Einfiihrung in die Mathematische Logik

BY PETER KOEPKE

Bonn, Sommersemester 2015

Vorlaufiges Skript zur Vorlesung

Wann sollte die Mathematik je zu einem Anfang
gelangen, wenn sie warten wollte, bis die Philosophie tiber
unsere Grundbegriffe zur Klarheit und Einmdithigkeit
gekommen ist? Unsere einzige Rettung ist der for-

malistische Standpunkt, undefinirte Begriffe (wie Zahl,

Punkt, Ding, Menge) an die Spitze zu stellen, um deren
actuelle oder psychologische oder anschauliche Bedeu-
tung wir uns nicht kimmern, und ebenso unbewiesene
Sdtze (Axiome), deren actuelle Richtigkeit uns michts
angeht. Aus diesen primitiven Begriffen und Urtheilen
gewinnen wir durch Definition und Deduction andere,
und nur diese Ableitung ist unser Werk und Ziel.

Felix Hausdorff, 12. Januar 1918
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1 Deutsche Einleitung

Durch Einfiihrung von logischen Verkniipfungen (“und”, “oder”, “nicht”) und Quantoren
(“fiir alle”, “es existiert”) - oder entsprechenden Symbolen A, V,—,V, 3 - lassen sich alle math-
ematischen Aussagen in eine streng formale Form bringen. Z.B. werden in der Analysis
Eigenschaften von Funktionen oft in Quantorenschreibweise definiert: Ve3d... . Mathem-
atische Beweise konnen als Folgen von Aussagen aufgefasst werden, die sich durch logische
Schliisse aus Grundannahmen ergeben. Dabei haben wichtige Schlussweisen einen rein
formalen, kalkiilartigen Charakter als schematische Umformungen von Symbolfolgen.

In dem Modul wird die formallogische Begriindung der Mathematik anhand von Formu-
lierungen von Aussagen, Theorien und Beweisen, die aus dem ersten Studienjahr bekannt
sind, vorgestellt. Es wird ein vollstdndiger Beweiskalkiil fiir die Pradikatenlogik (erster
Stufe) angegeben, der dem iiblichen mathematischen Schliefen nahe steht. Durch die Form-
alisierung werden Aussagen und Beweise selbst zu mathematischen Objekten. Zentrales
Ergebnis ist der Godelsche Vollstandigkeitssatz, der die formale Methode bestétigt: jede
allgemeingiiltige mathematische Aussage kann im Beweiskalkiil abgeleitet werden.

Die Mengenlehre ist die allgemein akzeptierte Grundlage der Mathematik. Die Zermelo-
Fraenkelschen Axiome der Mengenlehre lassen sich in der Logik erster Stufe formulieren.
Wir werden sehen, wie sich die iiblichen Grundbegriffe der Mathematik wie Zahlen, Rela-
tionen, Funktionen usw. in diesem Axiomensystem entwickeln lassen.

Aus Sicht des reinen Formalismus wird die Frage “Was ist Mathematik?” daher beant-
wortet als:

Mathematik = Préadikatenlogik + Zermelo-Fraenkelsche Axiome.

Diese Sicht ist Grundlagen-theoretisch auflerordentlich wichtig, aber sie abstrahiert von
vielen Aspekten der tatsdchlichen Mathematik wie der Anschaulichkeit mathematischer
Objekte, den intellektuellen Herausforderungen mathematischer Probleme, der Anwend-
barkeit der Mathematik in Wissenschaft und Technik, ihrer Asthetik usw. Auch die formale
Mathematik bendtigt Kriterien fiir die Auswahl von interessanten Aussagen und Beweisen,
die nicht im Formalismus selbst begriindet sind.

In der Vorlesung und den Ubungen wird besonderer Wert auf die Arbeit mit konkreten
Formalisierungen gelegt. Die Vorlesung setzt Grundkenntnisse aus dem 1. Studienjahr
Mathematik voraus.

Die Vorlesung ist ein in sich abgeschlossenes Modul und nicht Bestandteil des turnus-
méfigen Logik-Mengenlehre-Zyklus. Sie wird evtl. im Wintersemester mit einem Seminar
fortgesetzt.

Vorlesungsinhalte:
e (Quantorensprachen
e Strukturen
e Interpretation von Termen und Formeln in Strukturen
e Formale Sprachen und Kalkiile
o Beweiskalkiile
e Konsistenz und Erfillbarkeit von Theorien

e Der Godelsche Vollstandigkeitssatz
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e Mengentheoretische Axiome

e Mengentheoretische Grundlegung der Mathematik
e Ordinalzahlen

e Zahlbereiche

e Kardinalzahlen

e Auswahlaxiom und Zornsches Lemma

2 The language of mathematics

Mathematical logic studies the language of mathematics with mathematical methods. So
we first have to get some ideas about that language. We then begin to normalize or regulate
the language, to consist of finite sequences of symbols which are built according to some
simple rules. This will allow to apply mathematics to the language.

We shall use the language of first-order predicate calculus which resembles the quantifier
notations known from calculus: f is continuous iff

VaVe >030 >0Va' (|x — 2’| <o— | f(x) — f(z)] <e).

We shall demonstrate the move from informal mathematical statements to formal state-
ments with examples from linear algebra.

2.1 Examples: vector spaces

Consider the definitions of a vector space in three standard textbooks.

Albrecht Beutelspacher: Lineare Algebra - Eine Einfiihrung in die Wissenschaft der
Vektoren, Abbildungen und Matrizen

3.1. Die Definition
Jedem Vektorraum liegt ein Kérper K zugrunde. Welcher spezielle Korper das ist, wird
meistens keine Rolle spielen; deshalb nennen wir den Korper neutral K. Wir werden die
Elemente von K of auch Skalare nennen.

Die Hauptsache eines Vektorraums sind aber seine Elemente, die Vektoren. Ein Vek-
torraum iiber dem Koérper K (auch K-Vektorraum genannt) besteht aus einer Menge
V von Elementen, die wir Vektoren nennen, die den folgenden Gesetzen geniigt:

1. Verkniipfung von Vektoren: Es gibt eine Verkniipfung + auf V, die je zwei
Vektoren v und w einen Vektor v 4+ w zuordnet, so dass fiir alle u,v,w € V die folgenden
Eigenschaften erfiillt sind:

Assoziativitdt:

u+ (v+w)=(u+v)+w

Ezistenz des Nullvektors: Es gibt einen Vektor, den wir mit o bezeichnen, mit folgender
Eigenschaft

v+o=w.

Ezistenz negativer Vektoren: Zu jedem Vektor v gibt es einen Vektor, den wir —v nennen,
mit

Kommutativitdt:
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2. Verkniipfung von Skalaren und Vektoren: Fiir jeden Vektor v € V und jeden
Skalar k € K ist ein Vektor k - v definiert (das Objekt k - v (fiir das wir auch kurz kv
schreiben) soll also ein Element von V sein). Diese Bildung des skalaren Vielfachen ist so,
dass fiir alle h, k € K und fiir alle Vektoren v,w € V' die folgenden Eigenschaften gelten:

(k+h)v = kv+ho,
(k-h)-v = k-(h-v),
l-v = v,
k-(vtw) = k-v+k-w.

Egbert Brieskorn: Lineare Algebra und analytische Geometrie

Ein Vektorraum iiber einem Koérper K ist eine Menge V' zusammen mit zwei Operationen

VxV—V KxV—YV
(v, w)—v+w (a,v)—a-v

fiir welche die folgenden Bedingungen erfiillt sind:
(A1) Yu,v,weV (u+v)+w=u+ (v+w)

(A2) 0eVVveVO+v=v+0=v

(A3) VveVI—wveV—v+v=v+(—v)=0
(Ad) Yw,weVWw+w=w+v

(V1) Va,be K¥VveV (ab)-v=a- (b-v)

(V2) YweVl-v=v

(V3) Va,be KNveV (a+b)-v=a-v+b-v
(V) Vae KVv,weVa-(v+w)=a-v+a-w

Serge Lang: Linear Algebra

A vector space V over the field K is a set of objects which can be
added and multiplied by elements of K, in such a way that the sum of two
elements of V is again an element of V', the product of an element of V by
an element of K is an element of V', and the following properties are satisfied:

S1. Given elements u,v,w of V, we have
(utv)+w=u+ (v+w).
S2. There is an element of V, denoted by 0, such that
O+u=u+0=u

for all elements u of V.
S3. Given an element u of V, there exists an element —u in V such that

u+ (—u)=0.

S4. For all elements u,v of V, we have

u+v=v—+u.

S5.
S6.
S7.
S8.

If ¢ is a number, then ¢ (u+v) =cu+cv.

If a,b are two numbers, then (a+b)v=av+bo.

If a,b are two numbers, then (ab)v=a(bv).

For all elements u of V, we have 1-v=wu (1 here is the number one).
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Notes about (these) mathematical texts:

1.

Mathematical texts combine “exact” natural language and symbolic formulas in a
particular style.

. Like with ordinary natural language there may be many variants of texts which

basically have the same mathematical content. Texts differ by individual “styles”.

. Superficially and in the general perception mathematical texts are perfectly exact

and complete. This is, however, not true.

. Texts leave out a lot of implicit assumptions: which addition + and multiplication -

is used where? Addition in the field, or between vectors? Do all vector spaces share
the same + and -7 Do all vector spaces have the same null vector 07

. Notions are incompletely specified: What is a vector space really: a set with oper-

ations?

