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Vorläufiges Skript zur Vorlesung

Wann sollte die Mathematik je zu einem Anfang

gelangen, wenn sie warten wollte, bis die Philosophie über

unsere Grundbegriffe zur Klarheit und Einmüthigkeit

gekommen ist? Unsere einzige Rettung ist der for-

malistische Standpunkt, undefinirte Begriffe (wie Zahl,

Punkt, Ding, Menge) an die Spitze zu stellen, um deren

actuelle oder psychologische oder anschauliche Bedeu-

tung wir uns nicht kümmern, und ebenso unbewiesene

Sätze (Axiome), deren actuelle Richtigkeit uns nichts

angeht. Aus diesen primitiven Begriffen und Urtheilen

gewinnen wir durch Definition und Deduction andere,

und nur diese Ableitung ist unser Werk und Ziel.

Felix Hausdorff, 12. Januar 1918
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1 Deutsche Einleitung

Durch Einführung von logischen Verknüpfungen (“und”, “oder”, “nicht”) und Quantoren
(“für alle”, “es existiert”) - oder entsprechenden Symbolen ∧,∨,¬,∀,∃ - lassen sich alle math-
ematischen Aussagen in eine streng formale Form bringen. Z.B. werden in der Analysis
Eigenschaften von Funktionen oft in Quantorenschreibweise definiert: ∀ε∃δ
 . Mathem-
atische Beweise können als Folgen von Aussagen aufgefasst werden, die sich durch logische
Schlüsse aus Grundannahmen ergeben. Dabei haben wichtige Schlussweisen einen rein
formalen, kalkülartigen Charakter als schematische Umformungen von Symbolfolgen.

In dem Modul wird die formallogische Begründung der Mathematik anhand von Formu-
lierungen von Aussagen, Theorien und Beweisen, die aus dem ersten Studienjahr bekannt
sind, vorgestellt. Es wird ein vollständiger Beweiskalkül für die Prädikatenlogik (erster
Stufe) angegeben, der dem üblichen mathematischen Schließen nahe steht. Durch die Form-
alisierung werden Aussagen und Beweise selbst zu mathematischen Objekten. Zentrales
Ergebnis ist der Gödelsche Vollständigkeitssatz, der die formale Methode bestätigt: jede
allgemeingültige mathematische Aussage kann im Beweiskalkül abgeleitet werden.

DieMengenlehre ist die allgemein akzeptierte Grundlage der Mathematik. Die Zermelo-
Fraenkelschen Axiome der Mengenlehre lassen sich in der Logik erster Stufe formulieren.
Wir werden sehen, wie sich die üblichen Grundbegriffe der Mathematik wie Zahlen, Rela-
tionen, Funktionen usw. in diesem Axiomensystem entwickeln lassen.

Aus Sicht des reinen Formalismus wird die Frage “Was ist Mathematik?” daher beant-
wortet als:

Mathematik = Prädikatenlogik + Zermelo-Fraenkelsche Axiome.

Diese Sicht ist Grundlagen-theoretisch außerordentlich wichtig, aber sie abstrahiert von
vielen Aspekten der tatsächlichen Mathematik wie der Anschaulichkeit mathematischer
Objekte, den intellektuellen Herausforderungen mathematischer Probleme, der Anwend-
barkeit der Mathematik in Wissenschaft und Technik, ihrer Ästhetik usw. Auch die formale
Mathematik benötigt Kriterien für die Auswahl von interessanten Aussagen und Beweisen,
die nicht im Formalismus selbst begründet sind.

In der Vorlesung und den Übungen wird besonderer Wert auf die Arbeit mit konkreten
Formalisierungen gelegt. Die Vorlesung setzt Grundkenntnisse aus dem 1. Studienjahr
Mathematik voraus.

Die Vorlesung ist ein in sich abgeschlossenes Modul und nicht Bestandteil des turnus-
mäßigen Logik-Mengenlehre-Zyklus. Sie wird evtl. im Wintersemester mit einem Seminar
fortgesetzt.

Vorlesungsinhalte:

• Quantorensprachen

• Strukturen

• Interpretation von Termen und Formeln in Strukturen

• Formale Sprachen und Kalküle

• Beweiskalküle

• Konsistenz und Erfüllbarkeit von Theorien

• Der Gödelsche Vollständigkeitssatz
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• Mengentheoretische Axiome

• Mengentheoretische Grundlegung der Mathematik

• Ordinalzahlen

• Zahlbereiche

• Kardinalzahlen

• Auswahlaxiom und Zornsches Lemma

2 The language of mathematics

Mathematical logic studies the language of mathematics with mathematical methods. So
we first have to get some ideas about that language. We then begin to normalize or regulate
the language, to consist of finite sequences of symbols which are built according to some
simple rules. This will allow to apply mathematics to the language.

We shall use the language of first-order predicate calculus which resembles the quantifier
notations known from calculus: f is continuous iff

∀x∀ε > 0∃δ > 0∀x′ (|x−x′|<δ→|f(x)− f (x ′)|<ε).

We shall demonstrate the move from informal mathematical statements to formal state-
ments with examples from linear algebra.

2.1 Examples: vector spaces

Consider the definitions of a vector space in three standard textbooks.

Albrecht Beutelspacher: Lineare Algebra - Eine Einführung in die Wissenschaft der
Vektoren, Abbildungen und Matrizen

3.1. Die Definition

Jedem Vektorraum liegt ein Körper K zugrunde. Welcher spezielle Körper das ist, wird
meistens keine Rolle spielen; deshalb nennen wir den Körper neutral K. Wir werden die
Elemente von K of auch Skalare nennen.

Die Hauptsache eines Vektorraums sind aber seine Elemente, die Vektoren. Ein Vek-

torraum über dem Körper K (auch K-Vektorraum genannt) besteht aus einer Menge
V von Elementen, die wir Vektoren nennen, die den folgenden Gesetzen genügt:

1. Verknüpfung von Vektoren: Es gibt eine Verknüpfung + auf V , die je zwei
Vektoren v und w einen Vektor v+w zuordnet, so dass für alle u, v, w ∈V die folgenden
Eigenschaften erfüllt sind:
Assoziativität:

u+(v+w)= (u+ v)+w

Existenz des Nullvektors: Es gibt einen Vektor, den wir mit o bezeichnen, mit folgender
Eigenschaft

v+ o= v.

Existenz negativer Vektoren: Zu jedem Vektor v gibt es einen Vektor, den wir −v nennen,
mit

v+(−v)= o.

Kommutativität:

u+ v= v+ u.
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2. Verknüpfung von Skalaren und Vektoren: Für jeden Vektor v ∈ V und jeden
Skalar k ∈ K ist ein Vektor k · v definiert (das Objekt k · v (für das wir auch kurz k v
schreiben) soll also ein Element von V sein). Diese Bildung des skalaren Vielfachen ist so,
dass für alle h, k ∈K und für alle Vektoren v, w ∈V die folgenden Eigenschaften gelten:

(k+h) v = k v+h v,

(k ·h) · v = k · (h · v),

1 · v = v,

k · (v+w) = k · v+ k ·w.

Egbert Brieskorn: Lineare Algebra und analytische Geometrie

Ein Vektorraum über einem Körper K ist eine Menge V zusammen mit zwei Operationen

V ×V� V K ×V� V

(v, w)� v+w (a, v)� a · v

für welche die folgenden Bedingungen erfüllt sind:
(A1) ∀u, v, w ∈V (u+ v) +w=u+(v+w)
(A2) ∃0∈V ∀v ∈V 0+ v= v+0= v

(A3) ∀v ∈V ∃−v ∈V −v+ v= v+ (−v)= 0
(A4) ∀v, w∈ Vv+w=w+ v

(V1) ∀a, b∈K∀v ∈V (a b) · v= a · (b · v)
(V2) ∀v ∈V 1 · v= v

(V3) ∀a, b∈K∀v ∈V (a+ b) · v= a · v+ b · v
(V4) ∀a∈K ∀v, w ∈Va · (v+w)= a · v+ a ·w

Serge Lang: Linear Algebra

A vector space V over the field K is a set of objects which can be
added and multiplied by elements of K, in such a way that the sum of two
elements of V is again an element of V , the product of an element of V by
an element of K is an element of V , and the following properties are satisfied:

S1. Given elements u, v,w of V, we have

(u+ v) +w= u+ (v+w).

S2. There is an element of V, denoted by 0, such that

0+ u= u+0=u

for all elements u of V.
S3. Given an element u of V, there exists an element −u in V such that

u+(−u)= 0.

S4. For all elements u, v of V, we have

u+ v= v+u.

S5. If c is a number, then c (u+ v) = c u+ c v.
S6. If a, b are two numbers, then (a+ b) v= a v+ b v.

S7. If a, b are two numbers, then (a b) v= a (b v).
S8. For all elements u of V, we have 1 · v=u ( 1 here is the number one).
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Notes about (these) mathematical texts:

1. Mathematical texts combine “exact” natural language and symbolic formulas in a
particular style.

2. Like with ordinary natural language there may be many variants of texts which
basically have the same mathematical content. Texts differ by individual “styles”.

3. Superficially and in the general perception mathematical texts are perfectly exact
and complete. This is, however, not true.

4. Texts leave out a lot of implicit assumptions: which addition + and multiplication ·
is used where? Addition in the field, or between vectors? Do all vector spaces share
the same + and · ? Do all vector spaces have the same null vector 0?

5. Notions are incompletely specified: What is a vector space really: a set with oper-
ations?

6. Texts build on assumptions from other or earlier sources or some general expert
knowledge: what is a field?

7. Considering vector spaces one uses notions and propositions from other domains
like sets, operators, ...

8. A strictly formal system like a computer (program) would not be able to handle our
vague definitions of vector spaces. We would obtain dozens of error messages.

To get an idea how a fully complete and exact version of the definition of vector
space could look like, let us consider snippets from the MIZAR system for mathematics
(www.mizar.org). Mizar is a system for writing and proof checking fully formalized math-
ematics (“formal mathematics”); it contains vast amounts of basic mathematical material.

::

:: 8. VECTOR SPACE STRUCTURE

::

definition let F be 1-sorted;

struct(LoopStr) VectSpStr over F (#

carrier -> set,

add -> BinOp of the carrier,

Zero -> Element of the carrier,

lmult -> Function of [:the carrier of F,the carrier:],

the carrier #)

;

definition let F be add-associative right_zeroed right_complementable

Abelian associative left_unital distributive (non empty doubleLoopStr

);

mode VectSp of F is VectSp-like

add-associative right_zeroed right_complementable Abelian

(non empty VectSpStr over F);

end;

definition let F be non empty doubleLoopStr;

let IT be non empty VectSpStr over F;

attr IT is VectSp-like means
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:: VECTSP_1:def 26

for x,y being Element of F

for v,w being Element of IT holds

x*(v+w) = x*v+x*w &

(x+y)*v = x*v+y*v &

(x*y)*v = x*(y*v) &

(1_F)*v = v;

end;

Notes on formal mathematics in MIZAR:

1. Notions have to be specified in detail; the zero of F is to be distinguished from the
zero vector: (0_F)

2. Types of notions have to be specified. Like in a computer program the type of the
scalar multiplication has to be introduced as
lmult -> Function of [:the carrier of F,the carrier:], the carrier #

3. Most formal mathematics systems use idiosyncrasies like in programming languages:
ASCII letters instead of common mathematical symbols; line endings with „ ; “; ...

4. There are many formal mathematics system, differing in their aims and in the
language accepted.

3 Tranforming natural mathematical language into
formalized language

We saw that the mathematical language used in textbook, lectures, and exams is informal .
This informality is akin to the general informality of natural language. Natural language
is usually incomplete and often inconsistent. But it allows to express facts and arguments
briefly, geared towards human understanding. Natural language transports important nat-
ural intuitions. The common mathematical language is the main tool for mathematical
thought, writing, and communication. Like in other fields, there are (informal) criteria
when a text is accepted as sufficiently complete, exact, or even beautiful. These criteria
are the result of mathematical history, culture, and education. As a mathematician you
are required to acquire them and to adhere to them.

For the mathematical analysis of mathematical language, however, we shall move from
informal mathematical language to formal language. Before we strictly define the formal
language we shall demonstrate some normalizations and formalizations with the example
of the definition of vector spaces.

3.1 Structures

In all the definitions above, F -vector spaces V are sets V with “extra operations“. This is
captured by the notion of a structure (V ,
 ) where V is the (non-empty) underlying set ,
and the extra components of the structure are explicitly listed. So an F -vector space is a
structure (V ,+V , ·V , 0V ) where

− +V is the addition of vectors from V : +V :V ×V →V ;

− ·V is the scalar multiplication: ·V :F ×V →V ;

− 0V is the zero-vector: 0V ∈ V .

Tranforming natural mathematical language into formalized language 7



Of course the field F has to be treated similarly: a field F is a structure of the form
(F ,+F , ·F , 0F , 1F) where

− +F is the field addition: +F :F ×F→F ;

− ·F is the field multiplication: ·F :F ×F→F ;

− 0F is additive neutral element of the field: 0F ∈F ;

− 1F is multiplicative neutral element of the field: 1F ∈F .

Now we can say exactly, which operations and constants are used in the axioms. The
axioms of Serge Lang can now be written more exactly:

A structure (V ,+V , ·V , 0V ) is a vector space over a field (F ,+F , ·F , 0F , 1F), where
the following properties are satisfied:

1. Given elements u, v,w ∈V , we have

(u+V v) +Vw=u+V (v+Vw).

2. For all elements u∈V

0V +Vu=u+V 0V =u.

3. Given an element u∈V there exists an element −u∈V such that

u+V (−u)= 0V .

4. For all elements u, v ∈V , we have

u+V v= v+Vu.

5. For all c∈F and all u, v ∈V , then

c ·V (u+V v)= c ·Vu+V c ·V v .

6. For all a, b∈F and all v ∈V , then

(a+F b) ·V v= a ·V v+V b ·V v.

7. For all a, b∈F and all v ∈V , then

(a ·F b) ·V v= a ·V (b ·V v).

8. For all u∈V , we have

1 ·Vu=u.

This notation still has some problems:

1. To denote the order of operations, one uses brackets, but then some brackets are
omitted according to the convention that multiplications of some kind have priority
over addition of some kind. This has to be strictly regulated in a formal language.

2. The status of the −u is unclear: is − another operation, or is −u just a variable like
v or v ′ ?

3. There are natural language variants which do not seem essential for the definition:
sometimes “then” is used, and sometimes “we have”.

3.2 Quantifiers

A lot of mathematics is of the “for all ... there exists ...” kind. The phrases “for all” and “there
exists” are quantifying phrases. Language variants like “Given an ...” instead of “for all” are
also common. These are often denoted by quantifiers ∀ and ∃ as in the Brieskorn.
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Then the vector axioms become:

1. ∀u, v,w ∈V (u+V v) +Vw=u+V (v+Vw)

2. ∀u∈V 0V +V u= u+V 0V =u

3. ∀u∈V ∃v ∈Vu+V v=0V

4. ∀u, v∈ Vu+V v= v+V u

5. ∀c∈F ∀u, v∈ Vc ·V (u+V v)= c ·Vu+V c ·V v

6. ∀a, b∈F ∀v ∈V (a+F b) ·V v= a ·V v+V b ·V v

7. ∀a, b∈F ∀v ∈V (a ·F b) ·V v= a ·V (b ·V v)

8. ∀u∈V 1 ·Vu=u

These axioms still involve set theory in the form of the ∈-relation. For various reasons this
should be pushed into the background. There are two “sorts” of quantiers, namely the ∈V -
quantifiers and the ∈F -quantifiers. These appear less set-theoretical when we write ∀Vu
instead of ∀u∈V :

1. ∀Vu, v, w(u+V v)+Vw=u+V (v+Vw)

2. ∀Vu.0V +Vu=u+V 0V = u

3. ∀Vu∃Vv.u+V v=0V

4. ∀Vu, v .u+V v= v+Vu

5. ∀Fc∀Vu, v.c ·V (u+V v) = c ·Vu+V c ·V v

6. ∀Fa, b∀Vv (a+F b) ·V v= a ·V v+V b ·V v

7. ∀Fa, b∀Vv(a ·F b) ·V v= a ·V (b ·V v)

8. ∀Vu.1 ·V u= u

3.3 Sorts

So far these axioms make use of two sorts of objects. An F -vector space V can be viewed
as a two-sorted structure

(V , F ,
 ).

Our later logical analysis, however, will be easier if we can restrict to situations with one
sort. This is also possible with vector spaces V over the field F , when we take V ∪F as a
new underlying set. Such a vector space is a structure of the form

(V ∪F ,RV , RF ,+V , ·V , 0V ,+F , ·F , 0F , 1F)

where RV and RF are relations in one argument, that determine the subsets V and F of
the underlying set V ∪F :

RV (u) is true iff u∈V , RF (u) is true iff u∈F

the vector axioms now read:

1. ∀u, v,w((RV (u)∧RV (v)∧RV (w))→ (u+V v)+Vw=u+V (v+Vw))

2. ∀u (RV (u)→ 0V +Vu=u+V 0V =u)

3. ∀u(RV (u)→∃v(RV (v)∧u+V v=0V ))

4. ∀u, v ((RV (u)∧RV (v))→u+V v= v+Vu)

Tranforming natural mathematical language into formalized language 9



5. ∀c(RF(c)→∀u, v((RV (u)∧RV (v))→ c ·V (u+V v) = c ·Vu+V c ·V v))

6. ∀a, b( (RF (a)∧RF(b))→∀v(RV (v)→ (a+F b) ·V v= a ·V v+V b ·V v))

7. ∀a, b( (RF (a)∧RF(b))→∀v(RV (v)→ (a ·F b) ·V v= a ·V (b ·V v)))

8. ∀u(RV (u)→ 1 ·Vu=u)

Here we have also used the logical operators → (implies) and ∧ (and), replacing ∀Vu
 by
∀u(RV (u)→
 ) and ∃Vu
 by ∃u(RV (u)∧
 ).

3.4 Conclusion

After this example it appears conceivable to build an adequate mathematical language on
the basis of symbols for

− variables, like a, b, u, v,


− relations, like RV ,


− operations, like +F ,+V ,


− constants, like 0F , 1F , 0V ,


− propositional connectives, like ∧ ,→

− quantifiers, like ∀,∃

Exercise 1. Consider the structure (R,+, ·, 0, 1, <, f , g) where f and g are functions from R to R.
Carry out formalizations similar to the above example for the following properties of f and g :

a) f is everywhere positive;

b) f is strictly monotoneously growing;

c) f is continuous;

d) f is uniformly continuous;

e) z is differentiable at x;

f) z is the derivative of f at x;

g) g is the derivative of f .

Exercise 2. Consider a two-sorted structure (F ,R,+, ·,0,1,<) where F is some collection of functions
from R to R . Formalize:

a) every function is continuous;

b) the sum of two continuous functions is continuous;

c) every positive function is the square of some positive function.

4 The Syntax of first-order logic: Symbols, terms, and
formulas

The art of free society consists first
in the maintenance of the symbolic
code.

A. N. Whitehead

Formal mathematical statements will be finite sequences of symbols, like ordinary sen-
tences are sequences of alphabetic letters. These sequences can be studied mathematically.
We shall treat the sequences as mathematical objects, similar to numbers or vectors. This
study will be carried out in the usual, informal mathematical language:
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We shall use the common, informal mathematical language to express prop-
erties of a formal mathematical language.

This is not a contradiction in itself, but the natural state of affairs in foundational
studies. Language is analysed within language. Physical experiments are carried out with
apparatus build from physical material, following physical laws itself.

The study of the formal properties of symbols, words, sentence,... is called syntax .
Syntax will later be related to the “meaning” of symbolic material, its semantics. The
interplay between syntax and semantics is at the core of logic. A strong logic is able to
present interesting semantic properties, i.e., properties of interesting mathematical struc-
ture, already in its syntax.

We build the formal language from atomic building blocks.

4.1 Symbols

A symbol has some basic information about its role within larger contexts like words and
sentences. E.g., the symbol 6 is usually used to stand for a binary relation. So we let
symbols include information on its function, like “relation”, together with further details,
like “binary”. We provide us with a sufficient collection of symbols.

Definition 1. The basic symbols of first-order logic are

a) ≡ for equality,

b) ¬,→,⊥ for the logical operations of negation, implication and the truth value false,

c) ∀ for universal quantification,

d) ( and ) for auxiliary bracketing.

e) variables vn for n∈N.

Let Var= {vn|n∈N} be the set of variables and let S0 be the set of basic symbols.

An n-ary relation symbol, for n∈N, is (a set) of the form R=(x,0,n); here 0 indicates
that the values of a relation will be truth values. 0-ary relation symbols are also called
propositional constant symbols.

An n-ary function symbol, for n ∈ N, is (a set) of the form f = (x, 1, n) where 1
indicates that the values of a function will be elements of a structure.

0-ary function symbols are also called constant symbols.
A symbol set or a language is a set of relation symbols and function symbols.

We assume that the basic symbols are pairwise distinct and are distinct from any relation
or function symbol. For concreteness one could for example set ≡=0, ¬=1, →=2, ⊥=3,
(=4, )= 5, and vn= (1, n) for n∈N.

An n-ary relation symbol is intended to denote an n-ary relation; an n-ary function
symbol is intended to denote an n-ary function in some structure. A symbol set is some-
times called a type because it describes the type of structures which will later interpret
the symbols. We shall denote variables by letters like x, y, z,
 , relation symbols by P ,Q,
R,
 , functions symbols by f , g,h,
 and constant symbols by c,c0, c1,
 We shall also use
other typographical symbols in line with standard mathematical practice. A symbol like
<, e.g., usually denotes a binary relation, and we could assume for definiteness that there
is some fixed set theoretic formalization of < like <=(999, 0, 2). Instead of the arbitrary
999 one could also take the number of < in some typographical font as they are provided
by mathematical typesetting systems.
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Example 2. The language of group theory is the language

SGr= {◦, e},

where ◦ is a binary (= 2-ary) function symbol and e is a constant symbol. Again one
could be definite about the coding of symbols and set SGr={(80, 1, 2), (87, 1,0)}, e.g., but
we shall not care much about such detail. As usual in algebra, one also uses an extended
language of group theory

SGr′= {◦,−1, e}

to describe groups, where −1 is a unary (= 1-ary) function symbol.

4.2 Words

Words:
A letter and a letter on a string
Will hold forever humanity spell-
bound
The Real Group

Definition 3. Let S be a language. A word over S is a finite sequence

w: {0, 1,
 , n− 1}→S0∪S.

The number n is called the length of w: length(w)=n . The empty set ∅ is also called the
empty word. Let S∗ be the set of all words over S. A word w: {0, 1,
 , n− 1}→S0∪S is
usually written as a string of letters: w(0)w(1)
w(n− 1).

It is convenient to identify the natural number n with its set of predecessors:

n= {0, 1,
 , n− 1}.

This will be justified later in our treatment of set theory. Then

w:n→S0∪S .

Definition 4. If w and w ′ are words over the language S then their concatenation w	 w ′:
length(w) + length(w ′)→S0∪S is defined by

w	 w ′(i)=

{

w(i), if i < length(w)
w ′(i− length(w)), else

We also write ww ′ instead of w	 w ′.

