) Prove that the following statements hold for all $\tau_0, \tau_1, \tau_2 \in V^{\mathbb{B}^*}$.
 - (a) $[\!["\tau_0 = \tau_0"]\!]_{\mathbb{B}} = 1.$
 - (b) $[\!["\tau_0 = \tau_1"]\!]_{\mathbb{B}} = [\!["\tau_1 = \tau_0"]\!]_{\mathbb{B}}.$
 - (c) $[\!["\tau_0 = \tau_1"]\!]_{\mathbb{B}} \cdot [\!["\tau_1 = \tau_2"]\!]_{\mathbb{B}} \leq [\!["\tau_0 = \tau_2"]\!]_{\mathbb{B}}.$

$$(\mathrm{d}) \ \llbracket \ "\tau_0 \in \tau_1" \ \rrbracket_{\mathbb{B}} \cdot \llbracket \ "\tau_0 = \tau_2" \ \rrbracket_{\mathbb{B}} \ \leq \ \llbracket \ "\tau_2 \in \tau_1" \ \rrbracket_{\mathbb{B}}.$$

- (4) Prove that $[(Extensionality)]_{\mathbb{B}} = 1$.
- (5) Given a Δ_0 -formula $\varphi(v_0,\ldots,v_{n-1})$, prove that

$$\varphi(a_0,\ldots,a_{n-1}) \longleftrightarrow \llbracket \varphi(\check{a}_0,\ldots,\check{a}_{n-1}) \rrbracket_{\mathbb{B}} = 1$$

holds for all a_0, \ldots, a_{n-1} .

(6) Given $\tau \in V^{\mathbb{B}^*}$, we have

$$[\![\ "\tau\in\operatorname{Ord}"\]\!]_{\mathbb{B}}\ =\ \sup_{\mathbb{B}}\{[\![\tau=\check{\alpha}]\!]_{\mathbb{B}}\ |\ \alpha\in\operatorname{Ord}\}.$$

- (7) Prove that $[(Infinity)]_{\mathbb{B}} = 1$.
- (8) Prove that $[\![\varphi]\!]_{\mathbb{B}} \ = \ 1$ whenever φ is an axiom of ZFC.