. Texts build on assumptions from other or earlier sources or some general expert

knowledge: what is a field?

. Considering vector spaces one uses notions and propositions from other domains

like sets, operators, ...

. A strictly formal system like a computer (program) would not be able to handle our

vague definitions of vector spaces. We would obtain dozens of error messages.

To get an idea how a fully complete and exact version of the definition of vector
space could look like, let us consider snippets from the MIZAR system for mathematics
(www.mizar.org). Mizar is a system for writing and proof checking fully formalized math-
ematics (“formal mathematics”); it contains vast amounts of basic mathematical material.

8. VECTOR SPACE STRUCTURE

definition let F be 1-sorted;
struct(LoopStr) VectSpStr over F (#

b

carrier -> set,

add -> BinOp of the carrier,

Zero -> Element of the carrier,

lmult -> Function of [:the carrier of F,the carrier:],
the carrier #)

definition let F be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr

)

mode VectSp of F is VectSp-like
add-associative right_zeroed right_complementable Abelian
(non empty VectSpStr over F);

end;

definition let F be non empty doubleLoopStr;
let IT be non empty VectSpStr over F;
attr IT is VectSp-like means
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:: VECTSP_1:def 26
for x,y being Element of F
for v,w being Element of IT holds
xx (VHw) = xkvixFw &
(x+y)*v = x*v+y*v &
(xxy)*v = x*x(y*v) &
(1_F)*v

v
end;

Notes on formal mathematics in MIZAR:

1. Notions have to be specified in detail; the zero of F' is to be distinguished from the
zero vector: (0 _F)

2. Types of notions have to be specified. Like in a computer program the type of the
scalar multiplication has to be introduced as
lmult -> Function of [:the carrier of F,the carrier:], the carrier #

3. Most formal mathematics systems use idiosyncrasies like in programming languages:
ASCII letters instead of common mathematical symbols; line endings with ,, ; ; ...

4. There are many formal mathematics system, differing in their aims and in the
language accepted.

3 Tranforming natural mathematical language into
formalized language

We saw that the mathematical language used in textbook, lectures, and exams is informal.
This informality is akin to the general informality of natural language. Natural language
is usually incomplete and often inconsistent. But it allows to express facts and arguments
briefly, geared towards human understanding. Natural language transports important nat-
ural intuitions. The common mathematical language is the main tool for mathematical
thought, writing, and communication. Like in other fields, there are (informal) criteria
when a text is accepted as sufficiently complete, exact, or even beautiful. These criteria
are the result of mathematical history, culture, and education. As a mathematician you
are required to acquire them and to adhere to them.

For the mathematical analysis of mathematical language, however, we shall move from
informal mathematical language to formal language. Before we strictly define the formal
language we shall demonstrate some normalizations and formalizations with the example
of the definition of vector spaces.

3.1 Structures

In all the definitions above, F-vector spaces V are sets V with “extra operations®. This is
captured by the notion of a structure (V,...) where V' is the (non-empty) underlying set,
and the extra components of the structure are explicitly listed. So an F-vector space is a
structure (V,+Y,-V,0Y) where

— 4V is the addition of vectors from V: +V:V xV =V ;
— Vs the scalar multiplication: -V: F x V = V;

— 0V is the zero-vector: 0V e V.
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Of course the field F' has to be treated similarly: a field F' is a structure of the form
(F,+F,.F 0F 1F) where

— 4% is the field addition: +F: F x F — F;
—  -Fis the field multiplication: -f: F x F — F';
— 0% is additive neutral element of the field: 0¥ € F;

1¥ is multiplicative neutral element of the field: 17 € F.

Now we can say exactly, which operations and constants are used in the axioms. The
axioms of Serge Lang can now be written more exactly:

A structure (V, +",-V,0") is a vector space over a field (F, +%, -, 0F", 17), where
the following properties are satisfied:

1. Given elements u,v,w €V, we have
(u+Vv) HYw=u+" (v+"w).
2. For all elements ueV
0V +Vu=u+"0V=u.
3. Given an element u € V there exists an element —u € V' such that
u+" (—u)=0".
4. For all elements u,v €V, we have
u+"v=v+"u.
5. For all ce F and all u,v €V, then
eV (u+Vv)y=cVu+Ve V.
6. For all a,b€ F and all v €V, then
(a+Fb0) Vo=a-Yv+Vb-Vo.
7. For all a,b€ F and all ve€V, then
(a-Fb) Yo=a-V (b-Vv).

8. For all u eV, we have

This notation still has some problems:

1. To denote the order of operations, one uses brackets, but then some brackets are
omitted according to the convention that multiplications of some kind have priority
over addition of some kind. This has to be strictly regulated in a formal language.

2. The status of the —u is unclear: is — another operation, or is —u just a variable like
voruv'?

3. There are natural language variants which do not seem essential for the definition:
sometimes “then” is used, and sometimes “we have”.

3.2 Quantifiers

A lot of mathematics is of the “for all ... there exists ...” kind. The phrases “for all” and “there
exists” are quantifying phrases. Language variants like “Given an ...” instead of “for all” are
also common. These are often denoted by quantifiers ¥V and 3 as in the Brieskorn.
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Then the vector axioms become:
Vu,v,weV(u+Yv) HYw=u+Y (v+Yw)
Vue VoV +Yu=u+V0"=u
VueVIweVu+Yv=0"
Vu,veVu+Yv=v+"u

Vee FVu,ve VeV (u+Vv)=cVu+Ve Vo
Va,be FYweV (a+¥b) -Yv=a-Yo+Vb-Vv
Va,be FVveV(a-b) Vo=a-V (b-Yv)

8. VueV1lVu=u

NS G W e

These axioms still involve set theory in the form of the €-relation. For various reasons this
should be pushed into the background. There are two “sorts” of quantiers, namely the €V'-
quantifiers and the € F-quantifiers. These appear less set-theoretical when we write VVu
instead of Vu e V:

L YV, v, wu+Yv) +Vw=u+" (v+Yw)
V.0V +Yu=u+Y 0V =u

VVuIVo.u +Vo =0V
VVu,vu+Yv=v+"u

vievWu,v.eV (u+Yv)=cVu+Ve Vo
VEa, o0vo (a +10) Vo=a-Yv+Vb-Vo
VEa,bv v(a - F'b) Yo=a-V (b-Yv)

V.l Vu=u

® N S ok W N

3.3 Sorts

So far these axioms make use of two sorts of objects. An F-vector space V can be viewed
as a two-sorted structure

(V,F,..).

Our later logical analysis, however, will be easier if we can restrict to situations with one
sort. This is also possible with vector spaces Vover the field F', when we take VU F as a
new underlying set. Such a vector space is a structure of the form

(VUF7 RVa RF7 +V7 'Va 0V7 +F7 'Fa 0F7 1F)

where Ry and Rp are relations in one argument, that determine the subsets V and F' of
the underlying set V U F":

Ry(u) is true iff ue 'V, Rp(u) is true iff ue F
the vector axioms now read:
L. Yu,v,w((Ry(u) A Ry (v) A Ry(w)) = (u+Yv) +Yw=u+" (v +"w))
2. Vu (Ry(u) = 0V +Vu=u+"0"=u)
3. Yu(Ry(u) = Fv( Ry (v) Au+Yv=0"))
4. Yu,v ((Rv(u) ARy (v)) = u+"v=v+"u)
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5. Ye( Rp(c) = Vu, v((Ry(u) A Ry (v)) —
6. Va,b( (Rr(a) A Rp(b)) = Vu( Ry
7. Va,b( (Rp(a) AN Rp(b)) = Vu( Ry
8. Vu( Ry (u) = 1-Yu=u)

Here we have also used the logical operators — (implies) and A (and), replacing V"u... by
Vu(Ry (u) —...) and 3Yu... by Ju(Ry(u) A...).

¢V (u+Vv)=cVu+Ve Vo))
v) = (a+Fb) Yo=0a-Yv+Vb V)
(

v) = (a-Fo) Yo=a-Y(b-Yv)))

—~~

3.4 Conclusion

After this example it appears conceivable to build an adequate mathematical language on
the basis of symbols for

— variables, like a,b,u,v,...

— relations, like Ry,...

—  operations, like +7, 4+, ...

—  constants, like 0F, 17, 0", ...

— propositional connectives, like A, —
— quantifiers, like V, 3
Exercise 1. Consider the structure (R, +,-,0,1, <, f, g) where f and g are functions from R to R.
Carry out formalizations similar to the above example for the following properties of f and g:

a) f is everywhere positive;

b is strictly monotoneously growing;
c

is continuous;

z is differentiable at x;

) f
) f
d) f is uniformly continuous;
e)
)

f) z is the derivative of f at x;
g) g is the derivative of f.

Exercise 2. Consider a two-sorted structure (F,R,+,-,0,1, <) where F is some collection of functions
from R to R . Formalize:

a) every function is continuous;
b) the sum of two continuous functions is continuous;

¢) every positive function is the square of some positive function.

4 The Syntax of first-order logic: Symbols, terms, and
formulas

The art of free society consists first
in the maintenance of the symbolic
code.

A. N. Whitehead

Formal mathematical statements will be finite sequences of symbols, like ordinary sen-
tences are sequences of alphabetic letters. These sequences can be studied mathematically.
We shall treat the sequences as mathematical objects, similar to numbers or vectors. This
study will be carried out in the usual, informal mathematical language:
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We shall use the common, informal mathematical language to express prop-
erties of a formal mathematical language.