Exercise 3. The operation of concatenation satisfies some canonical laws:

a) 	 is associative: (ww′)w ′′=w(w′w′′).

b) ∅ is a neutral element for 	 : ∅w=w∅=w.

c) 	 has cancelation: if uw=u′w then u=u′; if wu=wu′ then u= u′.

4.3 Terms

Fix a symbol set S for the remainder of this section.

Definition 5. The set TS of all S-terms is the smallest subset of S∗ such that

a) x∈TS for all variables x;
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b) ft0
 tn−1∈ TS for all n-ary function symbols f ∈ S and all t0,
 , tn−1∈TS.

These terms are written in Polish notation, meaning that function symbols come first
and that no brackets are needed. Indeed, terms in TS have unique readings according to
the following

Lemma 6. For every term t∈TS exactly one of the following holds:

a) t is a variable;

b) there is a uniquely defined function symbol f ∈ S and a uniquely defined sequence

t0,
 , tn−1∈TS of terms, where f is n-ary, such that t= ft0
 tn−1 .

Proof. Exercise. �

Remark 7. Unique readability is essential for working with terms. Therefore if this Lemma
would not hold one would have to alter the definition of terms.

Example 8. For the language SGr= {◦, e} of group theory, terms in TSGr look like

e, v0, v1,
 , ◦ee, ◦evm , ◦vm e , ◦ee , ◦e◦ee ,
 , ◦vi ◦vj vk , ◦◦vi vj vk ,
 .

In standard notation we would have ◦vi◦vjvk=(vi◦(vj◦vk)) and ◦◦vi vjvk=((vi◦vj)◦vk).
Later, if the operation ◦ should be seen to be associative, one might “leave out” brackets.

Exercise 4. Show that every term t∈TSGr has odd length 2n+1 where n is the number of ◦-symbols
in t.

4.4 Formulas

Definition 9. The set LS of all S-formulas is the smallest subset of S∗ such that

a) ⊥∈LS (the false formula);

b) t0≡ t1∈LS for all S-terms t0, t1∈TS (equalities);

c) Rt0
 tn−1∈LS for all n-ary relation symbols R∈S and all S-terms t0,
 , tn−1∈TS

(relational formulas);

d) ¬ϕ∈LS for all ϕ∈LS (negations);

e) (ϕ→ ψ)∈LS for all ϕ, ψ ∈LS (implications);

f ) ∀xϕ∈LS for all ϕ∈LS and all variables x (universalisations).

LS is also called the first-order language for the symbol set S. Formulas produced by con-
ditions a) - c) only are called atomic formulas since they constitute the initial steps of the
formula calculus.

We restrict LS to just the logical connectives ¬ and →, and the quantifier ∀. We will
later also use other connectives and quantifiers in convenient abbreviations for formulas
in LS. For theoretical considerations it is however advantageous to work with a “small”
language.

Definition 10. For S-formulas ϕ and ψ and a variable x write

− ⊤ (“true”) instead of ¬⊥ ;
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− (ϕ∨ ψ) (“ϕ or ψ”) instead of (¬ϕ→ ψ) is the disjunction of ϕ, ψ ;

− (ϕ∧ ψ) (“ϕ and ψ”) instead of ¬(ϕ→¬ψ) is the conjunction of ϕ, ψ ;

− (ϕ↔ ψ) (“ϕ iff ψ”) instead of ((ϕ→ ψ)∧ (ψ→ ϕ) )is the equivalence of ϕ, ψ ;

− ∃xϕ (“for all x holds ϕ”) instead of ¬∀x¬ϕ .

For the sake of simplicity one often omits redundant brackets, in particular outer
brackets. So we usually write ϕ∨ ψ instead of (ϕ∨ ψ).

Exercise 5. Formulate and prove the unique readability of formulas in LS.

Exercise 6. Formulate the standard axioms of group theory in LSGr.

5 Semantics

We shall interpret formulas like ∀y∃x y= g(f(x)) in adequate structures . The interaction
between language and structures is usually called semantics. Technically it will consist in
mapping all syntactic material to semantic material centered around structures. We shall
obtain a schema like:

∀ structure A

variable element of A
function symbol function on A
relation symbol relation on A
term element of A
formula truth value
... ...

Fix a symbol set S.

Definition 11. An S-structure is a function A: {∀} ∪S→ V such that

a) A(∀)� ∅; A(∀) is the underlying set of A and is usually denoted by A or |A|;

b) for every n-ary relation symbol R∈S, A(R) is an n-ary relation on A, i.e., a(r)⊆
An;

c) for every n-ary function symbol f ∈ S, A(f) is an n-ary function on A, i.e., a(r):
An→A.

Again we use customary and convenient notations for the components of the structure
A, i.e., the values of A . One often writes RA, fA, or cA instead of A(r), A(f ), or A(c) resp.
In simple cases, one may simply list the components of the structure and write, e.g.,

A=(A,R0
A, R1

A, fA)

or “A has domain A with relations R0
A, R1

A and an operation fA”.
A 0-ary function symbol c is also called a constant symbol, and it is interpreted by a

0-ary function A(c):A0= {0}→A which is defined for the single argument 0 and takes a
single value A(c)(0) in A. It is natural to identify the function A(c) with the constant value
A(c)(0): A(c)∈A .

One often uses the same notation for a structure and its underlying set like in

A=(A,R0
A, R1

A, fA).
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This “overloading” of notation is quite common in mathematics (and in natural language,
“pars pro toto”). Usually a human reader is readily able to detect and “disambiguate”
ambiguities introduced by multiple usage. There are also techniques in computer science
to deal with overloading, e.g., by typing of notions. Another common overloading is given
by a naive identification of syntax and semantics, i.e., by writing

A=(A,R0, R1, f ) instead of A=(A,R0
A, R1

A, fA)

Since we are particularly interested in the interplay of syntax and semantics we shall try
to avoid this kind of overloading.

Example 12. Formalize the ordered field of reals R as follows. Define the language of
ordered fields

SoF= {<,+, ·, 0, 1}.

Then define the structure R: {∀} ∪SoF→ V by

R(∀) = R

R(<) =<R = {(u, v)∈R2 |u<v}

R(+)=+R = {(u, v,w)∈R3 |u+ v=w}

R(·)= ·R = {(u, v,w)∈R3 |u · v=w}

R(0)= 0R = 0∈R

R(1)= 1R = a∈R

This defines the standard structure R= (R, <R,+R, ·R, 0R, 1R).
Observe that the symbols could in principle be interpreted in completely different, even

counterintuitive ways like

R′(∀) = N

R′(<) = {(u, v)∈N2 |u>v}

R′(+) = {(u, v, w)∈N3 |u · v=w}

R′(·) = {(u, v, w)∈N3 |u+ v=w}

R′(0) = 1

R′(1) = 0

Example 13. Define the language of Boolean algebras by

SBA= {∧,∨,−, 0, 1}

where ∧ and ∨ are binary function symbols for “and” and “or”,− is a unary function symbol
for “not”, and 0 and 1 are constant symbols. A Boolean algebra of particular importance
in logic is the algebra B of truth values. Let B= |B|= {0, 1} with 0=B(0) and 1=B(1).
Define the operations and=B(∧), or=B(∨), and not=B(−) by operation tables in analogy
with standard multiplication tables:

and 0 1

0 0 0
1 0 1

,
or 0 1

0 0 1
1 1 1

, and
not
0 1
1 0

.

Note that we use the non-exclusive “or” instead of the exclusive “either - or”.

Exercise 7. Show that every truth-function F : Bn → B can be obtained as a composition of the
functions and and not .
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The notion of structure leads to derived definitions.

Definition 14. Let A be an S-structure and A′ be an S ′-structure. Then A is a reduct
of A′, or A′ is an expansion of A, if S ⊆S ′ and A′ ↾ ({∀} ∪S)=A .

According to this definition, the additive group (R,+,0) of reals is a reduct of the field
(R,+, ·, 0, 1).

Definition 15. Let A,B be S-structures. Then A is a substructure of B, A⊆B, if B

is a pointwise extension of A, i.e.,

a) A= |A| ⊆ |B|;

b) for every n-ary relation symbol R∈S holds RA=RB∩An;

c) for every n-ary function symbol f ∈S holds fA= fB↾An.

Definition 16. Let A,B be S-structures and h: |A| → |B|. Then h is a homomorphism
from A into B, h:A→B, if

a) for every n-ary relation symbol R∈S and for every a0,
 , an−1∈A

RA(a0,
 , an−1) implies RB(h(a0),
 , h(an−1));

b) for every n-ary function symbol f ∈S and for every a0,
 , an−1∈A

fB(h(a0),
 , h(an−1))=h(fA(a0,
 , an−1)).

h is an embedding of A into B, h:A� B, if moreover

a) h is injective;

b) for every n-ary relation symbol R∈S and for every a0,
 , an−1∈A

RA(a0,
 , an−1) iff RB(h(a0),
 , h(an−1)).

If h is also bijective, it is called an isomorphism.

An S-structure interprets the symbols in S. To interpret a formula in a structure, one
also has to interpret the (occuring) variables.

Definition 17. Let S be a symbol set. An S-model is a function

M: {∀} ∪S ∪Var→V

such that M ↾ {∀}∪S is an S-structure and for all n∈N holds M(vn)∈ |M|. M(vn) is the
interpretation or valuation of the variable vn in M.

It will be important to modify a model M at specific variables. For pairwise distinct
variables x0,
 , xr−1 and a0,
 , ar−1∈ |M| define

M
a0
 ar−1

x0
 xr−1
=(M \ {(x0,A(x0)),
 , (xr−1,A(xr−1))})∪{(x0, a0),
 , (xr−1, ar−1)}.

6 The satisfaction relation

We now define the semantics of the first-order language by interpreting terms and formulas
in models.
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Definition 18. Let M be an S-model. Define the interpretation M(t) ∈ |M| of a term
t∈ TS by recursion on the term calculus:

a) for t a variable, M(t) is already defined;

b) for an n-ary function symbol and terms t0,
 , tn−1∈TS, let

M(ft0
 .tn−1) = fA(M(t0),
 ,M(tn−1)).

This explains the interpretation of a term like v3
2+ v200

3 in the reals.

Definition 19. Let M be an S-model. Define the interpretation M(ϕ)∈B of a formula
ϕ∈LS, where B={0,1} is the Boolean algebra of truth values, by recursion on the formula
calculus:

a) M(⊥)= 0 ;

b) for terms t0, t1∈TS: M(t0≡ t1) = 1 iff M(t0)=M(t1);

c) for every n-ary relation symbol R∈S and terms t0,
 , t1∈TS

M(Rt0
 tn−1) = 1 iff RM(M(t0),
 ,M(tn−1));

d) M(¬ϕ)= 1 iff M(ϕ) = 0 ;

e) M(ϕ→ ψ)= 1 iff M(ϕ)= 1 implies M(ψ)= 1;

f ) M(∀vnϕ) = 1 iff for all a∈ |M| holds M
a

vn
(ϕ) = 1.

We write M� ϕ instead of M(ϕ) = 1. We also say that M satisfies ϕ or that ϕ holds in
M. For Φ⊆LS write M�Φ iff M� ϕ for every ϕ∈Φ.

Definition 20. Let S be a language and Φ⊆LS. Φ is universally valid if Φ holds in every
S-model. Φ is satisfiable if there is an S-model M such that M�Φ.

The language extension by the (abbreviating) symbols ∨,∧,↔,∃ is consistent with the
expected meanings of the additional symbols:

Exercise 8. Prove:

a) M�(ϕ∨ ψ) iff M�ϕ or M� ψ;

b) M � (ϕ∨ ψ) iff M� ϕ and M� ψ;

c) M�(ϕ↔ ψ) iff M�ϕ is equivalent to M � ψ;

d) M � ∃vnϕ iff there exists a∈ |M| such that M a

v
n

� ϕ.

With the notion of � we can now formally define what it means for a structure to be
a group or for a function to be differentiable. Before considering examples we make some
auxiliary definitions and simplifications.

It is intuitively obvious that the interpretation of a term only depends on the occuring
variables, and that satisfaction for a formula only depends on its free, non-bound variables.

Definition 21. For t∈TS define var(t)⊆{vn|n∈N} by recursion on the term calculus:

− var(x)= {x};

− var(c)= ∅;

− var(ft0
 tn−1) =
⋃

i<n var(ti).

Definition 22. Für ϕ∈LS define the set of free variables free(ϕ)⊆{vn|n∈N} by recursion
on the formula calculus:

− free(t0≡ t1) = var(t0)∪ var(t1);
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− free(Rt0
 tn−1)= var( t0)∪
 ∪ var(tn−1);

− free(¬ϕ)= free(ϕ);

− free(ϕ→ ψ) = free(ϕ)∪ free(ψ).

− free(∀xϕ) = free(ϕ) \ {x}.

For Φ⊆LS define the set free(Φ) of free variables as

free(Φ)=
⋃

ϕ∈Φ

free(ϕ) .

Example 23.

free(Ryx→∀y¬y= z) = free(Ryx)∪ free(∀y¬y= z)

= free(Ryx)∪ (free(¬y= z) \ {y})

= free(Ryx)∪ (free( y= z) \ {y})

= {y, x} ∪ ({y, z} \ {y})

= {y, x} ∪ {z}

= {x, y, z}.

Definition 24.

a) For n∈N let Ln
S= {ϕ∈LS | free(ϕ)⊆{v0,
 , vn−1}}.

b) ϕ∈LS is an S-sentence if free(ϕ)= ∅; L0
S is the set of S-sentences.

Theorem 25. Let t be an S-term and let M and M ′ be S-models with the same structure
M ↾ {∀}∪S=M′ ↾ {∀} ∪S and M ↾ var(t) =M′ ↾ var(t). Then M(t)=M′(t).

Theorem 26. Let t be an S-term and let M and M
′ be S-models with the same structure

M ↾ {∀}∪S=M
′ ↾ {∀} ∪S and M ↾ free(ϕ)=M

′ ↾ free(ϕ). Then

M� ϕ iff M ′� ϕ.

Proof. By induction on the formula calculus.
ϕ= t0≡ t1: Then var(t0)∪ var(t1) = free(ϕ) and

M� ϕ iff M(t0) =M(t1)

iff M ′(t0) =M′(t1) by the previous Theorem,

iff M ′� ϕ.

ϕ= ψ→ χ and assume the claim to be true for ψ and χ. Then

M� ϕ iff M� ψ implies M� χ

iff M
′ � ψ implies M′ � χ by the inductive assumption,

iff M′ � ϕ.

ϕ= ∀vnψ and assume the claim to be true for ψ. Then free(ψ)⊆ free(ϕ) ∪ {vn}. For all
a∈A= |M|: M a

vn
↾ free(ψ)=M ′ a

vn
↾ free(ψ) and so

M� ϕ iff for all a∈A holds M
a

vn
� ψ

iff for all a∈A holds M′ a

vn
� ψ by the inductive assumption,

iff M′� ϕ.

�
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This allows further simplifications in notations for �:

Definition 27. Let A be an S-structure and let (a0, 
 , an−1) be a sequence of elements
of A. Let t be an S-term with var(t)⊆{v0,
 , vn−1}. Then define

tA[a0,
 , an−1] =M(t),

where M⊇A is an S-model with M(v0)= a0 ,
 ,M(vn−1)= an−1.
Let ϕ be an S-formula with free(ϕ)⊆{v0,
 , vn−1}. Then define

A� ϕ[a0,
 , an−1] iff M� ϕ,

where M⊇A is an S-model with M(v0)= a0 ,
 ,M(vn−1)= an−1 .

In case n=0 also write tA instead of tA[a0,
 , an−1], and A� ϕ instead of A� ϕ[a0,
 ,
an−1]. In the latter case we also say: A is a model of ϕ, A satisfies ϕ or ϕ is true in A.

For Φ⊆L0
S a set of sentences also write

A�Φ iff for all ϕ∈Φ holds :A� ϕ.

Example 28. Groups . SGr:={◦, e} with a binary function symbol◦ and a constant symbol
e is the language of groups theory . The group axioms are

a) ∀v0∀v1∀v2 ◦v0 ◦ v1v2≡◦◦v0v1v2 ;

b) ∀v0 ◦v0 e≡ v0 ;

c) ∀v0∃v1 ◦v0v1≡ e .

This defines the axiom set

ΦGr= {∀v0∀v1∀v2 ◦v0 ◦ v1v2≡◦◦v0v1v2, ∀v0 ◦v0 e≡ v0, ∀v0∃v1 ◦v0v1≡ e}.

An S-structure G=(G, ∗, k) satisfies ΦGr iff it is a group in the ordinary sense.

Definition 29. Let S be a language and let Φ⊆L0
S be a set of S-sentences. Then

ModSΦ= {A |A is an S-structure and A�Φ}

is the model class of Φ. In case Φ = {Φ} we also write ModSϕ instead of ModSΦ. We

also say that Φ is an axiom system for ModSΦ, or that Φ axiomatizes the class ModSΦ .

Thus ModSGrΦGr is the model class of all groups. Model classes are studied in generality
within model theory which is a branch of mathematical logic. For specific axiom systems
Φ the model class ModSΦ is examined in subfields of mathematics: group theory, ring
theory, graph theory, etc. Some typical questions questions are: is ModSΦ � ∅, i.e., is Φ
satisfiable? What are the cardinalities of models?

Exercise 9. One may consider ModSΦ with appropriate morphisms as a category. In certain cases
this category has closure properties like closure under products. One can give the categorial definition
of cartesian product and show their existence under certain assumptions on Φ .

7 Logical implication and propositional connectives

Definition 30. For a symbol set S and Φ⊆LS and ϕ∈LS define that Φ (logically) implies
ϕ (Φ� ϕ) iff every S-model I�Φ is also a model of ϕ.
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Note that logical implication � is a relation between syntactical entities which is defined
via the semantic notion of interpretation. The relation Φ� ? can be viewed as the central
relation in modern axiomatic mathematics: given the assumptions Φ what do they imply?
The � -relation is usually verified by mathematical proofs . These proofs seem to refer to
the exploration of some domain of mathematical objects and, in practice, require particular
mathematical skills and ingenuity.

We will however show that the logical implication � satisfies certain simple syntactical
laws. These laws correspond to ordinary proof methods a a purely formal. Amazingly a
finite list of methods will (in principle) suffice for all mathematical proofs: this is Gödel’s
completeness theorem that we shall prove later.

Theorem 31. Let S be a symbol set, t∈TS, ϕ, ψ ∈LS, and Γ,Φ⊆LS. Then

a) (Monotonicity) If Γ⊆Φ and Γ � ϕ then Φ� ϕ.

b) (Assumption property) If ϕ∈ Γ then Γ � ϕ.

c) (→-Introduction) If Γ∪ ϕ� ψ then Γ� ϕ→ ψ.

d) (→-Elimination) If Γ� ϕ and Γ � ϕ→ ψ then Γ� ψ.

e) (⊥-Introduction) If Γ� ϕ and Γ�¬ϕ then Γ�⊥ .

f ) (⊥-Elimination) If Γ∪{¬ϕ}�⊥ then Γ� ϕ.

g) (≡-Introduction) Γ� t≡ t .

Proof. f) Assume Γ∪{¬ϕ}�⊥ . Consider an S-model with M�Γ. Assume that M2 ϕ.
Then M � ¬ϕ . M � Γ ∪ {¬ϕ}, and by assumption, M �⊥ . But by the definition of the
satisfaction relation, this is false. Thus M� ϕ . Thus Γ� ϕ . �

Exercise 10. There are similar rules for the introduction and elimination of junctors like ∧ and ∨
that we have introduced as abbreviations:

a) (∧-Introduction) If Γ� ϕ and Γ� ψ then Γ� ϕ∧ψ.

b) (∧-Elimination) If Γ� ϕ∧ ψ then Γ� ϕ and Γ� ψ.

c) (∨-Introduction) If Γ� ϕ then Γ� ϕ∨ ψ and Γ� ψ ∨ ϕ.

d) (∨-Elimination) If Γ� ϕ∨ ψ and Γ⊢¬ϕ then Γ� ψ.

8 Substitution and term rules

To prove further rules for equality and quantification, we first have to consider the substi-
tution of terms in formulas.

Definition 32. For a term s∈TS, pairwise distinct variables x0,
 , xr−1 and terms t0,
 ,
tr−1∈TS define the (simultaneous) substitution

s
t0
 .tr−1

x0
 xr−1

of t0,
 , tr−1 for x0,
 , xr−1 by recursion:

a) x t0
 .tr−1

x0
xr−1
=

{

x, if x� x0,
 , x� xr−1

ti , if x=xi
for all variables x;

b) (fs0
 sn−1)
t0
 .tr−1

x0
 xr−1
= fs0

t0
 .tr−1

x0
 xr−1

 sn−1

t0
 .tr−1

x0
 xr−1
for all n-ary function symbols

f ∈S .
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Note that the simultaneous substitution

s
t0
 .tr−1

x0
 xr−1

is in general different from a succesive substitution

s
t0
x0

t1
x1



tr−1

xr−1

which depends on the order of substitution. E.g., x yx

xy
= y, x y

x

x

y
= y

x

y
= x and

x
x

y

y

x
=x

y

x
= y.

Definition 33. For a formula ϕ ∈ LS, pairwise distinct variables x0, 
 , xr−1 and terms
t0,
 , tr−1∈TS define the (simultaneous) substitution

ϕ
t0
 .tr−1

x0
 xr−1

of t0,
 , tr−1 for x0,
 , xr−1 by recursion:

a) (s0≡ s1)
t0
 .tr−1

x0
 xr−1
=s0

t0
 .tr−1

x0
 xr−1
≡ s1

t0
 .tr−1

x0
 xr−1
for all terms s0, s1∈TS;

b) (Rs0
 sn−1)
t0
 .tr−1

x0
xr−1
=Rs0

t0
 .tr−1

x0
xr−1

 sn−1

t0
 .tr−1

x0
 xr−1
for all n-ary relation symbols

R∈ s and terms s0,
 , sn−1∈TS;

c) (¬ϕ)
t0
 .tr−1

x0
 xr−1
=¬(ϕ

t0
 .tr−1

x0
 xr−1
);

d) (ϕ→ ψ)
t0
 .tr−1

x0
xr−1
= (ϕ

t0
 .tr−1

x0
 xr−1
→ψ

t0
 .tr−1

x0
xr−1
);

e) for (∀xϕ)
t0
 .tr−1

x0
xr−1
we proceed in two steps: let xi0, 
 , xis−1

with i0 < 
 < is−1 be

exactly those xi which are “relevant” for the substitution, i.e., xi ∈ free(∀xϕ) and
xi� ti .

− if x does not occur in ti0,
 ., tis−1
, then set

(∀xϕ)
t0
 .tr−1

x0
 xr−1
= ∀x (ϕ

ti0
 .tis−1

xi0
xis−1

).

− if x does occur in ti0,
 ., tis−1
, then let k ∈N minimal such that vk does not

occur in ϕ, ti0,
 ., tis−1
and set

(∀xϕ)
t0
 .tr−1

x0
xr−1
=∀vk (ϕ

ti0
 .tis−1
vk

xi0
 xis−1
x
).

The following substitution theorem shows that syntactic substitution corresponds
semantically to a (simultaneous) modification of assignments by interpreted terms.

