Dr. Philipp Lücke

Problem sheet 5

Problem 19 (6 Points). Prove the following statements.

(1) If ZF is consistent, then there is no Σ -formula $\varphi(v)$ such that

$$\operatorname{ZFC} \vdash \forall x \ [\varphi(x) \longleftrightarrow "x \ is \ a \ cardinal"].$$

(2) If ZF is consistent, then there is no Σ -formula $\varphi(v_0, v_1)$ such that

$$ZFC \vdash \forall x, y \ [\varphi(x, y) \longleftrightarrow "x = \mathcal{P}(y)".$$

Problem 20 (10 Points). Let (X, τ) be a non-empty topological space. We let $ro(X, \tau)$ denote the set of all regular open subsets of X (i.e. int(cl(A)) = A). Define $U \vee V = int(cl(U \cup V))$ and $U' = int(X \setminus U)$ for all $U, V \in ro(X, \tau)$.

(1) Show that

$$\mathbb{B}(X,\tau) = \langle \operatorname{ro}(X,\tau), \subseteq, \cap, \vee, \emptyset, X, ' \rangle$$

is a complete boolean algebra.

Given a partial order \mathbb{P} , we define $\tau_{\mathbb{P}}$ to be the set of all subsets of \mathbb{P} that are open in \mathbb{P} .

(2) Show that $(\mathbb{P}, \tau_{\mathbb{P}})$ is a topological space.

Given a boolean algebra $\mathbb{B} = \langle B, \leq, \wedge, \vee, 0, 1, ' \rangle$, we define \mathbb{B}^* to be the partial order $\langle B \setminus \{0\}, \leq, \rangle$.

(3) Show that the map

$$\pi_{\mathbb{P}}: \mathbb{P} \longrightarrow \operatorname{ro}(\mathbb{P}, \tau_{\mathbb{P}}); \ p \longmapsto \operatorname{int}(\operatorname{cl}(\{q \in \mathbb{P} \mid q <_{\mathbb{P}} p\}))$$

is a dense embedding of \mathbb{P} into the partial order $\mathbb{B}(\mathbb{P}, \tau_{\mathbb{P}})^*$.

Problem 21 (8 Points). A partial order \mathbb{P} is *separative* if for all conditions p and q in \mathbb{P} with $p \not\leq_{\mathbb{P}} q$ there is a condition r in \mathbb{P} with $r \leq_{\mathbb{P}} p$ and $q \perp_{\mathbb{P}} r$.

- (1) Show: if \mathbb{B} is a boolean algebra, then \mathbb{B}^* is separative.
- (2) Show that a partial order \mathbb{P} is separative if and only if the following statements hold.
 - (a) The embedding $\pi_{\mathbb{P}}$ constructed in part (3) of Problem 20 is injective.
 - (b) $\forall p, q \in \mathbb{P} \ [p \leq_{\mathbb{P}} q \longleftrightarrow \pi_{\mathbb{P}}(p) \subseteq \pi_{\mathbb{P}}(q).$

(3) If \mathbb{P} is a partial order, then there is a surjective complete embedding of \mathbb{P} into a separative partial order (Hint: *Show that*

$$p \approx_{sep} q \iff \forall r \in \mathbb{P} \ [\ p \parallel_{\mathbb{P}} r \iff q \parallel_{\mathbb{P}} r \]$$

defines an equivalence relation on \mathbb{P} . Then define a suitable ordering of the quotient \mathbb{P}/\approx_{sep}).

Please hand in your solutions on Wednesday, May 20, in room 4.004 at 12 pm.