This is not a contradiction in itself, but the natural state of affairs in foundational
studies. Language is analysed within language. Physical experiments are carried out with
apparatus build from physical material, following physical laws itself.

The study of the formal properties of symbols, words, sentence,... is called syntaz.
Syntax will later be related to the “meaning” of symbolic material, its semantics. The
interplay between syntax and semantics is at the core of logic. A strong logic is able to
present interesting semantic properties, i.e., properties of interesting mathematical struc-
ture, already in its syntax.

We build the formal language from atomic building blocks.

4.1 Symbols

A symbol has some basic information about its role within larger contexts like words and
sentences. E.g., the symbol < is usually used to stand for a binary relation. So we let
symbols include information on its function, like “relation”, together with further details,
like “binary”. We provide us with a sufficient collection of symbols.

Definition 1. The basic symbols of first-order logic are
a) = for equality,
b) —,—, L for the logical operations of negation, implication and the truth value false,
¢) V for universal quantification,
d) (and ) for auziliary bracketing.
e) wariables vy, for n € N.

Let Var = {v,|n € N} be the set of variables and let Sy be the set of basic symbols.

An n-ary relation symbol, forn €N, is (a set) of the form R=(z,0,n); here 0 indicates
that the values of a relation will be truth values. 0-ary relation symbols are also called
propositional constant symbols.

An n-ary function symbol, for n € N, is (a set) of the form f = (z, 1, n) where 1
indicates that the values of a function will be elements of a structure.

0-ary function symbols are also called constant symbols.

A symbol set or a language is a set of relation symbols and function symbols.

We assume that the basic symbols are pairwise distinct and are distinct from any relation
or function symbol. For concreteness one could for example set ==0, -=1, =2, 1 =3,
(=4, )=5, and vp,=(1,n) for n€N.

An n-ary relation symbol is intended to denote an n-ary relation; an n-ary function
symbol is intended to denote an n-ary function in some structure. A symbol set is some-
times called a type because it describes the type of structures which will later interpret
the symbols. We shall denote variables by letters like x, y, 2, ..., relation symbols by P, Q,
R, ..., functions symbols by f,g,h,... and constant symbols by ¢, cg, c1,... We shall also use
other typographical symbols in line with standard mathematical practice. A symbol like
<, e.g., usually denotes a binary relation, and we could assume for definiteness that there
is some fixed set theoretic formalization of < like <=(999, 0, 2). Instead of the arbitrary
999 one could also take the number of < in some typographical font as they are provided
by mathematical typesetting systems.
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Example 2. The language of group theory is the language
SGr = {O, 6},

where o is a binary (= 2-ary) function symbol and e is a constant symbol. Again one
could be definite about the coding of symbols and set Sqr={(80,1,2), (87,1,0)}, e.g., but
we shall not care much about such detail. As usual in algebra, one also uses an extended
language of group theory

SGr/: {Oa_la 6}

lis a unary (= l-ary) function symbol.

to describe groups, where ~

4.2 Words

Words:

A letter and a letter on a string
Will hold forever humanity spell-
bound

The Real Group

Definition 3. Let S be a language. A word over S is a finite sequence
w:{0,1,...,n—1} = SpUS.

The number n is called the length of w: length(w)=n. The empty set O is also called the
empty word. Let S* be the set of all words over S. A word w:{0,1,...,n—1}— SyUS is
usually written as a string of letters: w(0) w(1)...w(n —1).

It is convenient to identify the natural number n with its set of predecessors:
n={0,1,...,n—1}.
This will be justified later in our treatment of set theory. Then

w:n— SygUS.

Definition 4. If w and w' are words over the language S then their concatenation w” w’:

length(w) + length(w’) — SoU S is defined by

w(i), if i <length(w)
w'(i — length(w)), else

w w'(i) = {
We also write ww’ instead of w™w’.

Exercise 3. The operation of concatenation satisfies some canonical laws:
a) " is associative: (ww')w” =w(w’' w").
b) @ is a neutral element for ” : Qw=wh=w.

¢) " has cancelation: if vw=u'w then u=u’; if wu=wu’ then u=u'.

4.3 Terms

Fix a symbol set S for the remainder of this section.

Definition 5. The set T° of all S-terms is the smallest subset of S* such that

a) x€T?® for all variables x;
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b) fto...tn_1 €T for all n-ary function symbols f € S and all tg,...,t,_1 €T,

These terms are written in Polish notation, meaning that function symbols come first
and that no brackets are needed. Indeed, terms in T have unique readings according to
the following
Lemma 6. For every term t € T® exactly one of the following holds:

a) t is a variable;

b) there is a uniquely defined function symbol f € S and a uniquely defined sequence

t0, ..o tn_1 € TS of terms, where f is n-ary, such that t= fto...tn_1.

Proof. Exercise. (]

Remark 7. Unique readability is essential for working with terms. Therefore if this Lemma
would not hold one would have to alter the definition of terms.
Example 8. For the language Sgr= {0, e} of group theory, terms in 76 look like
€, 00, V1, ...,0€€,0€ U, ,0Uy €,0€€e,0€0€€, ..., 0V; OV;j Uk , 00U; Vj VU , ... .
In standard notation we would have ov;ov v, = (v;0 (vjouvy)) and oov; v;vp=((viov;) o vg).

Later, if the operation o should be seen to be associative, one might “leave out” brackets.

Exercise 4. Show that every term ¢ € T°¢r has odd length 27+ 1 where n is the number of o-symbols
in t.

4.4 Formulas

Definition 9. The set L of all S-formulas is the smallest subset of S* such that
a) LeL® (the false formula);
b) to=t,€LS for all S-terms to,t; €T (equalities);

¢) Rto...tn_1 €L for all n-ary relation symbols R € S and all S-terms to,...,tn_1€ TS
(relational formulas);

d) —peL® for all p € L (negations);
e) (p— )€ L’ for all p,pc LS (implications);
f) YxpeL® for all ¢ € LS and all variables = (universalisations).

L% is also called the first-order language for the symbol set S. Formulas produced by con-
ditions a) - ¢) only are called atomic formulas since they constitute the initial steps of the
formula calculus.

We restrict L° to just the logical connectives = and —, and the quantifier V. We will
later also use other connectives and quantifiers in convenient abbreviations for formulas
in L. For theoretical considerations it is however advantageous to work with a “small”
language.

Definition 10. For S-formulas ¢ and ¥ and a variable x write

— T (“true”) instead of —L ;
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— (V) (“p or?) instead of (—p— 1)) is the disjunction of v, ;

— (A1) (“p and ¢”) instead of —(p— —1))is the conjunction of ¢, ;

— (o) (Yo iff ©7) instead of ((¢— ) A (Y — @) )is the equivalence of ¢, ;

—  Jz (“for all x holds ¢”) instead of —Vr—p.

For the sake of simplicity one often omits redundant brackets, in particular outer
brackets. So we usually write ¢V 1 instead of (¢ V 9).

Exercise 5. Formulate and prove the unique readability of formulas in L°.

Exercise 6. Formulate the standard axioms of group theory in L5¢:.

5 Semantics

We shall interpret formulas like Vy3z y = g(f(z)) in adequate structures. The interaction
between language and structures is usually called semantics. Technically it will consist in
mapping all syntactic material to semantic material centered around structures. We shall
obtain a schema like:

A structure 2A
variable element of A
function symbol | function on A
relation symbol | relation on A
term element of A
formula truth value

Fix a symbol set S.

Definition 11. An S-structure is a function A: {V} US— V such that
a) A(V)#0; A(V) is the underlying set of A and is usually denoted by A or |A|;
b) for every n-ary relation symbol R€ S, A(R) is an n-ary relation on A, i.e., a(r) C
An;

c) for every n-ary function symbol f €S, A(f) is an n-ary function on A, i.e., a(r):
A"— A.

Again we use customary and convenient notations for the components of the structure
2, i.e., the values of A . One often writes R¥, f*, or c® instead of 2A(r), A(f), or A(c) resp.
In simple cases, one may simply list the components of the structure and write, e.g.,

2= (Aa Rgla R%la le)

or “A has domain A with relations RZ', R¥* and an operation f%”.

A 0-ary function symbol c is also called a constant symbol, and it is interpreted by a
0-ary function 2(c): A= {0} — A which is defined for the single argument 0 and takes a
single value 2(c)(0) in A. It is natural to identify the function 2((c) with the constant value
A(c)(0): A(c) e A.

One often uses the same notation for a structure and its underlying set like in

A= (A, R} RY 1Y),
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This “overloading” of notation is quite common in mathematics (and in natural language,
“pars pro toto”). Usually a human reader is readily able to detect and “disambiguate”
ambiguities introduced by multiple usage. There are also techniques in computer science
to deal with overloading, e.g., by typing of notions. Another common overloading is given
by a naive identification of syntax and semantics, i.e., by writing

A= (A, Ro, Ry, f) instead of A= (A, R§,RY, f%

Since we are particularly interested in the interplay of syntax and semantics we shall try
to avoid this kind of overloading.