Theorem 34. Consider an S-model M, pairwise distinct variables x0,
 , xr−1 and terms
t0,
 , tr−1∈TS.

a) If s∈T S is a term,

M(s
t0
 tr−1

x0
 xr−1
)=M

M(t0)
M(tr−1)
x0
xr−1

(s).

b) If ϕ∈LS is a formula,
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M� ϕ
t0
 tr−1

x0
xr−1
iff M

M(t0)
M(tr−1)
x0
 xr−1

� ϕ.

Proof. By induction on the complexities of s and ϕ.
a) Case 1 : s= x.
Case 1.1 : x � {x0,
 , xr−1}. Then

M(x
t0
 tr−1

x0
 xr−1
)=M(x) =M

M(t0)
M(tr−1)

x0
 xr−1
(x).

Case 1.2 : x=xi . Then

M(x
t0
 tr−1

x0
 xr−1
)=M(ti)=M

M(t0)
M(tr−1)
x0
xr−1

(xi) =M
M(t0)
M(tr−1)

x0
 xr−1
(x).

Case 2 : s = fs0
 sn−1 where f ∈ S is an n-ary function symbol and the terms s0, 
 ,
sn−1∈ TS satisfy the theorem. Then

M((fs0
 sn−1)
t0
 tr−1

x0
xr−1
) = M(fs0

t0
 tr−1

x0
 xr−1

 sn−1

t0
 tr−1

x0
 xr−1
)

= M(f)(M(s0
t0
 tr−1

x0
 xr−1
),
 ,M(sn−1

t0
 tr−1

x0
 xr−1
))

= M(f)(M
M(t0)
M(tr−1)

x0
 xr−1
(s0),


 ,M
M(t0)
M(tr−1)

x0
 xr−1
(sn−1))

= M
M(t0)
 .M(tr−1)

x0
 xr−1
(fs0
 sn−1).

Assuming that the substitution theorem is proved for terms, we prove
b) Case 4 : ϕ=Rs0
 sn−1 . Then

M� (Rs0
 sn−1)
t0
 .tr−1

x0
 xr−1
iff M�Rs0

t0
 .tr−1

x0
xr−1

 sn−1

t0
 .tr−1

x0
 xr−1

iff RM

(

M(s0
t0
 .tr−1

x0
 xr−1
),
 ,M(s1

t0
 .tr−1

x0
 xr−1
)

)

iff RM

(

M
M(t0)
 .M(tr−1)

x0
 xr−1
(s0),


 ,M
M(t0)
 .M(tr−1)

x0
 xr−1
(sn−1)

)

iff M
M(t0)
 .M(tr−1)

x0
xr−1
�Rs0
 sn−1

Equations s0≡ s1 can be treated as a special case of the relational Case 4 . Propositional
combinations of formulas by ⊥ , ¬ and → behave similar to terms; indeed formulas can be
viewed as terms whose values are truth values. So we are left with universal quantification:
Case 5 : ϕ=(∀xψ)

t0
 .tr−1

x0
xr−1
, assuming that the theorem holds for ψ.

We proceed according to our definition of syntactic substitution. Let xi0,
 , xis−1
with

i0<
 < is−1 be exactly those xi such that xi∈ free(∀xψ) and xi� ti . Since

M
M(t0)
M(tr−1)

x0
 xr−1
� ϕ iff M

M(ti0)
M(tis−1
)

xi0
 xis−1

� ϕ,
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we can assume that (x0,
 , xr−1)= (xi0,
 , xis−1
), i.e., every xi is free in ∀xψ, xi� x, and

xi� ti . Now follow the two cases in the definition of the substitution:

Case 5.1 : The variable x does not occur in t0,
 ., tr−1 and

(∀xψ)
t0
 .tr−1

x0
 xr−1
= ∀x (ψ

t0
 .tr−1

x0
 xr−1
).

M� (∀xψ)
t0
 tr−1

x0
 xr−1
iff M� ∀x (ψ

t0
 tr−1

x0
 xr−1
)

iff for all a∈M holds M
a

x
� ψ

t0
 tr−1

x0
xr−1

(definition of �)

iff for all a∈M holds

(M
a

x
)
M

a

x
(t0)
M

a

x
(tr−1)

x0
 xr−1
� ψ

(by the inductive hypothesis for ψ)

iff for all a∈M holds

(M
a

x
)
M(t0)
M(tr−1)

x0
 xr−1
� ψ

(since x does not occur in ti)

iff for all a∈M holds

M
M(t0)
M(tr−1) a

x0
xr−1x
� ψ

(since x does not occur in x0,
 , xr−1)

iff for all a∈M holds

(M
M(t0)
M(tr−1)

x0
 xr−1
)
a

x
� ψ

(by simple properties of assignments)

iff M
M(t0)
M(tr−1)

x0
 xr−1
�∀xψ

Case 5.2 : The variable x occurs in t0,
 ., tr−1 . Then

(∀xψ)
t0
 .tr−1

x0
 xr−1
= ∀vk (ψ

ti0
 .tis−1
vk

xi0
 xis−1
x
),

where k ∈N is minimal such that vk does not occur in ϕ, ti0,
 ., tis−1
.

M� (∀xψ)
t0
 tr−1

x0
 xr−1
iff M�∀vk (ψ

t0
 .tr−1vk
x0
 xr−1x

)

iff for all a∈M holds M
a

vk
� ψ

t0
 tr−1vk
x0
xr−1x

iff for all a∈M holds

(M
a

vk
)
M

a

vk
(t0)
M

a

vk
(tr−1)M

a

vk
(vk)

x0
 xr−1x
� ψ

(inductive hypothesis for ψ)

iff for all a∈M holds

(M
a

x
)
M(t0)
M(tr−1)a

x0
xr−1x
� ψ

(since vk does not occur in ti)

iff for all a∈M holds
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M
M(t0)
M(tr−1) a

x0
 xr−1 x
� ψ

(since x is anyway sent to a)

iff for all a∈M holds

(M
M(t0)
M(tr−1)

x0
xr−1
)
a

x
� ψ

(by simple properties of assignments)

iff M
M(t0)
M(tr−1)

x0
 xr−1
� ∀xψ

�

We can now formulate properties of the � relation in connection with the treatment of
variables.

Theorem 35. Let S be a language. Let x, y be variables, t, t′∈ T S, ϕ ∈LS, and Γ⊆ LS.
Then:

a) (∀-Introduction) If Γ� ϕ
y

x
and y � free(Γ∪{∀xϕ}) then Γ� ∀xϕ .

b) (∀-elimination) If Γ� ∀xϕ then Γ � ϕ
t

x
.

c) (≡-Elimination or substitution) If Γ� ϕ
t

x
and Γ� t≡ t′ then Γ� ϕ

t′

x
.

Proof. a) Assume Γ� ϕ
y

x
and y � free(Γ∪{∀xϕ}). Consider an S-model M with M�Γ.

Let a∈M = |M|. Since y � free(Γ),Ma

y
�Γ. By assumption, Ma

y
�ϕ

y

x
. By the substitution

theorem,

(M
a

y
)
M

a

y
(y)

x
�ϕ and so (M

a

y
)
a

x
�ϕ

Case 1 : x= y. Then M
a

x
�ϕ.

Case 2 : x� y. Then M
aa

yx
�ϕ, and since y � free(ϕ) we have M

a

x
�ϕ.

Since a∈M is arbitrary, M�∀xϕ. Thus Γ �∀xϕ.
b) Let Γ�∀xϕ . Consider an S-model M with M�Γ. For all a∈M = |M| holds M a

x
�ϕ .

In particular M M(t)

x
�ϕ . By the substitution theorem, M� ϕ

t

x
. Thus Γ� ϕ

t

x
.

c) Let Γ � ϕ
t

x
and Γ� t≡ t′. Consider an S-model M mit M�Γ. By assumption M� ϕ

t

x

and M� t≡ t′. By the substitution theorem

M
M(t)
x

�ϕ.

Since M(t)=M(t′),

M
M(t′)
x

�ϕ

and again by the substitution theorem

M� ϕ
t′

x
.

Thus Γ� ϕ
t′

x
. �

Note that in proving these proof rules we have used corresponding forms of arguments in
the language of our discourse. This “circularity” was noted before and is a general feature in
formalizations of logic. A particularly important method of proof is the ∀-introduction: to
prove a universal statement ∀xϕ it suffices to consider an “arbitrary but fixed” y and prove
the claim for y . Formally this corresponds to using a “new” variable y � free(Γ∪{∀xϕ}).
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9 A sequent calculus

The only way to rectify our
reasonings is to make them as
tangible as those of the Math-
ematicians, so that we can
find our error at a glance, and
when there are disputes among
persons, we can simply say:
Let us calculate [calculemus],
without further ado, to see
who is right. G.W. Leibniz

We can put the rules of implication established in the previous two sections together
as a calculus which leads from correct implications Φ � ϕ to further correct implications
Φ′ � ϕ′. Our sequent calculus will work on finite sequents (ϕ0, 
 , ϕn−1, ϕn) of formulas,
whose intuitive meaning is that {ϕ0, 
 , ϕn−1} implies ϕn . The Gödel completeness
theorem shows that these rules actually generate the implication relation � . Fix a language
S for this section.

Definition 36. A finite sequence (ϕ0,
 , ϕn−1, ϕn) of S-formulas is called a sequent. The
initial segment Γ=(ϕ0,
 , ϕn−1) is the antecedent and ϕn is the succedent of the sequent.
We usually write ϕ0
 ϕn−1ϕn or Γϕn instead of (ϕ0,
 , ϕn−1, ϕn). To emphasize the last
element of the antecedent we may also denote the sequent by Γ′ ϕn−1 ϕn with Γ′=(ϕ0,
 ,

ϕn−2).
A sequent ϕ0
 ϕn−1 ϕ is correct if {ϕ0
 ϕn−1}� ϕ.

Exercise 11. One could also define a sequent to be the concatenation of finitely many formulas

Definition 37. The sequent calculus consists of the following (sequent-)rules:

− monotonicity (MR)
Γ ϕ

Γ ψ ϕ

− assumption (AR)
Γ ϕ ϕ

− →-introduction (→I)
Γ ϕ ψ

Γ ϕ→ ψ

− →-elimination (→E)
Γ ϕ

Γ ϕ→ ψ

Γ ψ

− ⊥-introduction (⊥I)
Γ ϕ

Γ ¬ϕ
Γ ⊥

− ⊥-elimination (⊥E)
Γ ¬ϕ ⊥
Γ ϕ

− ∀-introduction (∀I)
Γ ϕ

y

x

Γ ∀xϕ
, if y � free(Γ∪{∀xϕ})
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− ∀-elimination (∀E)
Γ ∀xϕ

Γ ϕ
t

x

, if t∈TS

− ≡-introduction (≡I)
Γ t≡ t

, if t∈TS

− ≡-elimination (≡E)

Γ ϕ
t

x

Γ t≡ t′

Γ ϕ
t′

x

The deduction relation is the smallest subset ⊢⊆Seq(S) of the set of sequents which is
closed under these rules. We write ϕ0 
 ϕn−1 ⊢ ϕ instead of ϕ0 
 ϕn−1 ϕ ∈ ⊢. For Φ an
arbitrary set of formulas define Φ⊢ϕ iff there are ϕ0,
 , ϕn−1∈Φ such that ϕ0
 ϕn−1⊢ϕ .
We say that ϕ can be deduced or derived from ϕ0
 ϕn−1 or Φ, resp. We also write ⊢ϕ
instead of ∅ ⊢ ϕ and say that ϕ is a tautology.

Remark 38. A calculus is a formal system for obtaining (mathematical) results. The
usual algorithms for addition and multiplication of decimal numbers are calculi: the results
are achieved by symbolic and systematic operations on the decimal symbols 0,
 , 9. Such
an addition is not an addition in terms of joining together line segments of certain lengths
or forming the union of disjoint finite sets. The calculi are however correct in that the
interpretation of the decimal numbers obtained correspond to the results of the intuitive
operations of joining line segments or disjoint unions.

Mathematics has shown that far more sophisticated operations can also be described
by calculi . The derivation of a polynomial function

p(x)= anx
n+ an−1 x

n−1+
 + a0

can be obtained by formal manipulations of exponents and coefficients:

p′(x)= nanx
n−1+ (n− 1) an−1x

n−2+
 + a1

without explicitly forming limits of difference quotients.
Since many basic results of analysis can be expressed as formal calculi, the word calculus

is used for basic analysis courses in the English speaking world. Similarly in German
one uses the words Differentialrechnung and Integralrechnung . The words derivation or
Ableitung also refer to derivations within a formal calculus.

A formula ϕ∈LS is derivable from Γ= ϕ0
 ϕn−1 (Γ⊢ϕ) iff there is a derivation or a
formal proof

(Γ0ϕ0,Γ1ϕ1,
 ,Γk−1ϕk−1)

of Γϕ=Γk−1ϕk−1 , in which every sequent Γiϕi is generated by a sequent rule from sequents
Γi0ϕi0,
 ,Γin−1

ϕin−1
with i0,
 , in−1<i .

We usually write the derivation (Γ0ϕ0,Γ1ϕ1,
 ,Γk−1ϕk−1) as a vertical scheme

Γ0 ϕ0

Γ1 ϕ1




Γk−1 ϕk−1

where we may also indicate rules and other remarks along the course of the derivation.
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In our theorems on the laws of implication we have already shown:

Theorem 39. The sequent calculus is correct, i.e., every rule of the sequent calculus leads
from correct sequents to correct sequents. Thus every derivable sequent is correct. This
means that

⊢⊆� .

The converse inclusion corresponds to

Definition 40. The sequent calculus is complete iff �⊆⊢.

The Gödel completeness theorem proves the completeness of the sequent calculus.
The definition of ⊢ immediately implies the following finiteness or compactness theorem.

Theorem 41. Let Φ⊆LS and ϕ∈Φ . Then Φ⊢ ϕ iff there is a finite subset Φ0⊆Φ such
that Φ0⊢ ϕ .

After proving the completeness theorem, such structural properties carry over to the
implication relation � .

10 Derivable sequent rules

The composition of rules of the sequent calculus yields derived sequent rules which are
again correct. First note:

Lemma 42. Assume that
Γ ϕ0




Γ ϕk−1

Γ ϕk

is a derived rule of the sequent calculus. Then

Γ0 ϕ0




Γk−1 ϕk−1

Γ ϕk

, where Γ0,
 ,Γk−1 are initial sequences of Γ

is also a derived rule of the sequent calculus.

Proof. This follows immediately from iterated applications of the monotonicity rule. �

We now list several derived rules.

10.1 Auxiliary rules

We write the derivation of rules as proofs in the sequent calculus where the premisses of
the derivation are written above the upper horizontal line and the conclusion as last row.

ex falso quodlibet
Γ ⊥
Γ ϕ

:
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1. Γ ⊥
2. Γ ¬ϕ ⊥
3. Γ ϕ

¬-Introduction
Γ ϕ ⊥
Γ ¬ϕ

:

1. Γ ϕ ⊥
2. Γ ϕ→⊥
3. Γ ¬¬ϕ ¬¬ϕ
4. Γ ¬¬ϕ ¬ϕ ¬ϕ
5. Γ ¬¬ϕ ¬ϕ ⊥
6. Γ ¬¬ϕ ϕ

7. Γ ¬¬ϕ ⊥
8. Γ ¬ϕ

1. Γ ¬ϕ
2. Γ ϕ ϕ

3. Γ ϕ ⊥
4. Γ ϕ ψ

5. Γ ϕ→ ψ

1. Γ ψ

2. Γ ϕ ψ

3. Γ ϕ→ ψ

Cut rule
1. Γ ϕ

2. Γ ϕ ψ

3. Γ ϕ→ ψ

4. Γ ψ

Contraposition

1. Γ ϕ ψ

2. Γ (ϕ→ ψ)
3. Γ ¬ψ ϕ (ϕ→ ψ)
4. Γ ¬ψ ϕ ϕ

5. Γ ¬ψ ϕ ψ

6. Γ ¬ψ ϕ ¬ψ
7. Γ ¬ψ ϕ ⊥
8. Γ ¬ψ ¬ϕ

10.2 Introduction and elimination of ∨,∧,


The (abbreviating) logical symbols ∨, ∧, and ∃ also possess (derived) introduction and
elimination rules. We list the rules and leave their derivations as exercises.

∨-Introduction
Γ ϕ

Γ ϕ∨ ψ
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∨-Introduction
Γ ψ

Γ ϕ∨ ψ

∨-Elimination
Γ ϕ∨ ψ
Γ ϕ→ χ

Γ ψ→ χ

Γ χ

∧-Introduction
Γ ϕ

Γ ψ

Γ ϕ∧ ψ

∧-Elimination
Γ ϕ∧ ψ
Γ ϕ

∧-Elimination
Γ ϕ∧ ψ
Γ ϕ

∃-Introduction

Γ ϕ
t

x

Γ ∃xϕ

∃-Elimination
Γ ∃xϕ

Γ ϕ
y

x
ψ where y � free(Γ∪{∃xϕ , ψ})

Γ ψ

10.3 Manipulations of antecedents

We derive rules by which the formulas in the antecedent may be permuted arbitrarily,
showing that only the set of antecedent formulas is relevant.

Transpositions of premisses
1. Γ ϕ ψ χ

2. Γ ϕ ψ→ χ

3. Γ ϕ→ (ψ→ χ)
4. Γ ψ ψ

5. Γ ψ ϕ ϕ

6. Γ ψ ϕ ψ→ χ

7. Γ ψ ϕ χ

Duplication of premisses
1. Γ ϕ ψ

2. Γ ϕ ϕ ψ

Elimination of double premisses
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1. Γ ϕ ϕ ψ

2. Γ ϕ ϕ→ ψ

3. Γ ϕ→ (ϕ→ ψ)
4. Γ ϕ ϕ

5. Γ ϕ ψ

Iterated applications of these rules yield:

Lemma 43. Let ϕ0
 ϕm−1 and ψ0
 ψn−1 be antecedents such that

{ϕ0,
 , ϕm−1}= {ψ0,
 , ψn−1}

and χ∈LS. Then
ϕ0 
 ϕm−1 χ

ψ0 
 ψn−1 χ
is a derived rule.

10.4 Formal proofs about ≡

We give some examples of formal proofs which show that within the proof calculus ≡ is
an equivalence relation.

Lemma 44. We prove the following tautologies:

a) Reflexivity: ⊢∀xx≡x

b) Symmetry: ⊢∀x∀y(x≡ y→ y≡ x)

c) Transitivity: ⊢ ∀x∀y∀z(x≡ y∧ y≡ z→x≡ z)

Proof. a)
x≡ x

∀xx≡x

b)
x≡ y x≡ y

x≡ y x≡x

x≡ y (z≡x)
x

z

x≡ y (z≡x)
y

x

x≡ y y≡x

x≡ y→ y≡x

∀y(x≡ y→ y≡x)
∀x∀y(x≡ y→ y≡x)

c)
x≡ y∧ y≡ z x≡ y∧ y≡ z

x≡ y∧ y≡ z x≡ y

x≡ y∧ y≡ z (x≡w)
y

w

x≡ y∧ y≡ z y≡ z

x≡ y∧ y≡ z (x≡w)
z

w

x≡ y∧ y≡ z x≡ z

x≡ y∧ y≡ z→ x≡ z

∀z(x≡ y ∧ y≡ z→x≡ z)
∀y∀z(x≡ y ∧ y≡ z→x≡ z)
∀x∀y∀z(x≡ y∧ y≡ z→ x≡ z)
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�

We show moreover that ≡ is a congruence relation from the perspective of ⊢.

Theorem 45. Let ϕ∈LS and t0,
 , tn−1, t0
′ ,
 , tn−1

′ ∈TS. Then

⊢ t0≡ t0
′ ∧
 ∧ tn−1≡ tn−1

′ →(ϕ
t0
 tn−1

v0
 vn−1
↔ ϕ

t0
′

 tn−1

′

v0
 vn−1
).

Proof. Choose pairwise distinct “new” variables u0,
 , un−1 . Then

ϕ
t0
 tn−1

v0
 vn−1
=ϕ

u0
v0

u1
v1




un−1

vn−1

t0
u0

t1
u1




tn−1

un−1
and

ϕ
t0
′

 tn−1

′

v0
 vn−1
=ϕ

u0
v0

u1
v1




un−1

vn−1

t0
′

u0

t1
′

u1



tn−1
′

un−1
.

Thus the simultaneous substitutions can be seen as successive substitutions, and the order
of the substitutions ti

ui
may be permuted without affecting the final outcome. We may use

the substitution rule repeatedly:

ϕ
t0
 tn−1

v0
 vn−1
ϕ
t0
 tn−1

v0
 vn−1

ϕ
u0
v0




un−1

vn−1

t0
u0




tn−1

un−1
ϕ
u0
v0




un−1

vn−1

t0
u0




tn−1

un−1

ϕ
u0
v0




un−1

vn−1

t0
u0




tn−1

un−1
tn−1≡ tn−1

′ ϕ
u0
v0




un−1

vn−1

t0
u0




tn−1
′

un−1




ϕ
u0
v0




un−1

vn−1

t0
u0




tn−1

un−1
tn−1≡ tn−1

′

 t0≡ t0

′ ϕ
u0
v0




un−1

vn−1

t0
′

u0



tn−1
′

un−1

ϕ
t0
 tn−1

v0
 vn−1
t0≡ t0

′

 tn−1≡ tn−1

′ ϕ
t0
′

 tn−1

′

v0
 vn−1
.

�

11 Consistency

Vor Allem aber möchte ich unter

den zahlreichen Fragen, welche

hinsichtlich der Axiome gestellt

werden können, dies als das

wichtigste Problem bezeichnen, zu

beweisen, daß dieselben unterein-

ander widerspruchslos sind, d.h.

daß man auf Grund derselben mit-

telst einer endlichen Anzahl von

logischen Schlüssen niemals zu Res-

ultaten gelangen kann, die mitein-

ander in Widerspruch stehen.

David Hilbert

Fix a language S.

Definition 46. A set Φ⊆LS is consistent if Φ0⊥ . Φ is inconsistent if Φ⊢⊥ .
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We prove some laws of consistency.

Lemma 47. Let Φ⊆LS and ϕ∈LS. Then

a) Φ is inconsistent iff there is ψ ∈LS such that Φ⊢ ψ and Φ⊢¬ψ.

b) Φ⊢ ϕ iff Φ∪{¬ϕ} is inconsistent.

c) If Φ is consistent, then Φ∪{ϕ} is consistent or Φ∪{¬ϕ} is consistent (or both).

d) Let F be a family of consistent sets which is linearly ordered by inclusion, i.e., for
all Φ,Ψ∈F holds Φ⊆Ψ or Ψ⊆Φ. Then

Φ∗=
⋃

Φ∈F

Φ

is consistent.

