Dr. Philipp Lücke	Problem sheet 2
-------------------	-----------------

Problem 6 (5 Points). Prove Proposition 2.2.1. from the lecture course: There is a Δ^{ZF^-} -formula $\varphi(v_0, v_1)$ such that the axioms of ZF^- – (Infinity) prove that the relation $\prec_{\omega} = \{(a, b) \mid \varphi(a, b)\}$ is a well-ordering of V_{ω} of order-type ω .

Problem 7 (4 Points). Prove Proposition 2.2.2. from the lecture course: Given $a_0, a_1 \in {}^{<\omega}$ Ord, we define

$$a_0 \prec^* a_1 \iff \max(\operatorname{ran}(a_0)) < \max(\operatorname{ran}(a_1))$$
$$\lor (\max(\operatorname{ran}(a_0)) = \max(\operatorname{ran}(a_1)) \land \operatorname{dom}(a_0) < \operatorname{dom}(a_1))$$
$$\lor (\max(\operatorname{ran}(a_0)) = \max(\operatorname{ran}(a_1)) \land \operatorname{dom}(a_0) = \operatorname{dom}(a_1)$$
$$\land \exists n \in \operatorname{dom}(a_0) \ [a_0 \upharpoonright n = a_1 \upharpoonright n \land a_0(n) < a_1(n)]).$$

Then the relation \prec^* well-orders the class ${}^{<\omega}$ Ord.

Problem 8 (*Richard's paradox: The undefinability of definability*, 6 Points). Show that there is no \mathcal{L}_{\in} -formula $\varphi(v_0, v_1)$ with

$$\text{ZFC} \vdash \forall k \in \text{Fml } \forall x, y \ [(\varphi(k, x) \land \varphi(k, y)) \longrightarrow x = y]$$

and

$$\mathrm{ZFC}\ \vdash\ \exists x\ \forall y\ [\psi(y)\ \leftrightarrow\ x=y]\ \longrightarrow\ \forall y\ [\varphi(\ulcorner\psi\urcorner,y)\ \leftrightarrow\ \psi(y)]$$

for every \mathcal{L}_{\in} -formula $\psi(v)$ (Hint: Show that there is an ordinal α with $\neg \varphi(k, \alpha)$ for all $k \in \text{Fml}$ and consider the least ordinal with this property).

Problem 9 (5 Points). Let $\varphi(v_0, v_1)$ be an \mathcal{L}_{\in} -formula. Assume that ZF holds and the class $\{(a, b) \mid \varphi(a, b)\}$ is a well-ordering of V.

- (1) Construct an \mathcal{L}_{\in} -formula $\psi(v_0, v_1)$ such that the class $\{(a, b) \mid \psi(a, b)\}$ is a well-ordering of V of order-type Ord.
- (2) Show that the statement "V = HOD" holds.

Please hand in your solutions on Wednesday, April 29, before the lecture.