Example 12. Formalize the ordered field of reals R as follows. Define the language of
ordered fields

SOF: {<7 +7 y 07 1}
Then define the structure R: {V} US,p— V by

= R

{(u,v) eER?|lu<wv}
+)=+8 = {(u,v,w) eR?|lu+v=w}
R()=% = {(u,v,w) eR3}|u-v=w}
0)=0% = 0eR

=18 = aeR

L
Il
A
=5 N
Il

This defines the standard structure R = (R, <®, +8 .R R 1R),
Observe that the symbols could in principle be interpreted in completely different, even
counterintuitive ways like

R'(V) = N

R'(<) = {(u,v)eN?|u>v}
R'(+) = {(u,v,w)eN?|u-v=w}
R'(") = {(u,v,w)eN}|u+v=w}
R'(0) = 1

R/(1) = 0

Example 13. Define the language of Boolean algebras by
SBA: {/\7 \/7 ) 07 1}

where A and V are binary function symbols for “and” and “or”; — is a unary function symbol
for “not”, and 0 and 1 are constant symbols. A Boolean algebra of particular importance
in logic is the algebra B of truth values. Let B=|B|={0,1} with 0=B(0) and 1=1B(1).
Define the operations and=B(A), or=B(V), and not =B(—) by operation tables in analogy
with standard multiplication tables:

and |01 or|{0]|1 not
0[O0, |0]|0|1|,and| O |1].
1 |0(1 111(1 1

Note that we use the non-exclusive “or” instead of the exclusive “either - or”.

Exercise 7. Show that every truth-function F: B™ — B can be obtained as a composition of the
functions and and not.
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The notion of structure leads to derived definitions.

Definition 14. Let 2 be an S-structure and A’ be an S’-structure. Then A is a reduct
of A, or A" is an expansion of A, if SCTS" and A' [ ({V}US)=2.

According to this definition, the additive group (IR, +,0) of reals is a reduct of the field
(R,+,-,0,1).

Definition 15. Let 2, B be S-structures. Then 2 is a substructure of B, ACB, if B
s a pointwise extension of 2, i.e.,
a) A=A C[B];
b) for every n-ary relation symbol R € S holds R*= RN A™;
¢) for every n-ary function symbol f € S holds %= fP] A",
Definition 16. Let 2, B be S-structures and h: |2 — |B|. Then h is a homomorphism
from A into B, h:A—B, if
a) for every m-ary relation symbol R € S and for every ag,...,an_1 € A
R¥aq, ..., an—1) implies R®(h(ao), ..., h(an_1));
b) for every n-ary function symbol f €S and for every ag,...,an_1€ A
FE(h(ag),...,h(an—1)) =h(fXag,...,an_1)).
h is an embedding of A into B, h:A— B, if moreover
a) h is injective;
b) for every n-ary relation symbol R € S and for every ao,...,an—1 € A
R¥ap,...,an—1) iff R¥(h(ao),..., h(an—1)).

If h is also bijective, it is called an isomorphism.

An S-structure interprets the symbols in S. To interpret a formula in a structure, one
also has to interpret the (occuring) variables.

Definition 17. Let S be a symbol set. An S-model is a function
m:{vViuSuVar—V

such that M [{V}US is an S-structure and for all n € N holds M (vy,) € |IM|. M(vy,) is the
interpretation or valuation of the variable v, in .

It will be important to modify a model M at specific variables. For pairwise distinct
variables xo,...,zr—1 and ao, ..., ar—1 € | M| define

m: (M {(z0, A(x0)), ..., (Tr—1,A(xr-1))}) U{(z0, a0), ..., (xr_1,ar-1) }.

6 The satisfaction relation

We now define the semantics of the first-order language by interpreting terms and formulas
in models.
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Definition 18. Let 9 be an S-model. Define the interpretation M(t) € |IM| of a term
te TS by recursion on the term calculus:

a) fort a variable, M(t) is already defined;

b) for an n-ary function symbol and terms to,...,t,_1 €T, let

M(fto....tn—1) = FAM(t0),..., M(tn_1))-

This explains the interpretation of a term like v3 4 v3y in the reals.

Definition 19. Let 9 be an S-model. Define the interpretation M(y) € B of a formula
o€ L°, where B={0,1} is the Boolean algebra of truth values, by recursion on the formula
calculus:

a) M(L)=0;
b) for terms to,t1 € T: M(to=t1) =1 iff M(to) =M(t1);
¢) for every m-ary relation symbol R € S and terms tg,...,t; €T°

M(Rto...tn—1) =1 iff R™(M(to), ..., M(tn—1));

d) M(~p) =1 iff M(p)=0;
e) M(e— ) =1 iff M(p)=1 implies M(Y)=1;
) M(Vupp) =1 iff for all a € || holds m%(@) =1.

We write MFE ¢ instead of M(p)=1. We also say that M satisfies ¢ or that ¢ holds in
M. For ® C LS write MED iff ME ¢ for every o € .

Definition 20. Let S be a language and ® C LS. ® is universally valid if ® holds in every
S-model. ® is satisfiable if there is an S-model M such that IME .

The language extension by the (abbreviating) symbols V, A, <+, 3 is consistent with the
expected meanings of the additional symbols:
Exercise 8. Prove:
a) ME(e V) iff MEp or ME ¢;
b) ME (e V) iff ME ¢ and ME P,
c) ME(p<> ) iff MEp is equivalent to M E ;
d) ME v, ¢ iff there exists a € |M| such that Dﬁvin E .
With the notion of E we can now formally define what it means for a structure to be
a group or for a function to be differentiable. Before considering examples we make some
auxiliary definitions and simplifications.
It is intuitively obvious that the interpretation of a term only depends on the occuring
variables, and that satisfaction for a formula only depends on its free, non-bound variables.

Definition 21. Fort € T? define var(t) C {v,|n € N} by recursion on the term calculus:
— var(z)={z};
—  var(c)=0;
- var(fto...th—1) = U, ., var(t;).
Definition 22. Fiir o € L define the set of free variables free() C {v,|n € N} by recursion
on the formula calculus:

—  free(to=t1) = var(to) Uvar(t1);
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—  free(Rto...tn—1) =var(to)U...Uvar(t,—1);
—  free(—p) =free(y);
—  free(p— ) =free(p) Ufree()).
—  free(Vaxp) =free(p) \ {z}.
For ® C L® define the set free(®) of free variables as
free(®) = U free(yp) .

ped
Example 23.

free(Ryx —Vy—-y=2z2) = free(Ryz)Ufree(Vy—y==z)
= free(Ryz) U (free( my=2)\{y})
= free(Ryx) U (free(y=2) \{y})
= {y, 2} Uy, 21\ {y})
= {y,z}u{z}
= {z,y,2}.
Definition 24.
a) ForneN let L ={pe L% |free(¢) C {vo, ..., vn_1}}.
b) o€ L is an S-sentence if free(p)=10; L3 is the set of S-sentences.

Theorem 25. Lett be an S-term and let M and M’ be S-models with the same structure
M{VIUS =D [{V}US and M | var(t) =D [ var(t). Then M(t)=M'(¢t).

Theorem 26. Let t be an S-term and let M and M’ be S-models with the same structure
M {VIUS=IM[{V}US and M| free(p) = | free(p). Then
MEe iff MEe.
Proof. By induction on the formula calculus.
@ =to=t1: Then var(tg) Uvar(t1) = free(y) and
ME @ iff M(tg) =M(1)
iff M'(to) =M'(t1) by the previous Theorem,
iff M'E .
=1 — x and assume the claim to be true for ¥ and y. Then
ME @ iff ME Y implies MFE x
iff 9 E 4 implies M’ x by the inductive assumption,
iff M'E .
¢ = Yu,1p and assume the claim to be true for 1. Then free(v)) C free(¢) U {v, }. For all
acA=|M|: imvi [ free(2)) :im’vi [ free(1)) and so

ME ¢ iff for all a € A holds fmvil:z/;

n

iff for all a € A holds im’vi E 1 by the inductive assumption,
n
iff ME .
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This allows further simplifications in notations for F:

Definition 27. Let 2 be an S-structure and let (ao, ..., an—1) be a sequence of elements
of A. Let t be an S-term with var(t) C {vo,...,vn—1}. Then define

tm[ao, ooy Gp—1] = IM(2),

where M DA is an S-model with M(vy) =ag, ..., M(vp—1) = an_1.
Let ¢ be an S-formula with free(p) C{vo,...,vn—1}. Then define

A= Lp[ao, ceey an_l] iﬁ M= @,

where M DA is an S-model with M(vy) =ag ..., M(vp—1) =an—_1.
In case n=0 also write t* instead of t¥aq, ..., an_1], and AF ¢ instead of AF ¢lao, ...,
an—1). In the latter case we also say: A is a model of p, A satisfies ¢ or ¢ is true in 2.
For ®CL§ a set of sentences also write

AED iff for all e ® holds:AF .

Example 28. Groups. Sgr:={o, e} with a binary function symbolo and a constant symbol
e is the language of groups theory. The group axioms are

a) Vg Vo1 Vg ovg o v1v9 = ocovguyvs
b) Vuvgovge=1p ;
¢) YopTvy ovguy =e .
This defines the axiom set
D = { Vg Y1 Yoy ovg o v1vg = 0ovguyva, Yug ovg e = vy, YugIvy ovguy =e}.

An S-structure & = (G, x, k) satisfies @, iff it is a group in the ordinary sense.

Definition 29. Let S be a language and let ® C Lg be a set of S-sentences. Then
Mod®® = {A|A is an S-structure and A= O}

is the model class of ®. In case ® = {®} we also write Mod®yp instead of Mod°®. We
also say that ® is an axiom system for Mod®®, or that ® axiomatizes the class Mod ® .