Proof. a) Assume Φ⊢⊥ . Then by the ex falso rule, Φ⊢ ψ and Φ⊢¬ψ.
Conversely assume that Φ ⊢ ψ and Φ ⊢ ¬ψ for some ψ ∈ LS. Then Φ ⊢ ⊥ by ⊥-

introduction.
b) Assume Φ ⊢ ϕ . Take ϕ0, 
 , ϕn−1 ∈ Φ such that ϕ0
 ϕn−1 ⊢ ϕ . Then we can extend
a derivation of ϕ0
 ϕn−1⊢ ϕ as follows
ϕ0 
 ϕn−1 ϕ

ϕ0 
 ϕn−1 ¬ϕ ¬ϕ
ϕ0 
 ϕn−1 ¬ϕ ⊥

and Φ∪{¬ϕ} is inconsistent.
Conversely assume that Φ∪{¬ϕ}⊢⊥ and take ϕ0,
 , ϕn−1∈Φ such that ϕ0
 ϕn−1¬

ϕ⊢⊥ . Then ϕ0
 ϕn−1⊢ ϕ and Φ⊢ ϕ .
c) Assume that Φ ∪ {ϕ} and Φ∪ {¬ϕ} are inconsistent. Then there are ϕ0,
 , ϕn−1 ∈Φ
such that ϕ0
 ϕn−1⊢ϕ and ϕ0
 ϕn−1⊢¬ϕ. By the introduction rule for ⊥, ϕ0
 ϕn−1⊢⊥.
Thus Φ is inconsistent.
d) Assume that Φ∗ is inconsistent. Take ϕ0, 
 , ϕn−1 ∈ Φ∗ such that ϕ0 
 ϕn−1 ⊢ ⊥ .
Take Φ0,
Φn−1∈ F such that ϕ0 ∈Φ0 , ..., ϕn−1∈Φn−1 . Since F is linearly ordered by
inclusion there is Φ ∈ {Φ0, 
Φn−1} such that ϕ0, 
 , ϕn−1 ∈ Φ. Then Φ is inconsistent,
contradiction. �

The proof of the completeness theorem will be based on the relation between consist-
ency and satisfiability.

Lemma 48. Assume that Φ⊆LS is satisfiable. Then Φ is consistent.

Proof. Assume that Φ ⊢ ⊥ . By the correctness of the sequent calculus, Φ �⊥ . Assume
that Φ is satisfiable and let M � Φ . Then M � ⊥ . This contradicts the definition of the
satisfaction relation. Thus Φ is not satisfiable. �

We shall later show the converse of this Lemma, since:

Theorem 49. The sequent calculus is complete iff every consistent Φ⊆LS is satisfiable.

Proof. Assume that the sequent calculus is complete. Let Φ⊆LS be consistent, i.e., Φ0⊥ .
By completeness, Φ2⊥ , and we can take an S-model M�Φ such that M2⊥ . Thus Φ is
satisfiable.

Conversely, assume that every consistent Φ⊆LS is satisfiable. Assume Ψ� ψ . Assume
for a contradiction that Ψ 0 ψ . Then Ψ ∪ {¬ψ} is consistent. By assumption there is an
S-model M�Ψ∪{¬ψ}. M�Ψ and M2 ψ , which contradicts Ψ � ψ . Thus Ψ⊢ ψ . �
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12 Term models and Henkin sets

In view of the previous lemma, we strive to construct interpretations for given sets Φ⊆LS

of S-formulas. Since we are working in great generality and abstractness, the only material
available for the construction of structures is the language LS itself. We shall build a model
out of S-terms.

Definition 50. Let S be a language and let Φ⊆LS be consistent. The term model TΦ of
Φ is the following S-model:

a) Define a relation ∼ on TS,

t0∼ t1 iff Φ⊢ t0≡ t1 .

∼ is an equivalence relation on TS.

b) For t∈T S let t̄ = {s∈ TS |s∼ t} be the equivalence class of t.

c) The underlying set TΦ=TΦ(∀) of the term model is the set of ∼-equivalence classes

TΦ= {t̄ |t∈TS}.

d) For an n-ary relation symbol R∈S let RTΦ

on TΦ be defined by

( t̄0,
 , t̄n−1)∈RTΦ

iff Φ⊢Rt0
 tn−1 .

e) For an n-ary function symbol f ∈S let fT
Φ

on TΦ be defined by

fT
Φ

( t̄0,
 , t̄n−1) = ft0
 tn−1 .

f ) For n∈N define the variable interpretation T
Φ(vn)= vn .

The term model is well-defined.

Lemma 51. In the previous construction the following holds:

a) ∼ is an equivalence relation on TS.

b) The definition of RTΦ

is independent of representatives.

c) The definition of fT
Φ

is independent of representatives.

Proof. a) We derived the axioms of equivalence relations for ≡:

− ⊢∀xx≡x

− ⊢∀x∀y (x≡ y→ y≡x)

− ⊢∀x∀y∀z (x≡ y∧ y≡ z→ x≡ z)

Consider t∈TS. Then ⊢t≡ t. Thus for all t∈TS holds t∼ t .
Consider t0, t1∈T S with t0∼ t1 . Then ⊢t0≡ t1 . Also ⊢t0≡ t1→ t1≡ t0 , ⊢t1≡ t0 , and

t1∼ t0 . Thus for all t0, t1∈TS with t0∼ t1 holds t1∼ t0 .
The transitivity of ∼ follows similarly.

b) Let t̄0,
 , t̄n−1 ∈ TΦ, t̄0= s̄0,
 , t̄n−1= s̄n−1 and Φ ⊢Rt0
 tn−1 . Then ⊢t0≡ s0 , ... ,
⊢tn−1≡ sn−1 . Repeated applications of the substitution rule yield Φ⊢Rs0
 sn−1 . Hence
Φ ⊢Rt0
 tn−1 implies Φ ⊢Rs0
 sn−1 . By the symmetry of the argument, Φ ⊢Rt0
 tn−1

iff Φ⊢Rs0
 sn−1 .
c) Let t̄0, 
 , t̄n−1 ∈ TΦ and t̄0 = s̄0, 
 , t̄n−1 = s̄n−1 . Then ⊢t0 ≡ s0 , ... , ⊢tn−1 ≡ sn−1 .
Repeated applications of the substitution rule to ⊢ft0
 tn−1≡ ft0
 tn−1 yield

⊢ft0
 tn−1≡ fs0
 sn−1
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and ft0
 tn−1= fs0
 sn−1 . �

We aim to obtain T
Φ � Φ. The initial cases of an induction over the complexity of

formulas is given by

Theorem 52.

a) For terms t∈TS holds TΦ(t)= t̄.

b) For atomic formulas ϕ∈LS holds

T
Φ� ϕ iff Φ⊢ ϕ.

Proof. a) By induction on the term calculus. The initial case t = vn is obvious by the
definition of the term model. Now consider a term t = ft0
 tn−1 with an n-ary function
symbol f ∈S , and assume that the claim is true for t0,
 , tn−1 . Then

T
Φ(ft0
 tn−1) = fT

Φ

(TΦ(t0),
 ,T
Φ(tn−1))

= fT
Φ

(t0̄,
 , tn−1)

= ft0
 tn−1 .

b) Let ϕ=Rt0
 tn−1 with an n-ary relation symbol R∈S and t0,
 , tn−1∈T S. Then

TΦ �Rt0
 tn−1 iff RTΦ

(TΦ(t0),
 ,T
Φ(tn−1))

iff RTΦ

(t0̄,
 , tn−1)

iff Φ⊢Rt0
 tn−1 .

Let ϕ= t0≡ t1 with t0, t1∈TS. Then

T
Φ� t0≡ t1 iff T

Φ(t0)=T
Φ(t1)

iff t0̄= t1̄

iff t0∼ t1

iff Φ⊢ t0≡ t1 .

�

To extend the lemma to complex S-formulas, Φ has to satisfy some recursive properties.

Definition 53. A set Φ ⊆ LS of S-formulas is a Henkin set if it satisfies the following
properties:

a) Φ is consistent;

b) Φ is (derivation) complete, i.e., for all ϕ∈LS

Φ⊢ ϕ or Φ⊢¬ϕ;

c) Φ contains witnesses, i.e., for all ∀xϕ∈LS there is a term t∈ TS such that

Φ⊢¬∀xϕ→¬ϕ
t

x
.

Lemma 54. Let Φ⊆LS be a Henkin set. Then for all χ, ψ ∈LS and variables x:

a) Φ0 χ iff Φ⊢¬χ .

b) Φ⊢ χ implies Φ⊢ ψ, iff Φ⊢ χ→ ψ .
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c) For all t∈TS holds Φ⊢ χ
t

u
iff Φ⊢∀xχ .

Proof. a) Assume Φ0χ . By derivation completeness, Φ⊢¬χ . Conversely assume Φ⊢¬χ .
Assume for a contradiction that Φ⊢ χ . Then Φ is inconsistent. Contradiction. Thus Φ0χ .
b) Assume Φ⊢ χ implies Φ⊢ ψ .
Case 1 . Φ⊢ χ . Then Φ⊢ ψ and by an easy derivation Φ⊢ χ→ ψ .
Case 2 . Φ 0 χ . By the derivation completeness of Φ holds Φ ⊢ ¬χ . And by an easy
derivation Φ⊢ χ→ ψ .

Conversely assume that Φ ⊢ χ→ ψ . Assume that Φ ⊢ χ . By →-elimination, Φ ⊢ ψ .
Thus Φ⊢ χ implies Φ⊢ ψ .
c) Assume that for all t ∈ T S holds Φ ⊢ χ

t

u
. Assume that Φ 0 ∀xχ . By a), Φ ⊢ ¬∀xχ .

Since Φ contains witnesses there is a term t ∈ TS such that Φ ⊢ ¬∀xχ→¬χ
t

u
. By →-

elimination, Φ⊢ ¬χ
t

u
. Contradiction. Thus Φ ⊢ ∀xχ . The converse follows from the rule

of ∀-elimination. �

Theorem 55. Let Φ⊆LS be a Henkin set. Then

a) For all formulas χ∈LS, pairwise distinct variables xS and terms tS ∈T S

TΦ� χ
tS

xS
iff Φ⊢ χ

tS

xS
.

b) TΦ�Φ.

Proof. b) follows immediately from a). a) is proved by induction on the formula calculus.
The atomic case has already been proven. Consider the non-atomic cases:

i) χ=⊥ . Then ⊥
tS

xS
=⊥ . TΦ�⊥

tS

xS
is false by definition of the satisfaction relation �, and

Φ⊢ χ
tS

xS
is false since Φ is consistent. Thus TΦ�⊥

tS

xS
iff Φ⊢⊥

tS

xS
.

ii.) χ=¬ϕ
tS

xS
and assume that the claim holds for ϕ. Then

TΦ�¬ϕ
tS

xS
iff not TΦ� ϕ

tS

xS

iff not Φ⊢ ϕ
tS

xS
by the inductive assumption

iff Φ⊢¬ϕ
tS

xS
by a) of the previous lemma.

iii.) χ= (ϕ→ ψ)
tS

xS
and assume that the claim holds for ϕ and ψ. Then

TΦ� (ϕ→ ψ)
tS

xS
iff TΦ � ϕ

tS

xS
implies TΦ� ψ

tS

xS

iff Φ⊢ ϕ
tS

xS
implies Φ⊢ ψ

tS

xS
by the inductive assumption

iff Φ⊢ ϕ
tS

xS
→ ψ

tS

xS
by a) of the previous lemma

iff Φ⊢ (ϕ→ ψ)
tS

xS
by the definition of substitution.

iv.) χ = (∀xϕ)
t0
 .tr−1

x0
xr−1
and assume that the claim holds for ϕ. By definition of the

substitution χ is of the form

∀u (ϕ
t0
 .tr−1u

x0
 xr−1x
) oder ∀u (ϕ

t1
 .tr−1u

x1
xr−1x
)
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with a suitable variable u. Without loss of generality assume that χ is of the first form.
Then

TΦ� (∀xϕ)
tS

xS
iff TΦ� ∃u (ϕ

t0
 .tr−1u

x0
 xr−1x
)

iff for all t∈TS holds TΦ t̄

u
� ϕ

t0
 .tr−1u

x0
 xr−1 x

iff for all t∈TS holds TΦI
Φ(t)
u

� ϕ
t0
 .tr−1 u

x0
 xr−1x
by a previous lemma

iff for all t∈TS holds TΦ� (ϕ
t0
 .tr−1

x0
 xr−1
)
t

u
by the substitution lemma

iff for all t∈TS holds TΦ� ϕ
t0
 .tr−1 t

x0
 xr−1 x
by successive substitutions

iff for all t∈TS holds Φ⊢ ϕ
t0
 .tr−1 t

x0
 xr−1x
by the inductive assumption

iff for all t∈TS holds Φ⊢ (ϕ
t0
 .tr−1u

x0
 xr−1 x
)
t

u
by successive substitutions

iff Φ⊢∀u (ϕ
t0
 .tr−1u

x0
xr−1x
) by c) of the previous lemma

iff Φ⊢ (∀xϕ)
tS

xS
.

�

13 Constructing Henkin sets

We shall show that every consistent set of formulas can be extended to a henkin set
by “adding witnesses” and then ensuring negation completeness. We first consider wit-
nesses.

Theorem 56. Let Φ⊆LS be consistent. Let ϕ∈LS and let z be a variable which does not
occur in Φ∪{ϕ}. Then the set

Φ∪{¬∀xϕ→¬ϕ
z

x
}

is consistent.

Proof. Assume for a contradiction that Φ∪ {(¬∃xϕ ∨ ϕ
z

x
)} is inconsistent. Take ϕ0,
 ,

ϕn−1∈Φ such that

ϕ0
 ϕn−1 ¬∀xϕ→¬ϕ
z

x
⊢ ⊥.

Set Γ= (ϕ0,
 , ϕn−1). Then continue the derivation as follows:

1. Γ ¬∀xϕ→¬ϕ
z

x
⊥

2. Γ ¬¬∀xϕ ¬¬∀xϕ

3. Γ ¬¬∀xϕ ¬∀xϕ→¬ϕ
z

x

4. Γ ¬¬∀xϕ ⊥
5. Γ ¬∀xϕ

6. Γ ¬ϕ
z

x
¬ϕ

z

x

7. Γ ¬ϕ
z

x
¬∀xϕ→¬ϕ

z

x

8. Γ ¬ϕ
z

x
⊥

9. Γ ϕ
z

x

10. Γ ∀xϕ
11. Γ ⊥
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Hence Φ is inconsistent, contradiction. �

This means that “unused” variables may be used as henkin witnesses. Since “unused”
constant symbols behave much like unused variables, we get:

Theorem 57. Let Φ ⊆ LS be consistent. Let ϕ ∈ LS and let c ∈ S be a constant symbol
which does not occur in Φ∪{ϕ}. Then the set

Φ∪{¬∀xϕ→¬ϕ
c

x
}

is consistent.

Proof. Assume that Φ∪{(¬∃xϕ∨ ϕ
c

x
)} is inconsistent. Take a derivation

Γ0ϕ0

Γ1ϕ1


 (1)

Γn−1 ϕn−1

Γn (¬∀xϕ→¬ϕ
c

x
) ⊥

with Γn⊆Φ . Choose a variable z, which does not occur in the derivation. For a formula
ψ define ψ ′ by replacing each occurence of c by z, and for a sequence Γ= (ψ0,
 , ψk−1) of
formulas let Γ′=(ψ0

′ ,
 , ψk−1
′ ). Replacing each occurence of c by z in the deriavation we get

Γ0
′ϕ0

′

Γ1
′ϕ1

′


 (2)

Γn−1
′ ϕn−1

′

Γn (¬∀xϕ→¬ϕ
z

x
) ⊥

The particular form of the final sequence is due to the fact that c does not occur in Φ∪{ϕ}.
To show that (2) is again a derivation in the sequent calculus we show that the replacement
c� z transforms every instance of a sequent rule in (1) into an instance of a (derivable)
rule in (2). This is obvious for all rules except possibly the quantifyer rules.

So let

Γ ψ
y

x
Γ ∀xψ

, with y � free(Γ∪{∀xψ})

be an ∀-introduction in (1). Then (ψ
y

x
)′=ψ ′ y

x
, (∀xψ)′=∀xψ ′, and y � free(Γ′∪{(∀xψ) ′}).

Hence

Γ′ (ψ
y

x
)′

Γ′ (∀xψ)′
is a justified ∀-introduction.

Now consider an ∀-elimination in (1):

Γ ∀xψ

Γ ψ
t

x

Then (∀xψ)′=∀xψ ′ and (ψ
t

x
)′=ψ ′ t

′

x
where t′ is obtained from t by replacing all occurences

of c by z. Hence
Γ′ (∀xψ)′

Γ′ (ψ
t

x
)′
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is a justified ∀-elimination.
The derivation (2) proves that

Φ∪{(¬∀xϕ→¬ϕ
z

x
) ⊢⊥,

which contradicts the preceding lemma. �

We shall now show that any consistent set of formulas can be consistently expanded to
a set of formulas which contains witnesses.

Theorem 58. Let S be a language and let Φ⊆LS be consistent. Then there is a language
Sω and Φω⊆LS

∗

such that

a) Sω extends S by constant symbols, i.e., S ⊆Sω and if s∈Sω \S then s is a constant
symbol;

b) Φω ⊇Φ;

c) Φω is consistent;

d) Φω contains witnesses;

e) if LS is countable then so are LS
ω
and Φω.

Proof. For every a define a “new” distinct constant symbol ca, which does not occur in S,
e.g., ca=((a, S), 1, 0). Extend S by constant symbols cψ for ψ ∈LS :

S+=S ∪{cψ |ψ ∈LS}.

Then set

Φ+=Φ∪{¬∀xϕ→¬ϕ
c∀xϕ
x

|∀xϕ∈LS}.

Φ+ contains witnesses for all universal formulas of S.
(1) Φ+⊆LS

+

is consistent.
Proof : Assume instead that Φ+ is inconsistent. Choose a finite sequence ∀x0ϕ0, 
 ,

∀xn−1ϕn−1∈LS of pairwise distinct universal formulas such that

Φ∪{¬∀x0ϕ0→¬ϕ0
c∀x0ϕ0

x0
,
 ,¬∀xn−1ϕn−1→¬ϕn−1

c∀xn−1ϕn−1

xn−1
}

is inconsistent. By the previous theorem one can inductively show that for all i<n the set

Φ∪{¬∀x0ϕ0→¬ϕ0
c∀x0ϕ0

x0
,
 ,¬∀xn−1ϕn−1→¬ϕn−1

c∀xi−1ϕni−1

xi−1
}

is consistent. Contradiction. qed(1)
We iterate the +-operation through the integers. Define recursively

Φ0 = Φ

S0 = S

Sn+1 = (Sn)+

Φn+1 = (Φn)+

Sω =
⋃

n∈N

Sn

Φω =
⋃

n∈N

Φn .
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Sω is an extension of S by constant symbols. For n∈N, Φn is consistent by induction. Φω

is consistent by the lemma on unions of consistent sets.
(2) Φω contains witnesses.
Proof . Let ∀xϕ∈LS

ω
. Let n∈N such that ∀xϕ∈LS

n
. Then ¬∀xϕ→¬ϕ

c∀xϕ

x
∈Φn+1⊆Φω.

qed(2)
(3) Let LS be countable. Then LS

ω

and Φω are countable.
Proof . Since LS is countable, there can only be countably many symbols in the alphabet
of S0 = S. The alphabet of S1 is obtained by adding the countable set {cψ |ψ ∈ LS}; the
alphabet of S1 is countable as the union of two countable sets. The set of words over a
countable alphabet is countable, hence LS

1

and Φ1⊆LS
1

are countable.
Inductive application of this argument show that for any n ∈N, the sets LS

n

and Φn

are countable. Since countable unions of countable sets are countable, LS
ω

=
⋃

n∈N
LS

n

and also Φω⊆LS
ω

are countable. �

To get Henkin sets we have to ensure derivation completeness.

Theorem 59. Let S be a language and let Φ⊆LS be consistent. Then there is a consistent
Φ∗⊆LS, Φ∗⊇Φ which is derivation complete.

Proof. Define the partial order (P ,⊆) by

P = {Ψ⊆LS |Ψ⊇Φ and Ψ is consistent}.

P � ∅ sinceΦ∈P . P is inductively ordered by a previous lemma: if F ⊆P is linearly ordered
by inclusion, i.e., for all Ψ,Ψ′∈F holds Ψ⊆Ψ′ or Ψ′⊆Ψ then

⋃

Ψ∈F

Ψ∈P .

Hence (P ,⊆) satisfies the conditions of Zorn’s lemma. Let Φ∗ be a maximal element of (P ,
⊆). By the definition of P , Φ∗⊆LS, Φ∗⊇Φ , and Φ∗ is consistent. Derivation completeness
follows from the following claim.
(1) For all ϕ∈LS holds ϕ∈Φ∗ or ¬ϕ∈Φ∗.
Proof . Φ∗ is consistent. By a previous lemma, Φ∗∪{ϕ} or Φ∗∪{¬ϕ} are consistent.
Case 1 . Φ∗∪{ϕ} is consistent. By the ⊆-maximality of Φ∗, Φ∗∪{ϕ}=Φ∗ and ϕ∈Φ∗.
Case 2 . Φ∗ ∪ {¬ϕ} is consistent. By the ⊆-maximality of Φ∗, Φ∗ ∪ {¬ϕ} = Φ∗ and
¬ϕ∈Φ∗. �

The proof uses Zorn’s lemma. In case LS is countable one can work without Zorn’s
lemma.

Proof. (For countable LS) Let LS = {ϕn|n ∈ N} be an enumeration of LS. Define a
sequence (Φn|n∈N) by recursion on n such that

i. Φ⊆Φn⊆Φn+1⊆LS;

ii. Φn is consistent.

For n=0 set Φ0=Φ. Assume that Φn is defined according to i. and ii.
Case 1 . Φn∪{ϕn} is consistent. Then set Φn+1=Φn∪{ϕn}.
Case 2 . Φn ∪ {ϕn} is inconsistent. Then Φn ∪ {¬ϕn} is consistent by a previous lemma,
and we define Φn+1=Φn∪{¬ϕn}.

Let

Φ∗=
⋃

n∈N

Φn .

Constructing Henkin sets 39



Then Φ∗ is a consistent superset of Φ. By construction, ϕ∈Φ∗ or ¬ϕ∈Φ∗, for all ϕ∈LS.
Hence Φ∗ is derivation complete. �

According to Theorem 58 a given consistent set Φ can be extended to Φω ⊆ LS
ω

containing witnesses. By Theorem 59 Φω can be extended to a derivation complete Φ∗⊆
LS

ω
. Since the latter step does not extend the language, Φ∗ contains witnesses and is thus

a henkin set:

Theorem 60. Let S be a language and let Φ⊆LS be consistent. Then there is a language
S∗ and Φ∗⊆LS

∗

such that

a) S∗⊇S is an extension of S by constant symbols;

b) Φ∗⊇Φ is a Henkin set;

c) if LS is countable then so are LS
∗

and Φ∗.

14 The completeness theorem

We can now combine our technical preparations to show the fundamental theorems of first-
order logic.

Combining Theorems 60 and 55, we obtain a general and a countable model existence
theorem:

Theorem 61. (Henkin model existence theorem) Let Φ⊆ LS. Then Φ is consistent iff
Φ is satisfiable.

By Lemma 49, Theorem 61 the model existence theorems imply the main theorem.

Theorem 62. (Gödel completeness theorem) The sequent calculus is complete, i.e.,
�=⊢.

TheGödel completeness theorem is the fundamental theorem of mathematical logic. It
connects syntax and semantics of formal languages in an optimal way. Before we continue
the mathematical study of its consequences we make some general remarks about the wider
impact of the theorem:

− The completeness theorem gives an ultimate correctness criterion for mathematical
proofs. A proof is correct if it can (in principle) be reformulated as a formal deriv-
ation. Although mathematicians prefer semi-formal or informal arguments, this
criterion could be applied in case of doubt.

