Dr. Philipp Lücke

Problem sheet 4

Problem 15 (4 Points). Prove Lemma 3.2.3. from the lecture course: Assume $\mathbb{Z}F^-$ and let $\varphi(v_0, \ldots, v_{n-1})$ be an \mathcal{L}_{\in} -formula. The following statements are equivalent for every partial order \mathbb{P} , $p \in \mathbb{P}$ and $\tau_0, \ldots, \tau_{n-1} \in \mathbb{V}^{\mathbb{P}}$.

- (1) $p \Vdash_{\mathbb{P}}^* \varphi(\tau_0, \ldots, \tau_{n-1}).$
- (2) $q \Vdash_{\mathbb{P}}^{*} \varphi(\tau_0, \ldots, \tau_{n-1})$ for every $q \in \mathbb{P}$ with $q \leq_{\mathbb{P}} p$.
- (3) The set $\{q \in \mathbb{P} \mid q \Vdash_{\mathbb{P}}^* \varphi(\tau_0, \ldots, \tau_{n-1})\}$ is dense below p in \mathbb{P} .

Problem 16 (9 Points). Prove Lemma 4.1.5. from the lecture course: Assume ZF^- and let $\varphi(v_0, \ldots, v_n)$ be an \mathcal{L}_{\in} -formula, \mathbb{P} be a partial order, $p \in \mathbb{P}$ and $\tau, \tau_0, \ldots, \tau_{n-1} \in V^{\mathbb{P}}$. Prove the following statements.

- (1) $p \Vdash_{\mathbb{P}}^* \forall x \ \varphi(x, \tau_0, \dots, \tau_{n-1})$ if and only if $p \Vdash_{\mathbb{P}}^* \varphi(\sigma, \tau_0, \dots, \tau_{n-1})$ for all $\sigma \in \mathcal{V}^{\mathbb{P}}$.
- (2) $p \Vdash_{\mathbb{P}}^* \exists x \in \tau \ \varphi(x, \tau_0, \dots, \tau_{n-1})$ if and only if the set

 $\{q \in \mathbb{P} \mid \exists (\rho, r) \in \tau \; [q \leq_{\mathbb{P}} r \land q \Vdash_{\mathbb{P}}^{*} \varphi(\rho, \tau_{0}, \dots, \tau_{n-1})]\}$

is dense below p in \mathbb{P} .

(3) $p \Vdash_{\mathbb{P}}^* \forall x \in \tau \ \varphi(x, \tau_0, \dots, \tau_{n-1})$ if and only if $q \Vdash_{\mathbb{P}}^* \varphi(\rho, \tau_0, \dots, \tau_{n-1})$ holds for all $(\rho, r) \in \tau$ and $q \in \mathbb{P}$ with $q \leq_{\mathbb{P}} p, r$.

Problem 17 (6 Points). Let $\operatorname{Fn}(\omega, \omega, \omega)$ denote the partial order consisting of all finite partial functions $p: \omega \xrightarrow{par} \omega$ ordered by reversed inclusion.

- (1) Construct a dense subset D of the Cohen forcing \mathbb{C} and a dense embedding of the partial order (D, \supseteq) into $\operatorname{Fn}(\omega, \omega, \omega)$.
- (2) Let P be a countable atomless partial order with a maximal element 1_P. Prove that there is a dense embedding of Fn(ω, ω, ω) into P (Hint: Use a previous exercise to show that there is an infinite antichain below every condition in P. Fix an enumeration ⟨p_n | n < ω⟩ of P and define a function π by recursion. Set π(Ø) = 1_P. If π(s) is defined for some s : n → ω, then extend π in a way such that {π(s^(m)) | m < ω} is a maximal antichain below π(s) in P. Moreover, if the conditions p_n and π(s) are compatible in P, then ensure that there is an m < ω with π(s^(m)) ≤_P p_n. Show that the resulting function is a dense embedding.).

Problem 18 (5 Points). Let M be a transitive model of ZFC and $\mathbb{P}, \mathbb{Q} \in M$ be partial orders.

- (1) Assume that there is a dense embedding $\pi : \mathbb{Q} \longrightarrow \mathbb{P}$ contained in M. Show that every \mathbb{P} -generic extension of M is also a \mathbb{Q} -generic extension of M and vice versa (*Hint: Use Problem 13 and the minimality of generic extensions*).
- (2) Assume that \mathbb{P} is atomless and countable in M. Show that every \mathbb{P} -generic extension of M is also a \mathbb{C} -generic extension of M and vice versa.

Please hand in your solutions on Wednesday, May 13, before the lecture.