Thus Mod®¢®, is the model class of all groups. Model classes are studied in generality
within model theory which is a branch of mathematical logic. For specific axiom systems
® the model class Mod®® is examined in subfields of mathematics: group theory, ring
theory, graph theory, etc. Some typical questions questions are: is Mod®® £, ie.,is ®
satisfiable? What are the cardinalities of models?

Exercise 9. One may consider Mod®® with appropriate morphisms as a category. In certain cases
this category has closure properties like closure under products. One can give the categorial definition
of cartesian product and show their existence under certain assumptions on ®.

7 Logical implication and propositional connectives

Definition 30. For a symbol set S and ® C L° and ¢ € L® define that ® (logically) implies
o (PE @) iff every S-model TE @ is also a model of ¢.
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Note that logical implication F is a relation between syntactical entities which is defined
via the semantic notion of interpretation. The relation ® F? can be viewed as the central
relation in modern axiomatic mathematics: given the assumptions ® what do they imply?
The F -relation is usually verified by mathematical proofs. These proofs seem to refer to
the exploration of some domain of mathematical objects and, in practice, require particular
mathematical skills and ingenuity.

We will however show that the logical implication F satisfies certain simple syntactical
laws. These laws correspond to ordinary proof methods a a purely formal. Amazingly a
finite list of methods will (in principle) suffice for all mathematical proofs: this is Gédel’s
completeness theorem that we shall prove later.

Theorem 31. Let S be a symbol set, t e T°, ¢, € L°, and T',® C L°. Then

a) (Monotonicity) If T C® and T'E ¢ then ®F .

b) (Assumption property) If ¢ €' then T'E .
(—-Introduction) If T U pE Y then T'EF @ — 1.
(—-Elimination) If TE ¢ and T'F ¢ — 1 then TE 1.
( L-Introduction) If TE ¢ and T'E—yp then T'E L.

( L-Elimination) If TU{=p}E L then T'E .
(=-Introduction) I'Ft=t.

& o

)

f

)
)
)
)
)
9)

Proof. f) Assume 'U{-¢}FE L. Consider an S-model with M ET. Assume that DE .
Then ME-p. MET U {—¢}, and by assumption, M F L . But by the definition of the
satisfaction relation, this is false. Thus 9F . Thus I'F . (]

Exercise 10. There are similar rules for the introduction and elimination of junctors like A and V
that we have introduced as abbreviations:

a) (A-Introduction) If TE ¢ and T'"E ¢ then T'F p A .

b) (A-Elimination) If 'E @ At then T'E ¢ and T'F 4.

¢) (V-Introduction) f TE @ then TE @V Y and TEY V .
d) (V-Elimination) If I'F ¢V ¢ and T'F = then T'E 1.

8 Substitution and term rules

To prove further rules for equality and quantification, we first have to consider the substi-
tution of terms in formulas.

Definition 32. For a term s € T, pairwise distinct variables xq, ..., xy—1 and terms to, ...,
t,_1€T?® define the (simultaneous) substitution
to....tr—1
S S —
Zo...Tp_1

of to,...,tr—1 for xg,...,xr_1 by recursion:

to... by - .
a) goirol — f @ T zo, 2 F @1 for o]l yariables x;
To... T —1 ti, ifc=x;

ton. by ton ton by .
b) Scfs(g..sn_ﬁ ﬁ = fso ﬁ Sn—1 ﬁ for all n-ary function symbols
€0.
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Note that the simultaneous substitution
s to....tr—1
0...Tr—1
is in general different from a succesive substitution
ot to
To Tl Tp_1

yx

which depends on the order of substitution. E.g., z 2 = ¢y, 2 £ 2 = y £ = 2 and
Ty y zy Ty Y
r-—Z=xr>=y.
Yy x T
Definition 33. For a formula ¢ € L, pairwise distinct variables xq, ..., xr—1 and terms
to,...,tr—1 €T define the (simultaneous) substitution
to....tr—1
Zo...Tr—1
of to,...,tr—1 for xo,...,xr—1 by recursion:
_ to....tr—1 to....tr—1 __ to....tr—1 S
a) (so=s =s =s or all terms so,s1€T";
) ( 0 1) To... Tp_1 0$0...$1~_1 1360... r_1 f 0,51€ ’
b) (RSg...5p_1) 2olr=l —Rgy Lowdrot g Yobrot - for ll m-ary relation symbols
0-+-on—1 To... Ty 1 0 To.. Tp_1 " n—1 TO...Tp_1
Re s and terms g, ..., sp—1 € T°;
to....tr—1 to....tr—1
c = :
) (_N‘O) To...Tp—1 _|((‘0 $0...$r—1)’
to....tr—1 to....tr—1 to....tr—1
d — = — ;
) ((‘0 1/}) To... Ty 1 ((‘0 To... Tp_1 1/} $0...$r—1)’
t0... b ) L .
e) for (V) ﬁ we proceed in two steps: let xiy, ..., T, , with iy <... <is_1 be

exactly those x; which are “relevant” for the substitution, i.e., x; € free(Vxy) and

TiFt;.

— if © does not occur in t;,....,ti,_, , then set
_ tio....t;
(Vap) Ly (p oot
Zo...Tr—1 Lige- - Lig_4
— if x does occur in t;,....,ti,_, , then let k € N minimal such that vy does not
occur m @, tiy,....,t,_, and set
to....tr—1 tige. o tig_1Vk
Vep) —————=Vor (g ———————).
( (,0) Zo...LTpr—1 ((,0 xio...xis_lx)

The following substitution theorem shows that syntactic substitution corresponds
semantically to a (simultaneous) modification of assignments by interpreted terms.

Theorem 34. Consider an S-model M, pairwise distinct variables xo,...,xr—1 and terms
to,...,tr—1 € TS,
a) If seT% is a term,

M(s to...tr—1 - M(to)... M (tr—1)
... Lp_1 Zo...Tr—1

().

b) If € L® is a formula,
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M(to)... M (tr—1)
Zo...Tpr—1 Zo...Tp_1

Proof. By induction on the complexities of s and ¢.
a) Case 1: s=ux.
Case 1.1: v ¢ {xo,...,xr—1}. Then

L R M(to)... M (t,_1)
TQ...Typ—1 Q... Tp—1

().

Case 1.2: x =x;. Then

ﬁﬁ(a} to...tr—1 ) Zﬁﬁ(ti) o m(to)...m(tr_1) («Tz) o m(to)...m(tr_1)
Zo...Lp_1 Zo...Tpr—1 Zo...Lp_1

().

Case 2: s = fsg...sp—1 where f € S is an n-ary function symbol and the terms s, ...,
sp_1 € T satisfy the theorem. Then

to...tr— to...tr— to...tr—
M((fs0.8p—1) ==Ly = g fsg—2r=b g, 2l

Zo...Tr—1 xo...wr_1' Zo...Lp_1
— to...tr—1 to...tr—1
= PUHEz0 wo---xr—1)’ o MMlsn—1 xo...xr—1))
M(to)... M (L, —
= f))’{(f)(gﬁ ( 0) ( 1) (80),

Zo...Tp_1
M (to)...M(tr—1)
Zo...Tr—1

,m (Sn—l))

M(to)... M(tr—1)
Z0...Tr—1

=M

(fSQ...Sn_l).

Assuming that the substitution theorem is proved for terms, we prove
b) Case 4: ¢ =Rso...Sp—1. Then

ME (RSO.,,Sn_l) tO....tr—l iff m':RSO tO....tr_lu‘sn_l tO----tr—l
Zo...Tr—1 L. Lyr—1 Zo...Tp—1
iff Rm<m($0 tO....tr—l)’”"m(sl tO----tr—1)>
L0...Tyr—1 L. . Lyr—1
M(to)... M(tr—1)

iff Rfm<im Ot (s0),

”"immt(to)....mt(tr_l) (sn_1)>
T0...Tpr—1

M(to).... M(tr—1)
Zo...Tr—1

iff M ERsq...5n—1

Equations sy = s; can be treated as a special case of the relational Case 4. Propositional
combinations of formulas by 1, = and — behave similar to terms; indeed formulas can be
viewed as terms whose values are truth values. So we are left with universal quantification:
Case 5: ¢ = (Va) Lt’"_ll, assuming that the theorem holds for .