− Checking the correctness of a formal proof in the above sequent calculus is a
syntactic task that can be carried out by computer. We shall later consider a
prototypical proof checker Naproche which uses a formal language which is a subset
of natural english.

− By systematically running through all possible formal proofs, automatic theorem
proving is in principle possible. In this generality, however, algorithms immediately
run into very high algorithmic complexities and become practically infeasable.

− Practical automatic theorem proving has become possible in restricted situations,
either by looking at particular kinds of axioms and associated intended domains, or
by restricting the syntactical complexity of axioms and theorems.
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− Automatic theorem proving is an important component of artificial intelligence
(AI) where a system has to obtain logical consequences from conditions formulated
in first-order logic. Although there are many difficulties with artificial intelligence
this approach is still being followed with some success.

− Another special case of automatic theorem proving is given by logic programming
where programs consist of logical statements of some restricted complexity and a
run of a program is a systematic search for a solution of the given statements. The
original and most prominent logic programming language is Prolog which is still
widely used in linguistics and AI.

− There are other areas which can be described formally and where syntax/semantics
constellations similar to first-order logic may occur. In the theory of algorithms
there is the syntax of programming languages versus the (mathematical) meaning
of a program. Since programs crucially involve time alternative logics with time
have to be introduced. Now in all such generalizations, the Gödel completeness
theorem serves as a pattern onto which to model the syntax/semantics relation.

− The success of the formal method in mathematics makes mathematics a leading
formal science. Several other sciences also strive to present and justify results form-
ally, like computer science and parts of philosophy.

− The completeness theorem must not be confused with the famous Gödel incom-
pleteness theorems: they say that certain axiom systems like Peano arithmetic are
incomplete in the sense that they do not imply some formulas which hold in the
standard model of the axiom system.

15 The compactness theorem

The equality of � and ⊢ and the compactness theorem 41 for ⊢ imply

Theorem 63. (Compactness theorem) Let Φ⊆LS and ϕ∈Φ . Then

a) Φ� ϕ iff there is a finite subset Φ0⊆Φ such that Φ0� ϕ .

b) Φ is satisfiable iff every finite subset Φ0⊆Φ is satisfiable.

This theorem is often to construct (unusual) models of first-order theories. It is the
basis of a field of logic called Model Theory .

We present a number theoretic application of the compactness theorem. The language
of arithmetic can be naturally interpreted in the structure N=(N,+, ·,0,1). This structure
obviously satisfies the following axioms:

Definition 64. The axiom system PA ⊆ LSAR of peano arithmetic consists of the fol-
lowing sentences

− ∀x x+1� 0

− ∀x∀y x+1= y+1→x= y

− ∀x x+0=x

− ∀x∀y x+(y+1)= (x+ y)+ 1

− ∀x x · 0= 0

− ∀x∀y x · (y+1)=x · y+x
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− Schema of induction: for every formula ϕ(x0,
 , xn−1, xn)∈LSAR:

∀x0
 ∀xn−1(ϕ(x0,
 , xn−1, 0)∧ ∀xn(ϕ→ ϕ(x0,
 , xn−1, xn+1))→∀xnϕ)

The theory PA is allows to prove a lot of number theoretic properties, e.g., about
divisibility and prime numbers. On the other hand the first incompleteness theorem of
Gödel shows that there are arithmetic sentences ϕ which are not decided by PA although
they are true in the standard model N of PA. Therefore PA is not complete.

If ϕ and ¬ϕ are both not derivable from PA then PA+¬ϕ and PA+ ϕ are consistent.
By the model existence theorem, there are models M− and M

+ such that M−�PA+¬ϕ
and M

+ � PA + ϕ. M− and M
+ are not isomorphic. So there exist models of PA which

are not isomorphic to the standard model N.
We can also use the compactness theorem to obtain nonstandard models of theories.

Define the SAR-terms n̄ for n∈N recursively by

0̄ = 0,

n+1 = (n̄ +1).

Define divisibility by the SAR-formula δ(x, y)=∃z x · z≡ y.

Theorem 65. There is a model M � PA which contains an element ∞ ∈ M such that
M � δ(n̄ ,∞) for every n ∈N \ {0} (we use M � δ(n̄ ,∞) as an intuitive abbreviation for
M� δ(n̄ , v0)[∞]).

So “from the outside”, ∞ is divisible by every positive natural number. This implies
that M is a nonstandard model with MK N .

Proof. Consider the theory

Φ=PA∪{δ(n̄ , v0) | n∈N \ {0}}.

(1) Φ is satisfiable.
Proof . We use the compactness theorem 63(b). Let Φ0 ⊆ Φ be finite. It suffices to show
that Φ0 is satisfiable. Take a finite number n0∈N such that

Φ0⊆PA∪{δ(n̄ , v0) |n∈N, 16n6n0}.

Let N = n! . Then

N�PA and N� δ(n̄ ,N ) for 16n6n0 .

So N
N

v0
�Φ0 . qed(1)

By (1), let M ′�Φ. Let ∞=M
′(v0)∈ |M′|. Let M be the SAR-structure which extends

to the modelM ′, i.e.,M=M
′↾{∀}∪SAR. ThenM is a structure satisfying the theorem. �

This indicates that the model class of PA is rather complicated and rich. Indeed there
is a subfield of model theory which primarily studies models of Peano arithmetic.

We define notions which allow to examine the axiomatizability of classes of structures.

Definition 66. Let S be a language and K be a class of S-structures.

a) K ist elementary or finitely axiomatizable if there is an S-sentence ϕ with K =

ModSϕ.

b) K is ∆-elementary or axiomatizable, if there is a set Φ of S-sentences with K =

ModSΦ.

We state simple properties of the Mod-operator:
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Theorem 67. Let S be a language.Then

a) For Φ⊆Ψ⊆L0
S holds ModSΦ⊇ModSΨ.

b) For Φ,Ψ⊆L0
S holds ModS(Φ∪Ψ)=ModSΦ∩ModSΨ.

c) For Φ⊆L0
S holds ModSΦ=

⋂

ϕ∈Φ ModSϕ .

d) For ϕ0,
 , ϕn−1∈L0
S holds ModS{ϕ0,
 , ϕn−1}=ModS(ϕ0∧
 ∧ ϕn−1).

e) For ϕ∈L0
S holds ModS(¬ϕ)=ModS∅\ModS(ϕ).

c) explains the denotation “∆-elementary”, since ModSΦ is the intersection (“Durch-
schnitt”) of all single ModSϕ .

Theorem 68. Let S be a language and K,L be classes of S-structures with

L=ModS∅\K .

Then if K and L are axiomatizable, they are finitely axiomatizable.

Proof. Take axiom systems ΦK and ΦL such that K=ModSΦK and L=ModSΦL. Assume
that K is not finitely axiomatizable.
(1) Let Φ0⊆ΦK be finite. Then Φ0∪ΦL is satisfiable.
Proof : ModSΦ0 ⊇ ModSΦK . Since K is not finitely axiomatizable, ModSΦ0 � ModSΦK .
Then ModSΦ0∩L� ∅. Take a model A∈L, A∈ModSΦ0 . Then A�Φ0∪ΦL . qed(1)
(2) ΦK ∪ΦL is satisfiable.
Proof : By the compactness theorem 63 it suffices to show that every finite Ψ⊆ ΦK ∪ΦL
is satsifiable. By (1), (Ψ∩ΦK)∪ΦL is satisfiable. Thus Ψ⊆ (Ψ∩ΦK)∪ΦL is satisfiable.
qed(2)

By (2), ModSΦK ∩ModSΦL� ∅. But the classes K and L are complements, contradic-
tion. Thus K is finitely axiomatizable. �

16 The Löwenheim-Skolem theorems

Definition 69. An S-structure A is finite, infinite, countable, or uncountable, resp., iff
the underlying set |A| is finite, infinite, countable, or uncountable, resp..

If the language S is countable, i.e., finite or countably infinite, and it Φ ⊆ LS is a
countable consistent set of formulas then an inspection of the above construction of a term
model for Φ shows the following theorem.

Theorem 70. (Downward Löwenheim-Skolem theorem) Let Φ ⊆ LS be a countable
consistent set of formulas. Then Φ possesses a model M= (A, β) �Φ, A= (A,
 ) with a
countable underlying set A.

The word “downward” emphasises the existence of models of “small” cardinality. We
shall soon consider an “upward” Löwenheim-Skolem theorem.

Theorem 71. Assume that Φ ⊆ LS has arbitrarily large finite models. Then Φ has an
infinite model.

Proof. For n∈N define the sentence

ϕ>n=∃v0,
 , vn−1

∧

i<j<n

¬vi≡ vj ,
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where the big conjunction is defined by
∧

i<j<n

ψij=ψ0,1∧
 ∧ ψ0,n−1∧ ψ1,2∧
 ∧ ψ1,n−1∧
 ∧ ψn−1,n−1 .

For any model M

M� ϕ>n iff A has at least n elements.

Now set

Φ′=Φ∪ {ϕ>n |n∈N}.

(1) Φ′ has a model.
Proof . By the compactness theorem 63b it suffices to show that every finite Φ0⊆Φ has a
model. Let Φ0⊆Φ be finite. Take n0∈N such that

Φ0⊆Φ∪{ϕ>n |n6n0}.

By assumption Φ has a model with at least n0 elements. Thus Φ∪{ϕ>n |n6 n0} and Φ0

have a model. qed(1)
Let M�Φ′. Then M is an infinite model of Φ. �

Theorem 72. (Upward Löwenheim-Skolem theorem) Let Φ⊆ LS have an infinite S-
model and let X be an arbitrary set. Then Φ has a model into which X can be embedded
injectively.

Proof. Let M be an infinite model of Φ. Choose a sequence (cx |x ∈ X) of pairwise
distinct constant symbols which do not occur in S, e.g., setting cx = ((x, S), 1, 0). Let
S ′=S ∪{cx |x∈X} be the extension of S by the new constant symbols. Set

Φ′=Φ∪{¬cx≡ cy |x, y ∈X,x� y}.

(1) Φ′ has a model.
Proof . It suffices to show that every finite Φ0⊆Φ ′ has a model. Let Φ0⊆Φ′ be finite. Take
a finite set X0⊆X such that

Φ0⊆Φ∪{¬cx≡ cy |x, y ∈X0, x� y}.

Since |M| is infinite we can choose an injective sequence (ax|x ∈ X0) of elements of |M|
such that x� y implies ax� ay . For x∈X \X0 choose ax ∈ |M| arbitrarily. Then in the
extended model

M ′=M∪{(cx, ax)|x∈X}�Φ∪{¬cx≡ cy |x, y ∈X0, x� y}⊇Φ0 .

qed(1)
By (1), choose a model M′ �Φ′. Then the map

i:X→|M′|, x�M
′(cx)

is injective. The reduct M′′=M′ ↾ {∀}∪S is as required. �

Theorem 73. Let S be a language.

a) The class of all finite S-structures is not axiomatizable.

b) The class of all infinite S-structures is axiomatizable but not finitely axiomatizable.

Proof. a) is immediate by Theorem 71.
b) The class of infinite S-structures is axiomatized by

Φ= {ϕ>n |n∈N}.
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If that class were finitely axiomatizable then the complementary class of finite S-structures
would also be (finitely) axiomatizable, contradicting a). �

17 Normal forms

There are many motivations to transform formulas into equivalent normal forms. The
motivation here will be that normal forms are important for automated theorem proving
and for logic programming .

We are particularly interested in transforming formulas ψ into formulas ψ ′ such that ψ
is consistent iff ψ ′ is consistent. This relates to provability as follows: Φ⊢ ϕ iff Φ∪{¬ϕ} is
not satisfiable/inconsistent. So a check for provability can be based on inconsistency checks.

Work in some fixed language S.

Definition 74.

a) An S-formula is a literal if it is atomic or the negation of an atomic formula.

b) Define the dual of the literal L as

L̄ =

{

¬L, if L is an atomic formula;
K, if L is of the form ¬K.

c) A formula ϕ is in disjunctive normal form if it is of the form

ϕ=
∨

i<m

(
∧

j<ni

Lij)

where each Lij is a literal.

d) A formula ϕ is in conjunctive normal form if it is of the form

ϕ=
∧

i<m

(
∨

j<ni

Lij)

where each Lij is a literal. Sometimes a disjunctive normal form is also written in
set notion as

ϕ= {{L00,
 , L0n0−1},
 , {Lm−1,0,
 , Lm−1,nm−1
}}.

Theorem 75. Let ϕ be a formula without quantifiers. Then ϕ is equivalent to some ϕ′ in
disjunctive normal form and to some ϕ ′′ in conjunctive normal form.

Proof. By induction on the complexity of ϕ. Clear for ϕ atomic. The ¬ step follows from
the de Morgan laws:

¬
∨

i<m

(
∧

j<ni

Lij) ↔
∧

i<m

¬(
∧

j<ni

Lij)

↔
∧

i<m

(
∨

j<ni

¬Lij).

The ∧-step is clear for conjunctive normal forms. For disjunctive normal forms the asso-
ciativity rules yield

∨

i<m

(
∧

j<ni

Lij)∧
∨

i<m ′

(
∧

j<ni
′

Lij
′ ) ↔

∨

i<m,i′<m′

(
∧

j<ni

Lij ∧
∧

j<ni
′

Lij
′ )

which is also in conjunctive normal form. �
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Definition 76. A formula ϕ is in prenex normal form if it is of the form

ϕ=Q0x0Q1x1
Qm−1xm−1 ψ

where each Qi is either the quantifier ∀ or ∃ and ψ is quantifier-free. Then the quantifier
string Q0 x0 Q1 x1
Qm−1 xm−1 is called the prefix of ϕ and the formula ψ is the matrix
of ϕ.

Theorem 77. Let ϕ be a formula. Then ϕ is equivalent to a formula ϕ′ in prenex normal
form.

Proof. By induction on the complexity of ϕ. Clear for atomic formulas. If

ϕ↔Q0 x0Q1 x1
Qm−1 xm−1 ψ

with quantifier-free ψ then by the de Morgan laws for quantifiers

¬ϕ↔ Q̄
0
x0 Q̄1x1
 Q̄m−1xm−1¬ψ

where the dual quantifier Q̄ is defined by ∃̄=∀ and ∀̄=∃ .
For the ∧-operation consider another formula

ϕ ′↔Q0
′ x0

′ Q1
′ x1

′

Qm ′−1

′ xm′−1
′ ψ ′

with quantifier-free ψ ′. We may assume that the bound variables of of the prenex normal
forms are disjoint. Then

ϕ∧ ϕ′↔Q0x0Q1x1
Qm−1xm−1Q0
′ x0

′ Q1
′ x1

′

Qm ′−1

′ xm′−1
′ (ψ ∧ ψ ′).

(semantic argument). �

Definition 78. A formula ϕ is universal if it is of the form

ϕ=∀x0∀x1
 ∀xm−1 ψ

where ψ is quantifier-free. A formula ϕ is existential if it is of the form

ϕ=∃x0∃x1
 ∃xm−1 ψ

where ψ is quantifier-free.

We show a quasi-equivalence with respect to universal (and existential) formulas which
is not a logical equivalence but concerns the consistency or satisfiability of formulas.

Theorem 79. Let ϕ be an S-formula. Then there is a canonical extension S∗ of the
language S and a canonical universal ϕ∗∈LS

∗

such that

ϕ is consistent iff ϕ∗ is consistent.

The formula ϕ∗ is called the Skolem normal form of ϕ.

Proof. By a previous theorem we may assume that ϕ is in prenex normal form. We prove
the theorem by induction on the number of existential quantifiers in ϕ. If ϕ does not
contain an existential quantifier we are done. Otherwise let

ϕ=∀x1
 ∀xm∃yψ

where m < ω may also be 0. Introduce a new m-ary function symbol f (or a constant
symbol in case m=0) and let

ϕ ′=∀x1
 ∀xmψ
fx1
 xm

y
.
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By induction it suffices to show that ϕ is consistent iff ϕ′ is consistent.
(1) ϕ′→ ϕ.
Proof . Assume ϕ′. Consider x1,
 , xm . Then ψ fx1
 xm

y
. Then ∃yψ. Thus ∀x1
 ∀xm∃yψ.

qed(1)
(2) If ϕ′ is consistent then ϕ is consistent.
Proof . If ϕ→⊥ then by (1) ϕ ′→⊥ . qed(2)
(3) If ϕ is consistent then ϕ′ is consistent.
Proof . Let ϕ be consistent and let M=(M,
 )� ϕ . Then

∀a1∈M 
 ∀am∈M ∃b∈MM
aS b

xS y
�ψ.

Using the axiom of choice there is a function h:Mm→M such that

∀a1∈M
 ∀am∈MM
aS h(a1,
 , am)

xS y
�ψ.

Expand the structure M to M ′=M∪{(f , h)} where the symbol f is interpreted by the
function h. Then h(a1,
 , am) =M′aS

xS
(fx1
 xm) and

∀a1∈M
 ∀am∈MM ′
aS M′aS

xS
(fx1
 xm)

xS y
=M′aS

xS

M ′aS

xS
(fx1
 xm)

y
� ψ.

By the substitution theorem this is equivalent to

∀a1∈M
 ∀am∈MM′aS

xS
� ψ

fx1
 xm
y

.

Hence

M′� ∀x1
 ∀xmψ
fx1
 xm

y
=ϕ′.

Thus ϕ′ is consistent. �

18 Herbrand’s theorem

By the previous chapter we can reduce the question whether a given finite set of formulas
is inconsistent to the question whether some universal formula is inconsistent. By the
following theorem this can be answered rather concretely.

Theorem 80. Let S be a language which contains at least one constant symbol. Let

ϕ=∀x0∀x1
 ∀xm−1 ψ

be a universal S-sentence with quantifier-free matrix ψ . Then ϕ is inconsistent if there are
variable-free S-terms (“constant terms”)

t0
0,
 , tm−1

0 ,
 , t0
N−1,
 , tm−1

N−1

such that

ϕ′=
∧

i<N

ψ
t0
i ,
 , tm−1

i

x0,
 , xm−1
=ψ

t0
0,
 , tm−1

0

x0,
 , xm−1
∧
 ∧ ψ

t0
N−1,
 , tm−1

N−1

x0,
 , xm−1

is inconsistent.

Proof. All sentences ϕ′, for various choices of constant terms, are logical consequences of
ϕ. So ϕ is consistent, all ϕ ′ are consistent.
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Conversely assume that all ϕ ′ are consistent. Then by the compactness theorem

Φ= {ψ
t0,
 , tm−1

x0,
 , xm−1
|t0,
 , tm−1 are constant S-terms}

is consistent. Let M=(M,
 )�Φ. Let

H = {M(t) |t is a constant S-term}.

Then H � ∅ since S contains a constant symbol. By definition, H is closed under the
functions of M . So we let H=(H,
 )⊆M be the substructure of M with domain H .
(1) H � ϕ .
Proof . Let M(t0), 
 , M(tm−1) ∈ H where t0, 
 , tm−1 are constant S-terms. Then

ψ
t0,
 , tm−1

x0,
 , xm−1
∈Φ, M� ψ

t0,
 , tm−1

x0,
 , xm−1
, and by the substitution theorem

M
M(t0),
 ,M(tm−1)

x0,
 , xm−1
� ψ.

Since ψ is quantifier-free this transfers to H :

H
M(t0),
 ,M(tm−1)

x0,
 , xm−1
� ψ.

Thus

H �∀x0∀x1
∀xm−1 ψ= ϕ.

qed(1)
Thus ϕ is consistent. �

In case that the formula ψ does not contain the equality sign ≡ checking for inconsist-
ency of

ϕ′=
∧

i<N

ψ
t0
i ,
 , tm−1

i

x0,
 , xm−1
=ψ

t0
0,
 , tm−1

0

x0,
 , xm−1
∧
 ∧ ψ

t0
N−1,
 , tm−1

N−1

x0,
 , xm−1

is in principle a straightforward finitary problem. ϕ′ contains finitely many constant S-
terms. ϕ′ is consistent iff the relation symbols can be interpreted on appropriate tuples
of the occuring S-terms to make ϕ′ true. There are finitely many possibilities for the
assignments of truth values of relations. This leads to the following (theoretical) algorithm
for automatic proving for formulas without ≡:

Let Ω⊆LS be finite and χ∈LS. To check whether Ω⊢ χ:

1. Form Φ = Ω ∪ {¬χ} and let ϕ = ∀(
∧

Φ) be the universal closure of
∧

Φ . Then
Ω⊢ χ iff Φ=Ω∪{¬χ} is inconsistent iff (

∧

Φ)⊢⊥ iff ∀(
∧

Φ)⊢⊥ .

2. Transform ϕ into universal form ϕ∀= ∀x0 ∀x1
 ∀xm−1 ψ (Skolemization).

3. Systematically search for constant S-terms

t0
0,
 , tm−1

0 ,
 , t0
N−1,
 , tm−1

N−1

such that

ϕ′=
∧

i<N

ψ
t0
i ,
 , tm−1

i

x0,
 , xm−1
=ψ

t0
0,
 , tm−1

0

x0,
 , xm−1
∧
 ∧ ψ

t0
N−1,
 , tm−1

N−1

x0,
 , xm−1

is inconsistent.

4. If an inconsistent ϕ′ is found, output “yes”, otherwise carry on.

Obviously, if “yes” is output then Ω⊢ χ . This is the correctness of the algorithm. On the
other hand, Herbrand’s theorem ensures that if Ω ⊢ χ then an appropriate ϕ′ will be
found, and “yes” will be output, i.e., the algorithm is complete.
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Let us assume from now on, that the formulas considered do not contain the symbol ≡.
We shall see that the search for those S-terms and the inconsistency-check can be

further systematized. We can assume that the quantifier-free formula ψ is in conjunctive
normal form, i.e., a conjunction of clauses ψ= c0∧ c1∧
 ∧ cl−1. Then ∀x0∀x1
∀xm−1 ψ

is inconsistent iff the set

{ci
t0,
 , tm−1

x0,
 , xm−1
|t0,
 , tm−1 are constant S-terms}

is inconsistent.
The method of resolution gives an efficient method for showing the inconsistency of

sets of clauses.

Definition 81. Let c+= {K0,
 ,Kk−1} and c−= {L0,
 ,Ll−1} be clauses with literals Ki

and Lj . Note that {K0,
 ,Kk−1} stands for the disjunction K0∨
 ∨Kk−1 . Assume that
K0 and L0 are dual, i.e., L0=K0 . Then the disjunction

{K1,
 , Kk−1}∪ {L1,
 , Ll−1}

is a resolution of c+ and c−.

Resolution is related to the application of modus ponens: ϕ→ ψ and ϕ correspond to
the clauses {¬ϕ, ψ} and {ϕ}. {ψ} is a resolution of {¬ϕ, ψ} and {ϕ}.

Theorem 82. Let C be a set of clauses and let c be a resolution of two clauses c+, c−∈C.
Then if C ∪{c} is inconsistent then C is inconsistent.

Proof. Let c+= {K0,
 ,Kk−1}, c−= {¬K0, L1
 , Ll−1}, and c= {K1,
 ,Kk−1} ∪{L1,
 ,

Ll−1}. Assume that M�C is a model of C.
Case 1 . M�K0 . Then M� c−, M� {L1
 , Ll−1}, and

M� {K1,
 ,Kk−1} ∪ {L1,
 , Ll−1}= c.