TQ... Ty —
We proceed according to our definition of syntactic substitution. Let z;,,...,z;, , with
i0<...<is—1 be exactly those z; such that x; € free(Vz1) and z; # ¢;. Since

M(to)... M(tr—1) L iff M (ti)... M (L, )

... Ty -1 Ligee-Lig_4

m Eop,
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we can assume that (xq,..., r—1) = (@ig, ..., Ti,_,), 1.€., every z; is free in Va1, z; #+ x, and
x;#+t;. Now follow the two cases in the definition of the substitution:

Case 5.1: The variable x does not occur in t,....,t,—1 and

to....tr—1 to....tr—1
V) ————— =V (¢p ——).
( 1/}) Zo...Tr—1 (1/} Zo...Tr—1

to...tr—1 to...tr—1
= el e to.tr—1
ME (Vov) Zo...Tr—1 it ME v (Y xo...xr—1)
iff for all a € M holds M2 g L0-lr=1
x T0...Tr—1

(definition of F)
iff for all a € M holds
M (to)... ME(tr—1)
a X X
(imE) Zo...Lp_1 ':1/}
(by the inductive hypothesis for 1))
iff for all a € M holds
(m%)mt(tg?)...mt(tr_l) -
Qe Lp—1
(since & does not occur in t;)
iff for all a € M holds
m m(to)...m(tr_1) a -
... Lpr_1T
(since & does not occur in xg,..., Tr_1)
iff for all a € M holds
(f)ﬁ m(t;)...m(tr_l) )2': 1/}
Qe Lp—1 x
(by simple properties of assignments)
M(to)...M(tr—1)

iff 9m EVazy
Zo...Lpr_1
Case 5.2: The variable x occurs in ty,....,t._1. Then
tige..-tiy_1Vk

(V) Tl gy (y

0o Lpp—1 Ligee-Lig_1 T
where k € N is minimal such that vy does not occur in ¢, ti,,...., ¢, ;-

M (Vo) ZrDt M (et

iff for all @€ M holds fmvi 9
k

iff for all a € M holds
a a a
Vk Q... Lp_1T
(inductive hypothesis for 1)
iff for all a € M holds
(f)ﬁg) gﬁ(to)...ﬁﬁ(tr_l)a =
x Z0...Tpr—-1T
(since v does not occur in t;)

iff for all @ € M holds

to...tr— 10k
Q... Lp—-1T
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M(to)... M(tr—1) a -
... Lp_1X
(since x is anyway sent to a)
iff for all a € M holds
(m im(t;)...im(tr_ﬁ )g': "
0oLy —1 x
(by simple properties of assignments)

o mm(to)...m(tr_1) v
To...Tr—1

m

O

We can now formulate properties of the F relation in connection with the treatment of
variables.

Theorem 35. Let S be a language. Let x,y be variables, t,t' € T°, ¢ € L°, and T'C LS.
Then:

a) (V-Introduction) If TE ap% and y ¢ free(I' U{Vxp}) then TEVx .
b) (V-elimination) If T'EVxz then FIZap%.

c¢) (=-Elimination or substitution) If I'F (,0% and TEt=t' then TE ap%.

Proof. a) Assume I'F Lp% and y ¢ free(I'U{Vzp}). Consider an S-model 9t with MET.
Let a € M =|9M|. Since y ¢ free(T), im%IZF. By assumption, im%IZ Lp%. By the substitution
theorem,

a im% () a. a
(img) F ¢ and so (img)g Ep
Case 1: x=y. Then fm% F .
Case 2: x4 y. Then m% Fo, and since y ¢ free(y) we have fm% Eop.

Since a € M is arbitrary, EVxp. Thus ['FVze.
b) Let I'EVze. Consider an S-model 9t with MM ET. For all a € M = |9| holds im%IZLp.
In particular fm@ F¢. By the substitution theorem, 1 FE apé. Thus I'F ap%.

c) Let T'E ap% and 'Et=t'. Consider an S-model 9 mit MM ET. By assumption 9 E (,0%
and M EFt=t". By the substitution theorem

m—magt) Fo.
Since M(t) =M(t),
M(t")
=
om - %
and again by the substitution theorem
t/
Eo—.
om Lo
Thus TF o . O

Note that in proving these proof rules we have used corresponding forms of arguments in
the language of our discourse. This “circularity” was noted before and is a general feature in
formalizations of logic. A particularly important method of proof is the V-introduction: to
prove a universal statement Vx ¢ it suffices to consider an “arbitrary but fixed” y and prove
the claim for y. Formally this corresponds to using a “new” variable y ¢ free(I'U{Vzp}).
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9 A sequent calculus
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The only way to rectify our
reasonings is to make them as
tangible as those of the Math-
ematicians, so that we can
find our error at a glance, and
when there are disputes among
persons, we can simply say:
Let us calculate [calculemus]/,
without further ado, to see
who is right. G.W. Leibniz

We can put the rules of implication established in the previous two sections together
as a calculus which leads from correct implications ® E ¢ to further correct implications
O’ E . Our sequent calculus will work on finite sequents (o, ..., Yn—1, ©n) of formulas,
whose intuitive meaning is that {¢o, ..., ¢n—1} implies ¢, . The GODEL completeness
theorem shows that these rules actually generate the implication relation . Fix a language
S for this section.

Definition 36. A finite sequence (o, ..., Pn—1, Pn) of S-formulas is called a sequent. The
initial segment I'= (o, ..., pn—1) is the antecedent and py, is the succedent of the sequent.
We usually write @q... pn—1¢n or Iy, instead of (o,..., Pn—1, ¢n). To emphasize the last
element of the antecedent we may also denote the sequent by T’ @1 @, with T = (o, ...,

‘~Pn—2)-
A sequent ... on—1 @ is correct if {pg... on—1}F @.

Exercise 11. One could also define a sequent to be the concatenation of finitely many formulas

Definition 37. The sequent calculus consists of the following (sequent-)rules:

monotonicity (MR)

assumption (AR)

—-introduction (—1I)

—-elimination (—F)

L -introduction (LI)

1 -elimination (LE)

V-introduction (VI)

I ¢
| AR
Y @
' o 9
r o=
L e
' o=
r
| >
I v
r L
I' =¢p L
r @

Y

T 2
~ Paifyé free(T U {Vzp)})
I' Vxp
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I Vxp s
—  V-elimination (VE) T, ifteT
T o
- == ; =] T
introduction (=I) =7 Jifte
t
T o
—  =-elimination (=E) T t=t
t/
I o=

The deduction relation is the smallest subset CSeq(S) of the set of sequents which is
closed under these rules. We write ¢q ... pn—1F @ instead of po... on—1p €. For ® an
arbitrary set of formulas define ®F ¢ iff there are @y, ..., pn—1 € P such that vg... pn—1F @.
We say that ¢ can be deduced or derived from q... on—1 or @, resp. We also write
instead of O ¢ and say that ¢ is a tautology.

Remark 38. A calculus is a formal system for obtaining (mathematical) results. The
usual algorithms for addition and multiplication of decimal numbers are calculi: the results
are achieved by symbolic and systematic operations on the decimal symbols 0,...,9. Such
an addition is not an addition in terms of joining together line segments of certain lengths
or forming the union of disjoint finite sets. The calculi are however correct in that the
interpretation of the decimal numbers obtained correspond to the results of the intuitive
operations of joining line segments or disjoint unions.

Mathematics has shown that far more sophisticated operations can also be described
by calculi. The derivation of a polynomial function

p(r)=apnz"+a,_ 12" ' +...+ag
can be obtained by formal manipulations of exponents and coefficients:
p(E)=nap2” '+ n—1)a,_12" 2 +...+a

without explicitly forming limits of difference quotients.

Since many basic results of analysis can be expressed as formal calculi, the word calculus
is used for basic analysis courses in the English speaking world. Similarly in German
one uses the words Differentialrechnung and Integralrechnung. The words derivation or
Ableitung also refer to derivations within a formal calculus.

A formula ¢ € L® is derivable from I' = ¢q... o, —1 (T'F @) iff there is a derivation or a
formal proof

(Coo. 11,y Tr—10-1)

of 'o=T"y_1p;_1, in which every sequent I';p; is generated by a sequent rule from sequents
TioPigs --es Ly 104, 1 With dg,...,0n—1<%.
We usually write the derivation (T'opo, 11, ..., Tk—1¢k—1) as a vertical scheme

o o
' ¢
-1 pr—1

where we may also indicate rules and other remarks along the course of the derivation.
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In our theorems on the laws of implication we have already shown:

Theorem 39. The sequent calculus is correct, i.e., every rule of the sequent calculus leads
from correct sequents to correct sequents. Thus every derivable sequent is correct. This
means that

FCE.
The converse inclusion corresponds to
Definition 40. The sequent calculus is complete iff ECH.

The GODEL completeness theorem proves the completeness of the sequent calculus.
The definition of F immediately implies the following finiteness or compactness theorem.

Theorem 41. Let ® C L° and ¢ € ®. Then ®F ¢ iff there is a finite subset ®oC ® such
that (I)Q F ©.

After proving the completeness theorem, such structural properties carry over to the
implication relation F.

10 Derivable sequent rules

The composition of rules of the sequent calculus yields derived sequent rules which are
again correct. First note:

Lemma 42. Assume that
' o

I' or-1
' ok

s a derived rule of the sequent calculus. Then

To o

; , where L'y, ...,T'x_1 are initial sequences of T’
Fe—1 pr—1

r ©k

s also a derived rule of the sequent calculus.
Proof. This follows immediately from iterated applications of the monotonicity rule. [

We now list several derived rules.

10.1 Auxiliary rules

We write the derivation of rules as proofs in the sequent calculus where the premisses of
the derivation are written above the upper horizontal line and the conclusion as last row.

N

ex falso quodlibet T o
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10.2 Introduction and elimination of V, A,...

The (abbreviating) logical symbols V, A, and 3 also possess (derived) introduction and
elimination rules. We list the rules and leave their derivations as exercises.

V-Introduction
Te
I' pvy
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V-Introduction
I' 4

I' oV
V-FElimination
I' oV

I' o= x

I' v—=x

I' x

A-Introduction
I' e

I' 4

I' ony

A-Elimination

I' oAy

' ¢

A-Elimination

I' pAY

Iy

d-Introduction
t

T o

' Jdzep

d-Elimination

T Jxp

T o2 ¢

r (0

10.3 Manipulations of antecedents

where y ¢ free(T'U {3z, })

29

We derive rules by which the formulas in the antecedent may be permuted arbitrarily,

showing that only the set of antecedent formulas is relevant.

Transpositions of premisses

v P X

e Y

X

o= (Y= x)

— X

NS Gt Lo
==

ESHRSHRSHRSS

ASH RS
RS SRS

Duplication of premisses

1. T o P

2. T ¢ ¢ @

Elimination of double premisses
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1. T ¢ ¢ o

2. T ¢ =P

3. T o= (=)
4. T o %)

5. T o 0

Iterated applications of these rules yield:

Lemma 43. Let @o...com—1 and Yo...10n—1 be antecedents such that

{@07 [EEE} (Pm—l} - {1/}07 eeey wn—l}
and x € L. Then

00 .. Om—1 X
Yo ... Yn—1 X

1s a derived rule.

10.4 Formal proofs about =
We give some examples of formal proofs which show that within the proof calculus = is
an equivalence relation.
Lemma 44. We prove the following tautologies:
a) Reflexivity: FNxx ==
b) Symmetry: FVzVy(zx=y— y=x)
¢) Transitivity: EVzVyVz(x=yAy=z—zx=2z)

Proof. a)

T=x

Ver=ux

b)

T=Yy T=Yy

T=Yy T=x

T=y (zzx)%

T=y (zzx)%

T=Yy y=x
T=Y—SY=2x
Vy(r=y—y=x)

T=YNY=2z T=yYANy==z
T=YNY=z =Yy
r=yAy=z (r=w)Z

T=2z
T=YNY=z—xr==2
Vz(z=yAy=z—x=2)
VyVz(z=yANy=z—x=2)
VeVyVz(x=yAy=z—r=2z)
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We show moreover that = is a congruence relation from the perspective of I-.

Theorem 45. Let o€ L° and to,...,tn_1,th,....th_1€T5. Then

to.tn—1 o t0...th 1

Fto=toA... Atp_1=t,_1— :
0 0 n-l n-l ((,0 V... Un—1 V... Un—1

Proof. Choose pairwise distinct “new” variables uq, ..., u,_1. Then

to..tn—1 _ uo Ul Up—1tot1  tn-1

V0...Un—1 Vo V1 Up—1 UO UL Up—1
and

totn_1  Ug Ul Up—1 t) t]  th_q

Voo Up—1 | Vo U1 T Up—1 ugur T Up—1

Thus the simultaneous substitutions can be seen as successive substitutions, and the order
of the substitutions % may be permuted without affecting the final outcome. We may use

the substitution rule repeatedly:

to...th—1 to...th—1

(P’Uo...’l)n_1 (P’Uo...’l)n_1
o un—lt_O th—1 Uo Un—lt_O th—1
Vo Up—1 U0 Up—1 Vo Un—1 U0 Up—1
o tmoit ety oog pld Un—tto taoy
Vo Up—1 Uo Up—1 Vo Up—1 Uo Up—1
ug  Un—1to  tp—1 L _ wy  Un—1 ty  tp_q
— ... —_— ... th—1= n—l---tOZtO @Y — ... — .
Vo Un—1 U Un—1 UO/ t;Un—l Uo Un—1
totn_1 . _ . iy thoth

(on...vn_1 o=ty - tn-1=1tn 1 v V0. Un—1

11 Consistency

Vor Allem aber méchte ich unter
den  zahlreichen Fragen, welche
hinsichtlich der Axziome gestellt
werden konnen, dies als das
wichtigste Problem bezeichnen, zu
beweisen, dafS dieselben unterein-
ander widerspruchslos sind, d.h.
daf$ man auf Grund derselben mit-
telst einer endlichen Anzahl von
logischen Schliissen niemals zu Res-
ultaten gelangen kann, die mitein-
ander in  Widerspruch stehen.
David Hilbert
Fix a language S.

Definition 46. A set ® C L° is consistent if ®¥ | . ® is inconsistent if &+ L .
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We prove some laws of consistency.

Lemma 47. Let ® C L° and o € LS. Then
a) ® is inconsistent iff there is 1 € L° such that ®F ) and ®F -,
b) P iff U{-p} is inconsistent.

)
c) If ® is consistent, then ®U{p} is consistent or PU{—p} is consistent (or both).
d)

Let F be a family of consistent sets which is linearly ordered by inclusion, i.e., for
all ®, Y € F holds ®CV or W C P. Then

@*:U@

. . e F
18 consistent.

Proof. a) Assume ®+ L. Then by the ex falso rule, ®F 1 and ®F ).

Conversely assume that ® - ¢ and ® - —¢ for some 1) € LS. Then ® - L by L-
introduction.
b) Assume ® F ¢ . Take o, ..., on—1 € ® such that po...on—1F ¢ . Then we can extend
a derivation of ¢...n—1F ¢ as follows

Yo ... Pn-1 ¥
Y0 ... Pn-1 TP TP
0o ... Pn—1 @ L
and ® U {—p} is inconsistent.

Conversely assume that ® U{—p}F L and take o, ..., on—1 € ® such that po...on_1-
pk L. Then ¢q...on—1F @ and ®F .
c¢) Assume that @ U{p} and ® U {-p} are inconsistent. Then there are ¢q, ..., pn_1€ P
such that ... on—1F @ and @q...on—1F —p. By the introduction rule for L, ¢q...co0n—1F L.
Thus @ is inconsistent.
d) Assume that ®* is inconsistent. Take o, ..., pn—1 € ®* such that ¢o...on—1F L.
Take &g, ...P,_1 € F such that po€ Dg, ..., on_1€ Py_1. Since F is linearly ordered by
inclusion there is ® € {®g, ...P,,_1} such that ¢, ..., pn—1 € ®. Then & is inconsistent,
contradiction. O

The proof of the completeness theorem will be based on the relation between consist-
ency and satisfiability.

Lemma 48. Assume that ® C L° is satisfiable. Then ® is consistent.

Proof. Assume that ® - L . By the correctness of the sequent calculus, ® F L . Assume
that ® is satisfiable and let 99t ® . Then 9T E 1 . This contradicts the definition of the
satisfaction relation. Thus ® is not satisfiable. O

We shall later show the converse of this Lemma, since:
Theorem 49. The sequent calculus is complete iff every consistent ® C L® is satisfiable.

Proof. Assume that the sequent calculus is complete. Let ® C L° be consistent, i.e., ®# 1 .
By completeness, ®¥ | , and we can take an S-model 9TE ® such that 9t L . Thus & is
satisfiable.

Conversely, assume that every consistent ® C L° is satisfiable. Assume W) . Assume
for a contradiction that WF ). Then ¥ U{—%} is consistent. By assumption there is an
S-model METVU{-1}. MEY and M ¢p, which contradicts WE . Thus UF. O
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12 Term models and HENKIN sets

In view of the previous lemma, we strive to construct interpretations for given sets ® C L°
of S-formulas. Since we are working in great generality and abstractness, the only material
available for the construction of structures is the language L itself. We shall build a model
out of S-terms.

Definition 50. Let S be a language and let ® C L° be consistent. The term model T2 of
® is the following S-model:
a) Define a relation ~ on T*,
to~t1 iff PHtg=11.
~ is an equivalence relation on T*.
b) Fortc T lett ={secT%|s~t} be the equivalence class of t.

¢) The underlying set T® =T®(V) of the term model is the set of ~-equivalence classes
T®={t [teT5}.
d) For an n-ary relation symbol R € S let R on T® be defined by
(£0y.., tn_1) € RT" iff ®F Rio...tn_1.
e) For an n-ary function symbol f €S let f‘zq) on T? be defined by
F(Eos e 1) = floodn1.
f) For n €N define the variable interpretation T*(v,) =0y .
The term model is well-defined.

Lemma 51. In the previous construction the following holds:

a) ~ is an equivalence relation on T°.
b) The definition of R s independent of representatives.
c¢) The definition of f@is independent of representatives.

Proof. a) We derived the axioms of equivalence relations for =:
— Fezx==x
- BVaVy(z=y—y==x)
— EVaVyVz (z=yAy=z—z=2)
Consider ¢ € T°. Then t=t. Thus for all £ €T holds t ~t.
Consider to,t; € T° with tg~t;. Then Fto=t;. Also Fto=t; —t1=tg, Ft1 =1to, and
t1 ~tg. Thus for all tg,t1 € TS with to~1t1 holds t1 ~tg.
The transitivity of ~ follows similarly.
b) Let t_o, cees tn_1€ TCD, to= S0y eens tn_1=25,-1 and ® - Rtq...t,—1. Then Ftg= s s e
Ft,_1=5s,_1. Repeated applications of the substitution rule yield ®+ Rsq...s,_1. Hence
O+ Rtg...t,—1 implies P+ Rsq...s,—1. By the symmetry of the argument, ® F Rtg...t,, 1
if &+ RSO...Sn_l .
C) Let t_o, cees tn_1€ T® and to= S0y oees tn—1=253n—1. Then Hy = 80, o s Ftn_1=8n_1.
Repeated applications of the substitution rule to & ftq...t,_1 = fto...tn—1 yield

l_ftO---tn—l = fSO---Sn—l
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and fto...th,_1= fS0...8n-1- O

We aim to obtain % E ®. The initial cases of an induction over the complexity of
formulas is given by
Theorem 52.
a) For termst € TS holds T®(t)=t.
b) For atomic formulas ¢ € L° holds
TP iff PF .
Proof. a) By induction on the term calculus. The initial case ¢ = v, is obvious by the

definition of the term model. Now consider a term t = ft...t,—1 with an n-ary function
symbol f €., and assume that the claim is true for to,...,t,—1. Then

T2 ftootn_1) = FT(T2(to), .., T2 (tn_1))
= f‘zé(t_oaatn—l)
= fto...tn—1.
b) Let ¢ = Rty...t,—1 with an n-ary relation symbol R €S and to,...,t,_1€ T5. Then
TP Rtg...ty_1 iff R (T2(tg),..., T2 (tn_1))
iff R (fo,....5n—1)
iff ®F Rtg...t,_1.
Let ¢ =tq=t; with tg,t; € T°. Then
Tq)l:toEtl iff Tq)(to)ZTq)(h)
iff to=1;
iff to~1t1
iff (I’l—tQEtl.
O

To extend the lemma to complex S-formulas, ® has to satisfy some recursive properties.
Definition 53. A set ® C L° of S-formulas is a HENKIN set if it satisfies the following
properties:

a) ® is consistent;

b) ® is (derivation) complete, i.e., for all ¢ € L°

S or Py

¢) ® contains witnesses, i.e., for all Yoy € LS there is a term t € T such that

<I>l——|Va:<p—>—wpé.