Case 2 . M�¬K0 . Then M� c+, M� {K1
 ,Kk−1}, and

M� {K1,
 ,Kk−1} ∪ {L1,
 , Ll−1}= c.

Thus M�C ∪{c}. �

Theorem 83. Let C be a set of clauses closed under resolution. Then C is inconsistent
iff ∅∈C. Note that the empty clause {}↔⊥ .

Proof. If ∅ ∈C then C is clearly inconsistent.
Conversely assume that C is inconsistent. By the compactness theorem there is a finite

set of atomic formulas {ϕ0,
 , ϕn−1} such that

C ′= {c∈C |for every literal L in c there exists i <n such that L= ϕi or L=¬ϕi},

the restriction of C to {ϕ0,
 , ϕn−1} is inconsistent. Assume that the number n of atomic
formulas with that property is chosen minimally.
Case 1 . n=0. Since the empty set of clauses is consistent, C ′

� ∅. On the other hand the
only clause built from zero atomic formulas is the clause {}= ∅. Thus ∅ ∈C ′⊆C.
Case 2 . n=m+1> 0. Assume for a contradiction that ∅ � C. Let

C+= {c∈C ′|¬ϕ0 � c}, C−= {c∈C ′|ϕ0 � c}

and

C0
+= {c \ {ϕ0}|c∈C+}, C0

−= {c \ {¬ϕ0}|c∈C−}.
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(1) C0
+ and C0

− are closed under resolution.
Proof . Let d′′ be a resolution of d, d ′ ∈ C0

+. Let d = c \ {ϕ0} and d′ = c′ \ {ϕ0} with c,

c′∈C+. The resolution d′′ was based on some atomic formula ϕi� ϕ0 . Then we can also
resolve c, c ′ by the same atomic formula ϕi . Let c′′ be that resolution of c, c′. Since C is
closed under resolution, c′′∈C, c′′∈C+, and d′′= c′′ \ {ϕ0}∈C0

+. qed(1)
(2) ∅ � C0

+ or ∅ � C0
−.

Proof . If ∅ ∈ C0
+ and ∅ ∈C0

−, and since ∅ � C we have {ϕ0} ∈C+ and {¬ϕ0} ∈C−. But
then the resolution ∅ of {ϕ0} and {¬ϕ0} would be in C, contradiction. qed(2)
Case 1 . ∅ � C0

+. By the minimality of n and by (1), C0
+ is consistent. Let M � C0

+. Let
the atomic formula ϕ0 be of the form rt0
 ts−1 where r is an n-ary relation symbol and
t0,
 , ts−1∈T S. Since the formula rt0
 ts−1 does not occur within C0

+, we can modify the
model M to a model M′ by only modifying the interpretation M(r) exactly at (M(t0),
 ,
M(ts−1)). So letM′(M(t0),
 ,M(ts−1)) be false. ThenM′�¬ϕ0 . We show thatM ′�C ′.

Let c ∈ C ′. If ¬ϕ0 ∈ c then M′ � c . So assume that ¬ϕ0 � c . Then c ∈ C+ and
c \ {ϕ0} ∈C0

+. Then M� c \ {ϕ0}, M ′� c \ {ϕ0}, and M ′� c . But then C ′ is consistent,
contradiction.
Case 2 . ∅ � C0

−. We can then proceed analogously to case 1, arranging that
M′(M(t0),
 ,M(ts−1)) be true. So we get a contradiction again. �

This means that the inconsistency check in the automatic proving algorithm can be
carried out even more systematically: produce all relevant resolution instances until the
empty clause is generated. Again we have correctness and completeness for the algorithm
with resolution.

19 Logical programming

To give a small impression of the logical programming language Prolog let us consider a
theory about the recursive definition of formulas. Let

fm(psi)

fm(phi)

∀X,Y (fm(X)∧ fm(Y )→ fm(and(X,Y )))

be a small axiom system concerning the formation of formulas; here “psi” and “phi” are
constant symbols, “and” is a binary function symbol, and “fm” is a unary relation symbol.
To show that ψ ∧ (ψ ∧ ψ) is a formula one has to derive

fm(and(psi, and(psi, psi)))

from the axioms. This is equivalent to showing that

fm(psi)

fm(phi)

∀X,Y (fm(X)∧ fm(Y )→ fm(and(X,Y )))

¬fm(and(psi, and(psi, psi)))

is inconsistent. We can write the matrix of the conjunction of these formulas in conjunctive
normal form as

C = {{fm(psi)}, {fm(phi)}, {¬fm(X), ¬fm(Y ), fm(and(X, Y ))}, {¬fm(and(psi, and(psi,

psi)))}}.
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Obviously the universally quantified clause {¬fm(X),¬fm(Y ), fm(and(X,Y ))} implies all
its instantiations by constant terms. So we close the set C under such instantiations and
under resolution. Deriving the empty clause {} shows the desired inconsistency. We write
the sequence of derived clauses in the format of a formal proof:

1 fm(psi) assumption
2 fm(phi) assumption
3 ¬fm(X),¬fm(Y ), fm(and(X,Y )) assumption
4 ¬fm(and(psi, and(psi, psi))) assumption
5 ¬fm(psi),¬fm(and(psi, psi)), fm(and(psi, and(psi, psi))) instance of 3
6 ¬fm(psi),¬fm(and(psi, psi)) resolution of 4, 5
7 ¬fm(and(psi,psi)) resolution of 1, 6
8 ¬fm(psi), fm(and(psi,psi)) instance of 3
9 ¬fm(psi) resolution of 7, 8
10 {} resolution of 1, 9

The choice of instances of the universal clause {¬fm(X), ¬fm(Y ), fm(and(X, Y ))}
was directed by the desire to resolve certain clauses along the derivation. It is possible to
find “fitting” instances by the method of unification, which finds substitutions to produce
literals that are dual to each other. Indeed we did use informal and simple unification in
the example:

− to make 3 = ¬fm(X),¬fm(Y ), fm(and(X,Y )) and 4 = ¬fm(and(psi, and(psi,psi)))
resolve we chose substitutions for X and Y such that the literals fm(and(X, Y ))
and ¬fm(and(psi, and(psi, psi))) became dual. This lead to setting X = psi and Y
= and(psi,psi). The resolution then was 6 = ¬fm(psi),¬fm(and(psi,psi)).

− to make 1 = fm(psi) and 6 = ¬fm(psi), ¬fm(and(psi, psi)) resolve, no further
substitution was required.

− to make 3 = ¬fm(X),¬fm(Y ), fm(and(X,Y )) and 7 = ¬fm(and(psi,psi)) resolve we
chose the substitutions X = psi and Y = psi. The resolution then was 9 = ¬fm(psi).

− to make 1 = fm(psi) and 9 = ¬fm(psi) resolve, no further substitution was required.

The above example can be viewed as the execution of a program in Prolog. Prolog

systematically searches for unifications and keeps track of the required substitutions. The
composition of all those substitutions is the computational result of the program.

To demonstrate how one can compute in Prolog let us consider the addition “2 + 2 =
V?”. We represent natural numbers by terms in a language with the constant symbol zero
and the successor function succ. Addition is represented as a ternary predicate

add(X,Y , Z)↔X +Y =Z.

The following program describes the recursive definition of add. To compute 2 + 2 one
leads the assumption ¬add(succ(succ(zero)), succ(succ(zero)), X), which expresses that
there is no solution to the addition problem, into a contradiction.

add(X, zero,X)

(add(X,Y ,Z)→ add(X, succ(Y ), succ(Z)))

¬add(succ(succ(zero)), succ(succ(zero)), V )

In Prolog notation, this can be written as

add(X,zero,X).
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add(X,succ(Y),succ(Z) :- add(X,Y,Z).

?- add(succ(succ(zero)),succ(succ(zero)),V).

Execution of this program will lead to a substitution of V which makes the program
inconsistent: we begin with the clauses

1. add(X,zero,X)
2. ¬add(X,Y,Z), add(X,succ(Y),succ(Z))
3. ¬add(succ(succ(zero)),succ(succ(zero)),V)

(The final literals of) 2 and 3 can be unified by the substitutions X:=succ(succ(zero)),
Y:=succ(zero), V:=succ(Z). One obtains the resolvent:

4. ¬add(succ(succ(zero)),succ(zero),Z)
This should again resolve against 2. However to avoid variable clashes, we first rename
the (universal) variables in 2:

5. ¬add(X1,Y1,Z1), add(X1,succ(Y1),succ(Z1))
4 and 5 can be unified by the substitutions X1:=succ(succ(zero)), Y1:=zero,
Z:=succ(Z1). One obtains the resolvent:

6. ¬add(succ(succ(zero),zero,Z1)
This should resolve against 1. We first rename variables in 1:

7. add(X2,zero,X2).
6 and z can be unified by the substitutions X2:=succ(succ(zero)), Z1:=X2. As resolvent
one obtains the desired contradiction

8. {}

A/the value for V which leads to this contradiction is obtained by chasing through the
substitutions:

V=succ(Z)=succ(succ(Z1))=succ(succ(X2))=succ(succ(succ(succ(zero)))).
Thus 2+2=4!

20 Zermelo-Fraenkel set theory

Almost all mathematical notions can be defined set-theoretically. Georg Cantor the creator
of set theory gave the following definition or description:

Unter einer Menge verstehen wir jede Zusammenfassung M von bestim-
mten, wohlunterschiedenen Objekten m unsrer Anschauung oder unseres
Denkens (welche die “Elemente” von M genannt werden) zu einem Ganzen.

Felix Hausdorff begins the Grundzüge der Mengenlehre with a concise description,
which seems less dependent on human minds:

Eine Menge ist eine Zusammenfassung von Dingen zu einem Ganzen, d.h.
zu einem neuen Ding.

The notion of set is adequately formalized in an first-order axiom system introduced
by Zermelo, Fraenkel and others. Together with the Gödel completeness theorem
for first-order logic this constitutes a “formalistic” answer to the question “what is math-
ematics”: mathematics consists of formal proofs from the axioms of Zermelo-Fraenkel
set theory.

Definition 84. Let ∈ be a binary infix relation symbol; read x∈ y as “x is an element of
y”. The language of set theory is the language {∈}. The formulas in L{∈} are called set
theoretical formulas or ∈-formulas. We write L∈ instead of L{∈}.
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The naive notion of set is intuitively understood and was used extensively in previous
chapters. The following axioms describe properties of naive sets. Note that the axiom
system is an infinite set of axioms. It seems unavoidable that we have to go back to some
previously given set notions to be able to define the collection of set theoretical axioms -
another example of the frequent circularity in foundational theories.

Definition 85. The system ZF of the Zermelo-Fraenkel axioms of set theory consists
of the following axioms:

a) The axiom of extensionality (Ext):

∀x∀y(∀z(z ∈x↔ z ∈ y)→ x≡ y)

- a set is determined by its elements, sets having the same elements are identical.

b) The axiom of set existence (Ex):

∃x∀y¬y ∈x

- there is a set without elements, the empty set.

c) The separation schema (Sep) postulates for every ∈-formula ϕ(z, x1,
 , xn):

∀x1
∀xn∀x∃y∀z (z ∈ y↔z ∈x∧ ϕ(z, x1,
 , xn))

- this is an infinite scheme of axioms, the set z consists of all elements of x which
satisfy ϕ.

d) The pairing axiom (Pair):

∀x∀y∃z∀w (w ∈ z↔w≡x∨w≡ y).

- z is the unordered pair of x and y.

e) The union axiom (Union):

∀x∃y∀z(z ∈ y↔∃w(w ∈x∧ z ∈w))

- y is the union of all elements of x.

f ) The powerset axiom (Pow):

∀x∃y∀z(z ∈ y↔∀w(w ∈ z→w ∈x))

- y consists of all subsets of x.

g) The axiom of infinity (Inf):

∃x(∃y (y ∈x∧∀z¬z ∈ y)∧∀y(y ∈x→∃z(z ∈x∧∀w(w ∈ z↔w ∈ y ∨w≡ y))))

- by the closure properties of x, x has to be infinite.

h) The replacement schema (Rep) postulates for every ∈-formula ϕ(x, y, x1,
 , xn):

∀x1
∀xn(∀x∀y∀y ′((ϕ(x, y, x1,
 , xn)∧ ϕ(x, y ′, x1,
 , xn))→ y≡ y ′)→

∀u∃v∀y (y ∈ v↔∃x(x∈ u∧ ϕ(x, y, x1,
 , xn))))

- v is the image of u under the map defined by ϕ.

i) The foundation schema (Found) postulates for every ∈-formula ϕ(x, x1,
 , xn):

∀x1
∀xn(∃xϕ(x, x1,
 , xn)→∃x(ϕ(x, x1,
 , xn)∧∀x′(x ′∈x→¬ϕ(x ′, x1,
 , xn))))

- if ϕ is satisfiable then there are ∈-minimal elements satisfying ϕ.
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Most of the axioms have a form like

∀xS ∃y∀z (z ∈ y↔ ϕ).

Intuitively, y is the set of sets z which satisfy ϕ. The common notation for that set is

{z |ϕ}.

This is to be seen as a term, which assigns to the other parameters in ϕ the value {z |ϕ}.
Since the result of such a term is not necessarily a set we call such terms class terms . It
is very convenient to employ class terms within ∈-formulas. We view this notation as an
abbreviation for “pure” ∈-formulas.

Definition 86. A class term is of the form {x |ϕ} where x is a variable and ϕ ∈ L∈. If
{x|ϕ} and {y |ψ} are class terms then

− u∈{x|ϕ} stands for ϕ
u

x
;

− u= {x|ϕ} stands for ∀v (v ∈u↔ ϕ
v

x
);

− {x|ϕ}=u stands for ∀v (ϕ
v

x
↔ v ∈u);

− {x|ϕ}= {y |ψ} stands for ∀v (ϕ
v

x
↔ ψ

v

y
);

− {x|ϕ} ∈u stands for ∃v(v ∈u∧ v= {x|ϕ};

− {x|ϕ} ∈ {y |ψ} stands for ∃v(ψ
v

y
∧ v= {x|ϕ}.

In this notation, the separation schema becomes:

∀x1
∀xn∀x∃y y= {z |z ∈x∧ ϕ(z, x1,
 , xn)}.

We shall further extend this notation, first by giving specific names to important formulas
and class terms.

Definition 87.

a) ∅8 {x|x� x} is the empty set;

b) V 8 {x|x=x} is the universe.

We work in the theory ZF for the following propositions.

Proposition 88.

a) ∅ ∈V.

b) V � V (Russell’s antinomy).

Proof. a) ∅ ∈V abbreviates the formula

∃v(v= v∧ v= ∅).

This is equivalent to ∃v v= ∅ which again is an abbreviation for

∃v ∀w (w ∈ v↔w� w).

This is equivalent to ∃v∀ww � v which is equivalent to the axiom of set existence. So ∅∈V
is another way to write the axiom of set existence.
b) Assume that V ∈V . By the schema of separation

∃y y= {z |z ∈V ∧ z � z}.
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Let y= {z |z ∈V ∧ z � z}. Then

∀z (z ∈ y↔ z ∈V ∧ z � z).

This is equivalent to

∀z (z ∈ y↔ z � z).

Instantiating the universal quantifier with y yields

y ∈ y↔ y � y

which is a contradiction. �

We introduce further abbreviations. By a term we understand a class term or a variable,
i.e., those terms which may occur in an extended ∈-formula. We also introduce bounded
quantifiers to simplify notation.

Definition 89. Let A be a term. Then ∀x∈Aϕ stands for ∀x(x∈A→ ϕ) and ∃x∈Aϕ
stands for ∃x (x∈A∧ ϕ).

Definition 90. Let x, y, z,
 be variables and X,Y ,Z ,
 be class terms. Define

a) X ⊆Y 8 ∀x∈X x∈Y, X is a subclass of Y ;

b) X ∪ Y 8 {x|x∈X ∨x∈Y } is the union of X and Y ;

c) X ∩ Y 8 {x|x∈X ∧x∈Y } is the intersection of X and Y ;

d) X \ Y 8 {x|x∈X ∧x � Y } is the difference of X and Y ;

e)
⋃

X8 {x|∃y ∈X x∈ y} is the union of X ;

f )
⋂

X8 {x|∀y ∈X x∈ y} is the intersection of X ;

g) P(X) = {x|x⊆X } is the power class of X;

h) {X }= {x|x=X} is the singleton set of X;

i) {X,Y }= {x|x=X ∨ x= Y } is the (unordered) pair of X and Y;

j ) {X0,
 ,Xn−1}= {x|x=X0∨
 ∨x=Xn−1}.

One can prove the well-known boolean properties for these operations. We only give a
few examples.

Proposition 91. X ⊆Y ∧ Y ⊆X→X =Y.

Proposition 92.
⋃

{x, y}=x∪ y.

Proof. We show the equality by two inclusions:
(⊆). Let u∈

⋃

{x, y}. ∃v(v∈{x, y}∧u∈ v). Let v∈{x, y}∧u∈ v. (v=x∨ v= y)∧u∈v.
Case 1 . v= x. Then u∈x. u∈x∨ u∈ y. Hence u∈x∪ y.
Case 2 . v= y. Then u∈ y. u∈x∨u∈ y. Hence u∈x∪ y.

Conversely let u∈x∪ y. u∈x∨u∈ y.
Case 1 . u∈x. Then x∈{x, y}∧u∈x. ∃v(v ∈{x, y}∧u∈ v) and u∈

⋃

{x, y}.
Case 2 . u∈ y. Then x∈{x, y}∧ u∈x. ∃v(v ∈{x, y}∧u∈ v) and u∈

⋃

{x, y}. �

We can now reformulate the ZF axioms using class terms.

a) Extensionality: ∀x∀y (x⊆ y ∧ y⊆x→x= y).

b) Set existence: ∅ ∈V .
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c) Separation schema: for all terms A with free variables x0,
 , xn−1

∀x0
∀xn−1∀x x∩A∈V .

d) Pairing: ∀x∀y {x, y}∈V .

e) Union: ∀x
⋃

x∈V .

f) Powerset: ∀xP(x)∈V .

g) Infinity: ∃x (∅∈x∧∀u∈x u∪ {u}∈x).

h) Replacement: see later.

i) Foundation: for all terms A with free variables x0,
 , xn−1

∀x0,
 , xn−1(A� ∅→∃x∈A x∩A= ∅).

21 Relations and functions

Ordered pairs are the basis for the theory of relations.

Definition 93. (x, y)= {{x}, {x, y}} is the ordered pair of x and y .

Proposition 94. (x, y)∈ V.
(x, y) = (x′, y ′)→x= y ∧x ′= y ′.

Definition 95. Let A,B,R be terms. Define

a) A×B= {z |∃a∈A∃b∈B z= (a, b)} is the cartesian product of A and B .

b) R is a (binary) relation if R⊆V ×V.

c) If R is a binary relation write aRb instead of (a, b)∈R.

We can now introduce the usual notions for relations:

Definition 96.

a) dom(R)= {x |∃y (x, y)∈R} is the domain of R.

b) ran(R)= {y |∃x (x, y)∈R} is the range of R.

c) R ↾A= {z |z ∈R∧∃x∃y((x, y)= z ∧x∈A)} is the restriction of R to A.

d) R[A] = {y |∃x∈A xRy} is the image of A under R.

e) R−1= {z |∃x∃y (xRy∧z=(y, x))} is the inverse of R .

f ) R−1[B] = {x|∃y ∈B xRy} is the preimage of B under R .

One can prove the usual properties for these notions in ZF. One can now formalize the
types of relations, like equivalence relations, partial and linear orders, etc. We shall only
consider notions which are relevant for our short introduction to set theory.

Definition 97. Let F ,A,B be terms. Then

a) F is a function if ∀x∀y, y ′ (xFy∧xFy ′→ y= y ′).

b) F : A → B if F is a function∧dom(F ) = A ∧ ran(F ) ⊆ B. The sequence notions
(F (x)|x∈A) or (F (x))x∈A are just other ways to write F :A→V.
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c) F (x)= {v |∃y (xFy∧∀y ′ (xFy ′→ y= y ′)→∃y (xFy∧v∈ y)} is the value of F at x.

Note that if F :A→B and x∈A then xFF (x). If there is no unique y such that xFy
then F (x)= V which we may read as F (x) is “undefined”.

Using functional notations we may now write the replacement schema as

for all terms F : F is a function → F [x]∈V .

22 Ordinal numbers

It is natural to formalize the integer n by some set with n elements. This intuitive plan
will be implemented in the sequel. We shall have

0 = ∅

1 = {0}

2 = {0, 1}




n+1 = {0, 1,
 , n} = {0, 1,
 , n− 1} ∪ {n} =n∪{n}




N=ω = {0, 1,
 }

We note some properties of this informal presentation which will be the basis for the
formalization of numbers:

1. ”Numbers” are ordered by the ∈-relation:

m<n iff m∈n.

E.g., 3∈ 5 but not 5∈ 3.

2. On each “number”, the ∈-relation is a strict linear order : 4 = {0, 1, 2, 3} is strictly
linearly ordered by ∈.

3. ”Numbers” are “complete” with respect to smaller “numbers”

i < j <m→ i∈m.

This can be written with the ∈-relation as

i∈ j ∈m→ i∈m,

a property termed transitivity .

Definition 98.

a) A is transitive, Trans(A), iff ∀y ∈A∀x∈ y x∈A .

b) x is an ordinal (number), Ord(x), if Trans(x)∧ ∀y ∈xTrans(y).

c) Let Ord= {x|Ord(x)} be the class of all ordinal numbers.

d) Set 0= ∅; for all x let x+1=x∪{x}.

We shall see that this defines a notion of “number” which extends the integers and which
is in particular adequate for enumerating infinite sets. We work in the theory ZF.

Theorem 99.

a) 0∈Ord.
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b) ∀x∈Ord x+1∈Ord .

Proof. a) Trans(∅) since formulas of the form ∀y ∈ ∅
 are tautologously true. Similarly
∀y ∈∅ Trans(y).
b) Assume x∈Ord.
(1) Trans(x+1).
Proof . Let u∈ v ∈x+1=x∪{x}.
Case 1 . v ∈x. Then u∈x⊆x+1, since x is transitive.
Case 2 . v= x. Then u∈x⊆x+1. qed(1)
(2) ∀y ∈x+1Trans(y).
Proof . Let y ∈x+1=x∪{x}.
Case 1 . y ∈x. Then Trans(y) since x is an ordinal.
Case 2 . y=x. Then Trans(y) since x is an ordinal. �

Definition 100. Set 1=0+1, 2=1+1, 3= 2+1, etc.

By the previous result, 0, 1, 2,
 ∈Ord. The class Ord shares many properties with its
elements:

Theorem 101. Let x∈Ord and y ∈ x. Then y ∈Ord.

Proof. This follows immediately from the transitivity definition of Ord. �

Before we proceed in demonstrating that Ord satisfies further “number properties” we
proof a convenient consequence of the foundation schema.

Lemma 102. There is no finite sequence x0, x1,
 , xn which forms an ∈-cycle with

x0∈x1∈
 ∈xn∈x0 .

In particular ∀xx � x .

Proof. Assume that x0∈ x1∈
 ∈ xn ∈ x0 . Let A= {x0,
 , xn}. A� ∅ since x0∈A . By
foundation, take x∈A such that x∩A= ∅ .
Case 1 . x=x0 . Then xn∈x∩A� ∅ , contradiction.
Case 2 . x=xi for some 16 i6n . Then xi−1∈x∩A= ∅ , contradiction. �

Theorem 103. The class Ord is strictly linearly ordered by ∈, i.e.,

a) ∀x, y, z ∈Ord (x∈ y ∧ y ∈ z→ x∈ z).

b) ∀x∈Ordx � x.

c) ∀x, y ∈Ord (x∈ y ∨x= y ∨ y ∈x).

Proof. a) Let x, y, z ∈Ord and x∈ y∧ y ∈ z. Then z is transitive, and so x∈ z.
b) by Lemma 102.
c) Assume that there are “incomparable” ordinals. By the foundation schema choose x0∈
Ord ∈-minimal such that ∃y ∈Ord¬(x0∈ y ∨x0= y ∨ y ∈x0). Again, choose y0∈Ord ∈-
minimal such that ¬(x0∈ y0∨x0= y0∨ y0∈x0). We obtain a contradiction by showing that
x0= y0:

Let x∈x0 . By the ∈-minimality of x0 , x is comparable with y0 : x∈ y0∨x= y0∨ y0∈x .
If x= y0 then y0∈x0 and x0, y0 would be comparable, contradiction. If y0∈x then y0∈x0
by the transitivity of x0 and again x0, y0 would be comparable, contradiction. Hence x∈ y0 .

58 Section 22



For the converse let y ∈ y0 . By the ∈-minimality of y0 , y is comparable with x0 :
y∈x0∨ y=x0∨x0∈ y . If y=x0 then x0∈ y0 and x0, y0 would be comparable, contradiction.
If x0 ∈ y then x0 ∈ y0 by the transitivity of y0 and again x0, y0 would be comparable,
contradiction. Hence y ∈x0 .

But then x0= y0 contrary to the choice of y0 . �

Definition 104. Let <=∈∩Ord×Ord= {(x, y)|x∈Ord∧ y ∈Ord∧x∈ y} be the natural
strict linear ordering of Ord by the ∈-relation.

Let us use small greek letters α, β, γ, 
 as variables for ordinals. There are many
parallels between the intuitive natural numbers and the ordinal numbers.

Lemma 105. Let α∈Ord. Then α+1 is the immediate successor of α in the ∈-relation:

a) α<α+1;

b) if β <α+1, then β=α or β <α.

Lemma 106.

a) α+1� 0 ;

b) α+1= β+1→α= β .

Proof. a) α∈α+1 whereas α � 0 . By extensionality, α+1� 0 .
b) Assume α+ 1= β + 1 but α� β . Then α < β +1 and by the previous Lemma α < β .
By symmetry we also get β <α . But then α∈ β ∈α , contradicting Lemma 102. �

Theorem 107. (Burali-Forti) Ord � V, i.e., the class of ordinals is not a set.

Proof. Assume that Ord ∈ V . By Lemma 101, Trans(Ord). By the definition of ordinal
number, ∀x ∈ Ord Trans(x). Thus Ord is an ordinal number and Ord ∈ Ord. But this
contradicts Lemma 102. �

This result was discovered by Cesare Burali-Forti and was seen as a paradox. Without
the set/class distinction one wants to postulate the set of all ordinals which leads to a
contradiction. On the other hand the result is very important since it expresses that there
are “unboundedly” many ordinals, so that they can be used to “count” arbitrary sets.

22.1 Induction

The ordinals satisfy an induction theorem which generalizes complete induction on the
integers:

Theorem 108. Let ϕ(x, v0,
 , vn−1)∈L∈ and x0,
 , xn−1∈V. Assume that the property
ϕ(x, x0,
 , xn−1) is inductive, i.e.,

∀x∈Ord (∀y ∈x ϕ(y, x0,
 , xn−1)→ ϕ(x, x0,
 , xn−1)).

Then ϕ holds for all ordinals:

∀x∈Ord ϕ(x, x0,
 , xn−1)).

Proof. Assume not. This means that there are x satisfying the property:

x∈Ord∧¬ϕ(x, x0,
 , xn−1).
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According to the schema of foundation one can take an ∈-minimal x with that property:

x∈Ord∧¬ϕ(x, x0,
 , xn−1)∧∀y(y ∈x→¬y ∈Ord∧¬ϕ(y, x0,
 , xn−1)).

The clause y ∈Ord is redundant since x⊆Ord:

x∈Ord∧¬ϕ(x, x0,
 , xn−1)∧∀y(y ∈x→ ϕ(y, x0,
 , xn−1)).

By the inductivity of ϕ the right-hand clause implies ϕ(x, x0,
 , xn−1) and so

x∈Ord∧¬ϕ(x, x0,
 , xn−1)∧ ϕ(x, x0,
 , xn−1).

Contradiction. �

22.2 Natural numbers

We have 0,1,
 ∈Ord. We shall now define and study the set of natural numbers/integers.
Recall the axiom of infinity:

∃x (∅∈x∧∀u(u∈x→ u∪{u} ∈x)).

Or, with notations from the theory of ordinals:

∃x (0∈ x∧∀u∈x u+1∈x).

The set of natural numbers should be the ⊆-smallest such x.

Definition 109. Let ω =
⋂

{x|0 ∈ x ∧ ∀u ∈ x u+ 1 ∈ x} be the set of natural numbers.
Sometimes we write N instead of ω.

We will show that this is an adequate formalization.

Theorem 110.

a) ω ∈V.

b) ω ⊆Ord.

c) ω ∈Ord.

Proof. a) By the axiom of infinity take a set x0 such that

0∈x0∧∀u∈x0 u+1∈x0 .

Then

ω=
⋂

{x|0∈x∧∀u∈x u+1∈x}= x0∩
⋂

{x|0∈x∧∀u∈x u+1∈x} ∈V

by the separation schema.
b) By a), ω ∩Ord∈V . Obviously 0∈ ω ∩Ord∧∀u∈ ω ∩Ord u+1∈ω ∩Ord. So ω ∩Ord
is one factor of the intersection in the definition of ω and so ω⊆ω∩Ord . Hence ω⊆Ord .
c) By b), every element of ω is transitive and it suffices to show that ω is transitive. Let

x= {n|n∈ω ∧∀m∈n m∈ω}⊆ω.

We show that the hypothesis of c) holds for x. 0∈x is trivial. Let u∈x. Then u+1∈ ω.
Let m∈u+1. If m∈u then m∈ω by the assumption that u∈x. If m=u then m∈x⊆ω.
Hence u+1∈x and ∀u∈ x u+1∈x. By b), x=ω. So ∀n∈ωn∈x , i.e.,

∀n∈ω∀m∈n m∈ω. �
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Theorem 111. (ω, 0,+1) satisfies the axioms of second order Peano axiom, i.e.,

a) 0∈ω and ω is closed with respect to the +1 operation.

b) x+1� 0 ;

c) x+1= y+1→x= y ;

d) ∀x⊆ω (0∈x∧∀u∈x u+1∈x→x=ω).

Proof. a) holds because ω is an intersection of sets with these closure properties. b) and
c) follow from Lemma 106. For d) assume that x ⊆ ω such that 0 ∈ x ∧ ∀u ∈ x u+ 1 ∈ x .
Then x is one of the factors in the intersection that defines ω . Hence ω⊆x and so x=ω . �

22.3 Limit ordinals

We have seen that ω is an ordinal that is not a natural number. To study such numbers
we define:

Definition 112. Let γ be an ordinal.

a) γ is a successor ordinal if γ=α+1 for some α∈Ord . Let Succ={γ | γ is a successor
ordinal } be the class of all successor ordinals.

b) γ is a limit ordinal if γ � 0 and γ is not a successor ordinal. Let Lim= {γ | γ is a
limit ordinal }.

Lemma 113. ω is the smallest limit ordinal.

Proof. Assume for a contradiction that ω was a successor ordinal, say ω = n+ 1. Then
n∈ω and n+1∈ω since ω is closed under +1 . But then ω ∈ω , contradiction. Thus ω is
a limit ordinal.

Assume that λ<ω is a smaller limit ordinal. If u∈λ then u+16λ and so u<λ . Also
0<λ . But then λ was used in the intersection defining ω, and ω⊆λ . This implies ω<ω ,
contracition. �

One can continue counting through the ordinals by defining

ω+2 = (ω+1)+1

ω+3 = (ω+2)+1




so that the ordinals begin like

0, 1, 2,
 , ω, ω+1, ω+2, ω+3,


Once we have introduced the principle of recursion, we shall see that there are many more
limit ordinals above ω like the limit of the ω+n .

22.4 Recursion

Recursion, often called induction, over the natural numbers is a ubiquitous method for
defining mathematical object. We show a more general recursion theorem.

Theorem 114. Let G:V → V. Then there is a canonically defined class term F such that

F :Ord→V and ∀α∈Ord F (α) =G(F ↾α).
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We then say that F is defined by recursion over the ordinals with the recursion rule G.
Moreover, the function F is uniquely determined: if F ′: Ord→ V with ∀α ∈ Ord F ′(α) =
G(F ′ ↾α) then F =F ′.

Proof. We begin by showing the compatibility of functions satisfying the recursion equa-
tion:
(1) Let F , F ′ be terms such that ∀α ∈ Ord ∩ dom(F ) F (α) = G(F ↾ α) and ∀α ∈
Ord∩dom(F ′) F ′(α)=G(F ′ ↾α). Let α∈Ord such that α+1⊆dom(F )∩dom(F ′). Then
F (α)=F ′(α).
Proof . By the induction theorem it suffices to show that the property

α+1⊆dom(F )∩dom(F ′)→F (α)=F ′(α)

is inductive, i.e.,

∀α ∈ Ord (∀β ∈ α (β + 1 ⊆ dom(F ) ∩ dom(F ′) →F (β) = F ′(β)) → (α + 1 ⊆ dom(F ) ∩

dom(F ′)→F (α) =F ′(α))).

So let α ∈ Ord and ∀β ∈ α (β + 1 ⊆ dom(F ) ∩ dom(F ′) →F (β) = F ′(β)). Let
α + 1 ⊆ dom(F ) ∩ dom(F ′). For β < α we have β + 1 ⊆ dom(F ) ∩ dom(F ′) and hence
F (β)=F ′(β). Thus

F ↾α=F ′ ↾α.

By the recursion equation

F (α) =G(F ↾α) =G(F ′ ↾α)=F ′(α).

qed(1)
Let

F̃ = {f |∃δ ∈Ord (f : δ→V and ∀α<δ f (α)=G(f ↾α)}

be the class of all approximations to F . By (1), the elements of F̃ are pairwise compatible
functions. Hence

F =
⋃

{f |∃δ ∈Ord (f : δ→V and ∀α<δ f (α) =G(f ↾α)}.

is a function defined on a subclass of the ordinals. We show that F also satisfies the
recursion rule G where F is defined:
(2) ∀α∈dom(F ) (α⊆dom(F )∧F (α) =G(F ↾α)).
Proof . Let α ∈ dom(F ). Take some approximationf ∈ F̃ such that α ∈ dom(f). Since
dom(f) is an ordinal and transitive, we have

α⊆dom(f)⊆dom(F ).

Moreover

F (α) = f (α)=G(f ↾α)=G(F ↾α).

qed(2)
It remains to show that dom(F ) =Ord, i.e.,

(3) ∀α∈Ord α∈dom(F ).
Proof . By induction on the ordinals. We have to show that α ∈ dom(F ) is inductive in
the variable α. So let α∈Ord and ∀β ∈α β ∈dom(F ). Then α⊆dom(F ). Let

f =F ↾α∪{(α,G(F ↾α))}.

f is a function with dom(f )=α+1∈Ord. Let α′<α+1. If α′<α then

f(α′)=F (α′)=G(F ↾α′)=G(f ↾α′).
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If α′=α then

f(α′) = f(α)=G(F ↾α)=G(f ↾α) =G(f ↾α′).

Hence f ∈ F̃ and α∈dom(f)⊆ dom(F ). qed(3)
The uniqueness of the function F follows from (1). �

There are various special cases of recursion in which the recursion rule G is determined
in ways adequate for the application. Like in complete induction and recursion one often
distinguishes 0-, successor and limit cases:

Theorem 115. Let G0∈ V, Gsucc:V
2→V , and Glim: V →V. Then there is a canonically

defined class term F such that

F :Ord→V and ∀α∈Ord F (α)=







G0, if α=0
Gsucc(F (β), α), if α= β+1
Glim(F ↾α,α), if α∈Lim

We then say that F is defined by recursion over the ordinals with the recursion rules G0,
Gsucc , and Glim .

Proof. We have to combine the recursion rules G0, Gsucc , and Glim into a single rule G:
V →V :

G(f )=















G0, if f = ∅
Gsucc(f(β), α), if Func(f) and dom(f) =α

Glim(f , α), if Func(f) and dom(f)∈Lim
0, else

Let F :Ord→V be recursively defined by G. Then we have
for α=0 : F (0)=G(F ↾ 0)=G(∅)=G0 .
for α= β+1 : F (α)=G(F ↾α)=Gsucc(F (β), α).
for α∈Lim : F (α)=G(F ↾α)=Glim(F ↾α,α). �

Note that class terms involved in recursion can also have extra parameters.

23 Ordinal arithmetic

We can now define arithmetical operations on the ordinals, using familiar recursive prop-
erties.

Definition 116. Define the term add(δ,α) by ordinal recursion on the variable α (taking
δ as a parameter) such that

add(δ, α) =











δ, if α=0
add(δ, β) + 1, if α= β+1
⋃

i<α
add(δ, i), if α∈Lim

add(δ, α) is the ordinal sum of δ and α . We also write δ+α instead of add(δ, α). Then
the recursive equation can be written as

δ+0 = δ

δ+(β+1) = (δ+ β) + 1

δ+α =
⋃

i<α

(δ+ i), if α∈Lim
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One can show that ordinal addition satisfies several natural properties.

Proposition 117.

a) α+ β ∈Ord .

b) α+0=0+α=α .

c) (α+ β)+ γ=α+(β+ γ).

d) α, β ∈ω→α+ β ∈ω .

Proof. By induction. �

Note that ordinal addition is in general not commutative:

1+ω=
⋃

n∈ω

1+n=ω � ω+1

We have shown by the side that

Lemma 118. There are limit ordinals >ω : ω+ω ∈Lim .

Proof. ω+ω ∈Ord and ω+ω>ω . Assume that

β <ω+ ω=
⋃

n<ω

ω+n.

Let β ∈ω+n0 for some n0∈ω . Then

β+1∈ (ω+ n0)+ 1=ω+(n0+1)⊆
⋃

n<ω

ω+n=ω+ω.

�

Definition 119. Define the ordinal product δ ·α of δ and α recursively:

δ · 0 = 0

δ · (β+1) = (δ · β)+ 1

δ ·α =
⋃

i<α

(δ · i), if α∈Lim

Ordinal multiplication satisfies natural properties.

Proposition 120.

a) α · β ∈Ord .

b) α · 0=0 ·α=0 .

c) (α · β) · γ=α · (β · γ).

d) α · (β+ γ)= (α · β) + (α · γ).

e) α, β ∈ω→α · β ∈ω .

Proof. By induction. Let us prove d) by induction on γ . For γ=0

α · (β+0)=α · β=(α · β)+ 0= (α · β) + (α · 0).

For γ= δ+1

α · (β + (δ + 1)) = α · ((β + δ) + 1) = (α · (β + δ)) + α = ((α · β + α · δ)) + α =

(α · β)+ ((α · δ)+α)= (α · β)+ (α · (δ+1)).
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For γ ∈Lim

α · (β+ γ)=α ·

(

⋃

i<γ

(β+ i)

)

=
⋃

i<γ

(α · (β+ i))=
⋃

i<γ

((α · β)+(α · i))=
⋃

j<α·γ

((α · β)+ j)=

(α · β)+ (α · γ). �

Again, ordinal multiplication is not commutative:

2 ·ω=
⋃

n<ω

2 ·n=ω� ω+ω=ω · 2 .

Also “left-distributivity” does not hold:

(1+1) ·ω=
⋃

n<ω

((1+1) · n) =ω � ω+ω= (1 ·ω) + (1 ·ω).

Finally define ordinal exponentiation by

Definition 121. Define the ordinal power δα of δ and α recursively:

δ0 = 1

δβ+1 = (δβ) · δ

δα =
⋃

i<α

δi, if α∈Lim

Ordinal exponentiation satisfies natural properties.

Proposition 122.

a) αβ ∈Ord .

b) α0=1, α1=α , and α2=α ·α .

c) (αβ)γ=αβ ·γ.

d) αβ+γ=(αβ) · (αγ).

e) α, β ∈ω→αβ ∈ω .

24 Number systems

24.1 The structure N

The arithmetical operations on N can be defined by restricting ordinal arithmetic to N :

N= (ω,<,+, ·, 0, 1)

where +=+↾(ω×ω) and ·=·↾(ω×ω). Then

Theorem 123. N is a model of the first-order axiom system PA given in Definition 64.
Hence PA is consistent.

Note that we are proving the consistency of PA in the stronger system ZF so that we
do not have a contradiction to Gödel’s second incompleteness theorem.

Proof. It remains to check the schema of induction in N :
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for every formula ϕ(x0,
 , xn−1, xn)∈LSAR:

∀x0
 ∀xn−1(ϕ(x0,
 , xn−1, 0)∧∀xn(ϕ→ ϕ(x0,
 , xn−1, xn+1))→∀xnϕ).

So let ϕ(x0,
 , xn−1, xn)∈LSAR and a0,
 , an−1∈N . Also assume that

N� ϕ(a0,
 , an−1, 0)∧∀xn(ϕ(a0,
 , an−1, xn)→ ϕ(a0,
 , xn−1, xn+1)).

Define

X = {u∈N |N� ϕ(a0,
 , an−1, u)}⊆N.

By assumption, 0 ∈ X and ∀u ∈ X u + 1 ∈ X . Since N satisfies the second-order Peano
axioms (see Theorem 111), X =N . So

N�∀xnϕ(a0,
 , an−1, xn).

�

The structure N = (N, <, +, ·, 0, 1) or indeed the structure (N, +1, 0) has a unique
characterization up to isomorphism.

Theorem 124. Let N ′ = (N ′, S , Z) be a structure satisfying the axioms of second-order
Peano arithmetic:

a) S(x)� Z ;

b) S(x)= S(y)→x= y ;

c) ∀x⊆N ′ (Z ∈x∧∀u∈x S(u)∈ x→x=N ′).

Then (N,+1, 0) is isomorphic to (N ′, S , Z).

Proof. Define a map h:N→N ′ by (complete) recursion:

h(0) = Z

h(n+1) = S(h(n))

(1) h is a homomorphism.
Proof . This is exactly expressed in the recursive definition of h . qed(1)
(2) h is injective.
Proof . Assume not. Let n∈N be minimal such that there is some m∈N such that m� n

and h(m) =h(n).
Case 1 . n=0 . Then m= l+1 for some l ∈N .

S(h(l)) =h(l+1)=h(m) =h(n)=h(0) =Z.

But this contradicts Peano axiom a).
Case 2 . n= k+1 for some k ∈N . By the minimality of n we have m> 0. Let m= l+ 1
for some l∈N .

S(h(k)) =h(k+1)=h(n) =h(m)=h(l+1)=S(h(l)).

By Peano axiom b) we get h(k)=h(l). By the minimality of n we have that k= l. But then

m= l+1= k+1= n,

contradiction. qed(2)
(3) h is surjective.
Proof . Let x= ran(h). Then Z =h(0)∈ x . If u= h(n)∈x then

S(u)=S(h(n)) =h(n+1)∈x.
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By the Peano axiom c) we get x=N ′. �

24.2 The structure Q>0

(Non-negative) rational numbers are constructed as “quotients” of natural numbers.

According to the laws of fractions, quotients like 1

2
and 2

4
can be identified. The iden-

tification proceeds via a canonical equivalence relation, hence rational numbers will be
equivalence classes of quotients.

Definition 125. A quotient is an ordered pair (m, n) where m ∈ N and n ∈ N \ {0};
N× (N\{0}) is the set of all quotients. Define an equivalence relation ∼Q on N× (N\{0})
by

(m,n)∼Q (m′, n′) iff m ·n′=m ′ ·n.

For (m,n)∈N× (N \ {0}) let

m

n
= {(m ′, n′) | (m,n)∼Q (m ′, n′)}

be the equivalence class of (m, n). Let

Q>0=
{

m

n
| (m,n)∈N× (N \ {0})

}

be the set of non-negative rational numbers.
Define a binary addition operation +Q on Q>0 by

m

n
+Q

m′

n′
=
m ·n′+n ·m ′

n · n′
.

Define a binary multiplication ·Q on Q>0 by

m

n
·Q
m ′

n′ =
m · n′

n ·n′ .

Define a relation <Q on Q>0 by

m

n
<Q

m ′

n′ iff m ·n′<m′ · n.

Define a map π:N→Q>0 by

π(n) =
n

1
.

Lemma 126. The preceding definition is correct, i.e.,

a) ∼Q is an equivalence relation on N× (N \ {0}).

b) Every rational
m

n
is a set.

c) Q>0 is a set.

d) +Q and ·Q are well-defined binary functions, and <Q is a well-defined binary rela-
tion.

e) +Q is associative and commutative on Q>0 with neutral element π(0).

f ) ·Q is a commutative group operation on Q>0 \ {0} with neutral element π(1).

g) <Q is a strict linear order on Q>0.

Number systems 67



h) The distributive law holds:

x ·Q (y+Q z) =x ·Q y+Qx ·Q z.

i) π: (N, <,+, ·, 0, 1)→ (Q>0, <Q,+Q, ·Q, π(0), π(1)) is an embedding.

Proof. a)∼Q is obviously reflexive and symmetric. For transitivity consider (m,n)∼Q(m′,

n′) and (m ′, n′)∼Q (m ′′, n′′). Then

m ·n′=m ′ ·n and m ′ ·n′′=m′′ ·n′.

Then m · n′ ·m ′ ·n′′=m′ · n ·m ′′ ·n′, hence m · n′′=n ·m ′′ and (m,n)∼Q (m′′, n′′).
b) N× (N\ {0}) is a set, since V is closed under cartesian products. Then the equivalence
class m

n
⊆N× (N \ {0}) is a set by separation.

c) Apply replacement to the function (m, n)�
m

n
. Then

Q>0=
{

m

n
| (m,n)∈N× (N \ {0})

}

is a set.
d) We have to show independence of representatives. Let (a, b)∼Q(a ′, b′) and (c, d)∼Q(c′,
d′). Then a · b′= a ′ · b and c · d ′= c′ · d. This implies

(a · d+ c · b) · b′ · d′= a · d · b′ · d′+ c · b · b′ · d′= a′ · d · b · d ′+ c′ · b · b′ · d=(a ′ · d′+ c′ · b′) · b · d

and

(a · d+ c · b, b · d)∼ (a′ · d′+ c ′ · b′, b′ · d′).

Also

a · c · b′ · d′= a′ · c · b · d ′= a′ · c′ · b · d

and

(a · c, b · d)∼Q (a′ · c′, b′ · d′).

Finally

a d< c b iff a d b′ d′<c b b′ d′ iff a ′ d b d′<c′ b b′ d iff a ′ d′< c′ b′

h)

a

b

(

c

d
+
e

f

)

=
a

b

(

c f + e d

d f

)

=
a (c f + e d)

b d f
=
a c f + a e d

b d f
=
a c b f + a e b d

b d b f
=
a c

b d
+
a e

b f
=

a

b

c

d
+
a

b

e

f
.

i) π is obviously injective. Now it suffices to see:

π(m+n)=
m+n

1
=
m

1
+Q

n

1
=π(m) +Qπ(n)

and

π(mn) =
mn

1
=
m

1
·Q
n

1
=π(m) ·Qπ(n).

�

We can now identify the natural number n with the rational number n

1
and obtain

N⊆Q>0

and

<↾N2=(<Q) ↾N
2 , +↾N2=(+Q) ↾N

2 , and ·↾N2=(·Q) ↾N2.
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For simplicity we can now write n, <, +, and · instead of n
1
, <Q , +Q , and ·Q .

24.3 The structure R>0

(Non-negative) real numbers are constructed as (left halves of) Dedekind cuts in the (non-
negative) rational numbers. If the cut determines a rational number, we require that that
rational number is in the left-half of the cut.

Definition 127. A non-negative real (number) is a subset r⊆Q>0 such that

a) 0∈ r and r is bounded, i.e., there is a rational number q ∈Q>0 such that

∀p∈ r: p< q ;

b) r is an initial segment of Q>0 , i.e.,

∀p∈ r∀p′∈Q>0: p
′< p→p′∈ r ;

c) r is open above 0, i.e.,

∀p∈ r \ {0}∃p′∈ r: p< p ′ .

Let

R>0= {r⊆Q>0 | r is a non-negative real }.

Define a binary addition operation +R on R>0 by

r+Rr
′= {p+ p ′ | p∈ r, p ′∈ r ′} .

Define a binary multiplication ·R on R>0 by

r ·Rr ′= {p · p′ | p∈ r, p′∈ r ′} .

Define a relation <R on R>0 by

r <Rr
′ iff r⊆ r ′ and r� r ′ .

Define a map π ′:Q>0→R>0 by π ′(0)= {0}, and

π ′(q) = {p∈Q>0 | p< q}

for q � 0 .

Lemma 128. The preceding definition is correct, i.e.,

a) R>0 is a set.

b) +R and ·R are well-defined binary functions.

c) +R is associative and commutative on R>0 with neutral element π ′(0).

d) ·R is a commutative group operation on Q>0 \ {{0}} with neutral element π ′(1).

e) <Q is a strict linear order on Q>0.

f ) The distributive law holds:

x ·Q (y+Q z) =x ·Q y+Qx ·Q z.

g) π ′: (Q>0, <,+, ·, 0, 1)→ (R>0, <R,+R, ·R, π ′(0), π ′(1)) is an embedding.

Proof. a) R>0⊆P(Q>0) is a set by the powerset axiom and separation. �
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By π ′ we can now identify the structure Q>0 with a substructure of R>0 , and we can
write q, <, +, and · instead of π ′(q), <R , +R, and ·R .

Dedekind cuts were introduced to obtain closure properties for certain irrational limit
processes.

Definition 129. Let (L,<) be a strict linear order and X ⊆L . Then

a) b∈L is a lower bound of X if ∀x∈Xb6x .

b) b∈L is an infimum of X if b is a lower bound of X and for every lower bound b′ of
X we have b′6 b .

c) b∈L is an upper bound of X if ∀x∈Xx6 b .

d) b∈L is a supremum of X if b is an upper bound of X and for every upper bound b′

of X we have b6 b′ .

Note that an infimum resp. supremum of X is uniquely determined if it exists.

Lemma 130. LetX ⊆R>0 be non-empty and bounded, i.e, there is some a∈R>0 such that

∀r ∈X 06 r <a.

Then the infimum and supremum of X both exist.

Proof. We show that

b=
⋃

X

is the supremum of X. The set b ⊆ Q>0 is obviously bounded by a, and it is an initial
segment of Q>0 which is open above 0. So b ∈R>0 . b is an upper bound for X since by
construction ∀r∈Xr6 b . Assume that b′ is another upper bound for X , i.e., ∀r ∈Xr6 b′.
Then b=

⋃

X ⊆ b′ and so b6 b′. Hence b is the least upper bound of X .
For the infimum let a′=

⋂

X . a ′ is a bounded initial segment of Q>0 with 0∈ a′. If a ′

possesses a maximal element q then let a= a′ \ {m}; otherwise set a= a′. It is easy to see
that a is the infimum of X . �

Theorem 131. Let (R,≺) be a strict linear order which densely contains (Q>0, <) and
which is complete with respect to suprema, i.e.,

a) (Q>0, <)⊆ (R,≺);

b) ∀r ∈R∃q ∈Q>0 04 r≺ q ;

c) ∀r, s∈R (r≺ s→∃q ∈Q>0 r≺ q≺ s);

d) If ∅� X ⊆R is bounded in R , i.e., there is r ∈R such that ∀x∈Xx≺ r , then the
supremum of X in (R,≺) exists.

Then under these hypotheses there is an isomorphism

σ: (R,≺)F (R>0, <)

such that σ ↾Q>0= id .

Proof. Define

σ:R→R>0

by σ ↾Q>0= id and, for r ∈R \Q>0 , by

σ(r)= {q ∈Q>0 | q≺ r}.
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It is straightforward to check that σ(r)∈R>0 .
(1) σ is order-preserving.
Proof . Let r ≺ s . It suffices to check that case where r, s ∈ R \Q>0 . By hypothesis c)
there is q ∈Q>0 such that r≺ q≺ s. Then q ∈σ(s) \σ(r). So σ(r)<σ(s). qed(1)

This implies immediately
(2) σ is injective.
(3) σ is surjective onto R>0 .
Proof . Let r ∈R>0 \Q>0 . Set X = {q ∈Q>0 | q < r}. X is a non-empty bounded subset
of R . By the completeness assumption let r ′ be the supremum of X in (R,≺). If q∈Q>0

and q <r then q≺ r ′ since r ′ is an upper bound of X . Conversely if q≺ r ′ then q∈X and
q < r . Hence

σ(r ′) = {q ∈Q>0 | q≺ r ′}= {q ∈Q>0 | q < r}= r .

�

24.4 The structures Z, Q, and R

The structures N, Q>0 , and R>0 are not closed under additive inverses. We complete R>0

to the set of all real numbers and use this to also define Z and Q . R is defined by formal
differences from R>0 like Q>0 was defined by formal quotients from N .

Definition 132. A difference is an ordered pair (r, s) where r, s∈R>0 ; R>0×R>0 is the
set of all differences. Define an equivalence relation ∼R on R>0×R>0 by

(r, s)∼R (r ′, s′) iff r+ s′= r ′+ s.

For (r, s)∈R>0×R>0 let

r− s= {(r ′, s′) | (r, s)∼R (r ′, s′)}

be the ∼Requivalence class of (r, s). Let

R= {r− s | (r, s)∈R>0×R>0}

be the set of all real numbers.
Define a binary addition operation +R on R by

(r− s) +R (r ′− s′) =(r+ r ′)− (s+ s′) .

Define a binary multiplication ·R on R by

(r− s) ·R (r ′− s′)=(r r ′+ s s′)− (r s′+ r ′ s) .

Define a relation <R on R by

r− s<Rr
′− s′ iff r+ s′< r ′+ s.

Define a map π ′′:R>0→R by

π ′′(r) = r− 0.

Lemma 133. The preceding definition is correct, i.e.,

a) ∼R is an equivalence relation on Q>0
2 .

b) Every real number r− s is a set.

c) R is a set.

d) +R and ·R are well-defined binary functions, and <R is a well-defined binary rela-
tion.
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e) +R is a commutative group operation on R with neutral element π ′′(0).

f ) ·R is a commutative group operation on R \ {0} with neutral element π ′′(1).

g) <R is a strict linear order on R.

h) The distributive law holds:

x ·R (y+Rz)= x ·R y+Rx ·Rz.

i) π: (R>0, <,+, ·, 0, 1)→ (R, <R,+R, ·R, π ′′(0), π ′′(1)) is an embedding.

j ) For every real number r− s there is some t∈R>0 such that

r− s=t− 0 or r− s=0− t.

By i) one can identify t− 0∈R with t∈R>0 . For 0− t∈R we simply write −t .

Assuming that we have ensured that

N⊆Q>0⊆R>0⊆R

as substructures, we can now define

Definition 134.

a) The substructure Z⊆R of integer numbers is defined by Z=N∪ {−n |n∈N} .

b) The substructure Q ⊆ R of rational numbers is defined by Q = Q>0 ∪ {−q | q ∈
Q>0} .

On can show that the structure Z, Q, and R can be characterized up to isomorphisms
by 2nd-order properties.

24.5 On mathematical foundations

Mathematics is based on certain domains like numbers, functions, sets etc. with their basic
properties. These domains have definite intuitive meanings and can be viewed as consisting
of objects in space and time or in our (common) imagination. Despite intuitive insights,
there has been a tendency since greek mathematics to express the basic properties exactly,
in axiomatic form. This was partially necessitated by the wish for absolute exactness: the
sum of angles in a triangle is exactly π and not just approximately; so what are the exact
premisses for that result. Also one encountered unintuitive situations like in the beginnings
of analysis where one uses the infinite to analyse situation in the finite.

Axiomatics in geometry led to questions of completeness and consistency of axioms.
The consistency of mathematics as a whole appeared problematic, so that David Hilbert
proposed a programme of proving the consistency of all of mathematics. This requires one
unifying framework in which the standard mathematical domains can be explained. Set
theory from its beginnings in the 19th century was used as an encompassing domain in
which the other domains could be defined appropriately.

So how should we understand the formalization of domains like N, Z, and R within
the theory ZF? Is the real number 3.1416 “really” a Dedekind cut, consisting of equivalence
classes of ordered pairs of natural numbers? It is obviously better to “think” of real numbers
as objects in their own right, which can be described categorically by some 1st and 2nd-
order properties. Also it is natural to imagine that the number domains are included in
each other as substructures:

N⊆Z⊆R⊆C and N⊆Ord .
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Sets form another domain, where e.g. R∈V but where 3.1416� V . This suggests a different
but more “mathematical” setup of domains. Also the language of mathematics has a rich
spectrum of notions to describe those domains in a comprehensive and varied system of
axioms. The preceding constructions of number domains can be seen as providing a model
for the mathematical axioms within ZF. We thus have a relative consistency result: if the
axioms of ZF are consistent then the usual mathematical axiomatics is consistent.

In view of Gödel’s second incompleteness theorem this is the best one can hope for. If
one could prove the consistency of the usual axioms, this would include the axioms of ZF.
Since ZF allows to carry out all mathematical proofs, ZF would prove its own consistency.
But then, by Gödel’s theorem, ZF would be inconsistent . So we have to assume the
consistency of ZF as an empirical and intuitive fact and proceed from there.

25 Finite and infinite cardinalities

(Natural) numbers are mainly used to “count” the size of collections, i.e., sets. This leads
to the notion of cardinal numbers.

Definition 135.

a) card(x)=
⋂

{α |∃f (f :α→ x∧ f is surjective)} is the cardinality of x.

b) κ ∈ Ord is a cardinal (number) if κ = card(x) for some x ∈ V; let Card =
{card(x) | x∈V } be the class of all cardinals.

c) x is finite if card(x)<ω.

d) x is infinite if card(x)≮ω.

e) x is countable if card(x)6ω.

f ) x is uncountable if x is not countable.

Lemma 136. Let κ= card(x). Then there is a bijection κ↔x .

Proof. Take a surjective f :κ→x . Define g:x→ κ by

g(z)= the smallest γ such that f (γ)= z .

LetX= ran(g)⊆κ . Note that f :X→x is a bijection. Define h:κ+1→X ∪{X} recursively
by

h(α)=

{

min (X \ {h(β) | β <α}), if X \ {h(β) | β <α}� ∅
X , else

One can show inductively:
(1) If β <α6 κ and h(α)� X then h(β)<h(α) and α6h(α).
(2) There is λ6κ such that h(λ) =X.
Proof. Otherwise, by (1), h(κ)>κ . But by the definition of h , h(κ)∈X ⊆κ and h(κ)<κ .
Contradiction. qed(2)

So assume that λ6κ is the minimal ordinal such that h(λ)=X.
(3) h ↾ λ: λ↔X.
Proof. h ↾ λ is injective by (1). Since h(λ) = X , we have X \ {h(β) | β < λ} = ∅ and so
X = ran(h ↾ λ). So h ↾ λ is bijective. qed(3)

f ◦ (h ↾ λ): λ→ x is a bijection. By the minimality of κ= card(x) we get λ=κ . �

So card(x) allows to enumerates x by a bijection.
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Theorem 137.

a) ∀n<ω card(n)=n; hence ∀n<ω n∈Card .

b) card(ω)= ω and so ω ∈Card .

c) card(ω+1)=ω.

Proof. a) By “complete induction” on n<ω .
n=0 : ∅: ∅→∅ is surjective. Hence

0= ∅⊆ card(0)=
⋂

{α|∃f (f :α→x∧ f is surjective)}⊆ ∅=0.

n=m+1, and assume that card(m) =m . Assume for a contradiction that card(n)6m .
Take f :m→n surjective. Then m� 0 and we can take l such that m= l+1.
Case 1 . f (l)=m . Then f ↾ l: l→m is surjective and card(m)6 l <m . Contradiction.
Case 2 . f (l)<m . Then define f ′: l→m by

f ′(k)=

{

f (k), if f(k)<m
f (l), if f(k) =m

Then f ′: l→m is surjective and card(m)6 l <m . Contradiction.
b) Obviously card(ω)6ω. Assume for a contradiction that n= card(ω)<ω. Then there is
a surjection from n onto ω. This implies the existence of a surjection from n onto n+ 1.
Then card(n+1)6 n contradicting a).
c) Define f :ω→ω+1 by

f(n)=

{

ω, if n=0
n− 1, if n> 0

f :ω→ω+1 is surjective and so card(ω+1)= ω. �

By c) the infinite has paradoxical properties.

Lemma 138.

a) Let a, b be finite sets. Then a∪ b, a× b, and P(a) are finite.

b) Let x, y be countable sets. Then x∪ y and x× y are countable.

Proof. By constructing certain surjections. We only consider b). Let f :ω→x and g:ω→ y

be surjective. Define a surjection h:ω→x∪ y by

h(n) =

{

f (i), if n=2 i
g(i), if n=2i+1

Define a surjection h′:ω→x× y by

h′(n) =

{

(f (i), g(j)), if n=2i · 3j

(f (0), g(0)), else
�

However:

Theorem 139. (Cantor) The set P(ω) is uncountable.

Proof. Assume instead that card(P(ω))6ω and let f :ω→P(ω) be surjective. Define

a= {n|n<ω ∧n � f(n)} ∈P(ω).
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Since f is surjective, take n0<ω such that a= f(n0). Then

n0∈ a↔ n0 � f(n0)= a.

Contradiction. �

Let us generalize the argument to arbitrary cardinals.

Theorem 140. Let α be an ordinal. Then there is no surjection from α onto P(α).

Proof. Assume instead that f :α→P(α) were surjective. Define

a= {ν |ν <α∧ ν � f(ν)} ∈P(α).

Since f is surjective, take ν0<α such that a= f (ν0). Then

ν0∈ a↔ ν0 � f (ν0)= a.

Contradiction. �

26 The axiom of choice

Consider the following commonly used proposition:

Lemma 141. Assume AC. A countable union of countable sets is countable: let (an)n<ω
be a sequence of countable sets. Then

⋃

n<ω
an is countable.

Proof. (1st attempt)We may assume without loss of generality that all an are nonempty.
For n∈ω “choose” a surjection fn:ω→ an . Then define a surjection h:ω→

⋃

n<ω
an by

h(k)=

{

fn(i), if k=2n · 3i

f0(0), else
�

This argument is not complete. How should the “choices” of fn be carried out? We
cannot make these choices in some temporal succession. In a standard first-order proof,
they have to be made instantaneouly at one step of the proof. Many arguments in infinitary
mathematics depend on the possibility of making infinitely many assignments or choices:
choices of sequences in analysis, choices of basis vectors in vector spaces, etc.. It can be
shown that infinitely many choices are in general not implied by the ZF-axioms, and one
has to add choice principles or axioms.

Definition 142. The axiom of choice, AC, is the following statement:

∀x(∀u, v ∈x(u� ∅ ∧ (u� v→u∩ v= ∅))→∃z∀u∈ x∃v u∩ z= {v})).

This says that the set x , consisting of pairwise disjoint non-empty elements possesses
a choice set z which “chooses” exactly one element from each member of x .

Definition 143. The axiom system ZFC (Zermelo-Fraenkel with choice) consists of the
axiom of ZF together with the axiom of choice.

The system ZFC is the usual foundational axiom system for mathematics. We are able
to prove the above lemma:
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Lemma 144. Assume AC. A countable union of countable sets is countable: let (an)n<ω
be a sequence of countable sets. Then

⋃

n<ω
an is countable.

Proof. We may assume without loss of generality that all an are nonempty. For n∈ω let

Fn= {f |f :ω→ an is surjective}� ∅.

Each Fn⊆P(ω× an) is a set by the powerset axiom.
To choose surjections fn from the Fn let

x= {{n}×Fn |n<ω}.

x is a set by replacement. The elements {n}×Fn of x are nonempty and pairwise disjoint.
By the axiom of choice take a set z such that for all n<ω, the intersection

({n}×Fn)∩ z

contains just a single element (n, fn). Hence f :ω→V given by n� fn is a choice function
which “chooses” fn∈Fn for all n<ω .

We can now define a surjection h:ω→
⋃

n<ω
an by

h(k)=

{

fn(i), if k=2n · 3i

f0(0), else
�

One can show that one cannot prove this lemma in ZF alone - unless ZF is inconsistent.

26.1 Zorn’s lemma

The most popular choice principle is Zorn’s lemma which we already used in the proof of
the general completeness theorem.

Definition 145. Let (Z,6) be a partial order. A chain in Z is a subset C ⊆Z such that

∀x, y ∈C (x6 y∨y6 x).

u∈Z is an upper bound of Z if

∀x∈Cx6u.

(Z,6) is inductive if every chain in Z has an upper bound.
a∈Z is a maximal element of (Z,6) if

¬∃x∈Za<x.

The lemma of Zorn is the statement “every inductive partial order which is a set has a
maximal element”.

To prepare the proof of Zorn’s lemma, we show another choice principle.

Lemma 146. Assume AC. Let x be a set. Then there is a choice function f :x \{∅}→
⋃

x

for x , i.e.,

∀u∈x \ {∅} f (u)∈u.

Proof. Define x′ = {{u} × u | u ∈ x, u � ∅}. x′ is a set consisting of non-empty pairwise
disjoint elements. By AC take a set z such that for all u∈x, u� ∅, the intersection

({u}×u)∩ z
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is a singleton set {(u, f(u))}. Then f is a choice function for x . �

Theorem 147. AC implies the lemma of Zorn.

Proof. Let (Z, 6), Z ∈ V be an inductive partial order. Let f be a choice function for
P(Z). Define a function h:Ord→Z ∪{Z } recursively:

h(α)=

{

f ({u∈Z |u is an upper bound for {h(β)|β <α} and u � {h(β)|β <α}}), if this exists
Z , else.

By definition,
(1) If α< β and h(β)� Z then h(α)<h(β)∈Z .
(2) There exists λ∈Ord such that h(λ)=Z .
Proof . If not, then h:Ord→Z would be an injection, contradiction. qed(2)

Let λ∈Ord be minimal such that h(λ)=Z .
(3) λ is a successor ordinal.
Proof . h(0) � Z: ∅ is a (trivial) chain in Z. Since Z is inductive, ∅ has an upper bound
u in Z. Hence the set of upper bounds in the definition of h(0) is non/empty and f chooses
one such u∈Z.

Assume that λ were a limit ordinal. {h(β)|β < λ} is a chain in Z . By inductivity
it has an upper bound u. Since (h(β)|β < λ) is strictly increasing in the partial order,
u � {h(β)|β < λ}. Therefore h(λ) is defined by an application of the choice function and
h(λ)� Z . Contradiction. qed(3)

So let λ= κ+1 . {h(β)|β6 κ} is a strictly increasing chain in Z .
(4) h(κ) is a maximal element of Z .
Proof. Assume not. Take some u ∈ Z such that h(κ) < u. Then u is an upper bound of
{h(β)|β 6 κ} with u � {h(β)|β 6 κ}. But then h(λ) ∈ Z would be defined, contradicting
h(λ)=Z . �

Let us apply a similar argument to the study of cardinals.

Theorem 148. Assume AC. Then card(x)∈Ord for every x∈V.

Proof. Let x∈V . Let f be a choice function for P(x). Define a function h:Ord→x∪{x}
recursively:

h(α)=

{

f (x \ {h(β)|β <α}), if this exists,
x, else.

By definition,
(1) If α< β and h(β)� x then h(α)� h(β)∈x.
(2) There exists λ∈Ord such that h(λ)=x .
Proof . If not, then h:Ord→x would be an injection, contradiction. qed(2)

Let λ∈Ord be minimal such that h(λ)=x . By the definition of h,

x \ {h(β)|β <λ}= ∅.

Hence h ↾λ:λ→x is surjective, and card(x)6 λ∈Ord . �

Theorem 149. Assume AC. Let κ be a cardinal. Then there is a cardinal λ>κ . Let κ+

be the least cardinal >κ .

Proof. Let λ= card(P(κ)). If λ6 κ . Then there is a surjection from κ onto P(κ) which
is impossible. Hence λ>κ . �

Now we can define, in the system ZFC, the sequence of Alef’s:
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Definition 150. Define recursively:

ℵ0 = ω

ℵα+1 = ℵα
+

ℵλ =
⋃

α<λ

ℵα , for limit ordinals λ

So there is a proper class of infinite cardinals. One can naturally define an arithmetic
on cardinals.

Definition 151. For κ, λ∈Card define

a) the cardinal sum κ+λ= card(({0}×κ)∪ ({1}×λ));

b) the cardinal product κ ·λ= card(κ×λ);

c) the cardinal power κλ= card({f | f :λ→κ}).

Cardinal arithmetic shows unusual properties:

Theorem 152. For α, β ∈Ord

ℵα+ℵβ=ℵα · ℵβ=max (ℵα,ℵβ).

On the other hand, already the value of 2ℵ0 is not determined. Georg Cantor make the
following conjecture:

Definition 153. Cantor’s Continuum Hypothesis (CH) is the statement

2ℵ0=ℵ1 .

This was generalized by Felix Hausdorff:

Definition 154. Hausdorff’s Generalized Continuum Hypothesis (GCH) is the statement

∀α 2ℵα=ℵα+1 .

Axiomatic set theory has shown, that these hypotheses are independent of the ZFC
axioms of set theory. If the axiom system ZFC is consistent, then so are the system
ZFC+GCH and the system ZFC+2ℵ0

� ℵ1 . So the simplest question about infinitary
cardinal exponentiation cannot be resolved in the standard axioms.

Luckily such independencies seldomly affect usual mathematical questions. The axioms
of ZFC are strong enough to decide most mathematical questions. If a proof does not yet
exist this is in most cases due to the difficulty of finding a proof or disproof, but not to
incompleteness.

So in ZFC together with 1st-order logic we are in a comfortable situation: ZFC is
sufficient for all but a tiny minority of problems; at the fringes, axiomatic set theory
exhibits exotic possibilities for the behaviour of infinities.
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