Lemma 54. Let ® C L° be a HENKIN set. Then for all x, ¥ € L° and variables x:
b) @+ x implies 1), iff PHx— .
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¢) For allt€ TS holds @+ x— iff ®FVax.

Proof. a) Assume ®% x. By derivation completeness, @+ —y . Conversely assume &+ —y .
Assume for a contradiction that @+ x. Then ® is inconsistent. Contradiction. Thus ® ¥ x .
b) Assume @+ y implies ¢+ 1.

Case 1. ®F x. Then ® ¢ and by an easy derivation &+ x — 1.

Case 2. ® ¥ x . By the derivation completeness of ® holds ¢ - =y . And by an easy
derivation @+ x — 1.

Conversely assume that ® F x — 1 . Assume that ® F x . By —-elimination, ® - ¢ .

Thus &+ y implies PF .

c¢) Assume that for all t € 7% holds ® Xi Assume that ® ¥ Vxyx . By a), @+ —Vry .
Since ¢ contains w1tnesses there is a term ¢t € T° such that ® —|Vxx—>—|x— By —-
elimination, ® - _‘X— Contradiction. Thus ® FVxzx . The converse follows from the rule
of V-elimination. O

Theorem 55. Let ® C L° be @ HENKIN set. Then

a) For all formulas x € L, pairwise distinct variables @ and terms t € T

ﬁs

‘Zq)lZX iff <I>I—XH.
b) TPEO.

Proof. b) follows immediately from a). a) is proved by induction on the formula calculus.
The atomic case has already been proven. Consider the non-atomic cases:

i) x= L Then L— =1.%3% L is false by defimtlon of the satisfaction relation F, and

o+ X is false since ® is eon51stent Thus T*F L iff L—.
ii.) x= o= ' and assume that the claim holds for ap Then
‘Zq)DZ—wpf iff not TPE apf
z z

iff not ¢+ ap% by the inductive assumption

—

iff oF —mp% by a) of the previous lemma.

d assume that the claim holds for ¢ and . Then

Hil |

i) x=(p—1)

TUE (o)L iff TPE oL implies T2E ¢ -
Z i G
iff &F ap% implies ® 1/1% by the inductive assumption
iff ¢F ap% — 1/1% by a) of the previous lemma
iff ®F(p— 1) % by the definition of substitution.
iv.) x = (Vzy) to—tr_ll and assume that the claim holds for ¢. By definition of the
substitution y is of the form
Vau (¢ to... tr—1 u) oder Vu (¢ m)

Z0eo o Lp—1T L1...Lp—-1T
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with a suitable variable u. Without loss of generality assume that x is of the first form.
Then

M TPE Ty ((,0 to....tr—1u
Z0eo  Lp—-1T

SIS

TPE (Vz o)

iff for all £ € TS holds T2  p [0 tro1t
u ... Lp_1 X
to....tr—1u

Zo...Lpr—1X

iff for all t € T holds TPE (¢ M) 2 by the substitution lemma
Zo...Tpr—1 U

by a previous lemma

~
iff for all £ € TS holds T2 () ¢,
u

iff for all £ €T holds T ¢ Loty ol by successive substitutions
Z0...Tr— 1T

iff for all t € T holds @+ p L0 r=1t

Zo...Lp_1T

iff for all t €T holds ®F (¢ m) ‘ by successive substitutions
20...Tr—1T U

by the inductive assumption

iff ®FVu(p m) by c¢) of the previous lemma
Z0...Lpr—1T
iff &F (Vay) % .

13 Constructing HENKIN sets

We shall show that every consistent set of formulas can be extended to a HENKIN set
by “adding witnesses” and then ensuring negation completeness. We first consider wit-
nesses.

Theorem 56. Let ® C L be consistent. Let p € L and let z be a variable which does not
occur in ®U{p}. Then the set

dU{-Vrp— —mp%}
15 consistent.
Proof. Assume for a contradiction that ® U {(—-3z¢ V Lp%)} is inconsistent. Take ¢, ...,
pn—1 € P such that

z
©0... Pn—1 —anp—>—mp; FL.

Set I'= (0, ..., n—1). Then continue the derivation as follows:

L T —Vep—-p= 1

2. I' ==Vzop ——Vxp

3. T ==Vzop —|an,0—>—wa
4. T ==z uE

5 T Ve

6. T —wp% —mp%

7. T —mp% —|an,0—>—wa
8. I —mp% L

9. T ap%

10. T Yz

11. T €
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Hence @ is inconsistent, contradiction. O

This means that “unused” variables may be used as HENKIN witnesses. Since “unused”
constant symbols behave much like unused variables, we get:

Theorem 57. Let ® C L° be consistent. Let ¢ € L° and let ¢ € S be a constant symbol
which does not occur in ®U{p}. Then the set

dU{-Vrp— —mp%}
15 consistent.

Proof. Assume that ® U {(—-3z¢V Lp%)} is inconsistent. Take a derivation

Lowo
Iipq

Fn—l Pn—-1
c
Iy (-Vee— —wp;) 1

with I',, C ®. Choose a variable z, which does not occur in the derivation. For a formula
1 define 9’ by replacing each occurence of ¢ by z, and for a sequence I = (¢, ..., VY1) of
formulas let T/ = (1)), ..., ¥} _1)- Replacing each occurence of ¢ by z in the deriavation we get

o0
Iiel
: (2)
Lot @n—1
z
r, (-Vze— —wp;) 1

The particular form of the final sequence is due to the fact that ¢ does not occur in @U{p}.
To show that (2) is again a derivation in the sequent calculus we show that the replacement
¢ z transforms every instance of a sequent rule in (1) into an instance of a (derivable)
rule in (2). This is obvious for all rules except possibly the quantifyer rules.
So let
Y
r 1/1;

, with y ¢ free(T' U{Vzy})
I' Vay

be an V-introduction in (1). Then (1/1%)’: 1/1’%, (Vzy) =Vayp', and y ¢ free(I" U{(Vay)'}).
Hence
' Yyr
(v
I (Vay)’
is a justified V-introduction.
Now consider an V-elimination in (1):

I Vay
t

r vz
wm

Then (Vo) =Vaiy' and (1/1%)’ =’ % where ¢’ is obtained from ¢ by replacing all occurences
of ¢ by z. Hence

I (vzy)’

I (4

X
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is a justified V-elimination.
The derivation (2) proves that
dU{(-Vzp— —mp%) FL,
which contradicts the preceding lemma. U

We shall now show that any consistent set of formulas can be consistently expanded to
a set of formulas which contains witnesses.

Theorem 58. Let S be a language and let ® C L° be consistent. Then there is a language
S« and ®¥ C L5 such that

a) S“ extends S by constant symbols, i.e., S CS“ and if s€ S\ S then s is a constant

symbol;
b) DO P;
c) ®¥ is consistent;
d) ®¥ contains witnesses;
)

e) if LS is countable then so are L°° and ®¥.

Proof. For every a define a “new” distinct constant symbol ¢4, which does not occur in .S,
e.g., ca=((a,S),1,0). Extend S by constant symbols ¢, for 1 € L°:
S+=SU{C¢"L/J GLS}.
Then set
Pt=0U {—anp—>—wp “O\anp cL5).

®* contains witnesses for all universal formulas of S.

(1) &+ C L5 is consistent.

Proof: Assume instead that ®T is inconsistent. Choose a finite sequence Vxgo,
VIn_10n—1€ LS of pairwise distinct universal formulas such that

ceey
360500 CVﬂﬁn—lSOn—l}

® U {=Vzopo— po—2
Tn—1

. _‘vxn—lﬁpn—l — TPn—1

is inconsistent. By the previous theorem one can inductively show that for all i <n the set

Vﬂﬁo@o CV$i—150ni—1}

Q U {=Vzopo— —po—2
Ti—1

. _‘vxn—lﬁpn—l — T Pn—1

is consistent. Contradiction. ged(1)
We iterate the +-operation through the integers. Define recursively

' = @

S0 = 8
Sn+1 _ (
(I)n—I—l _ ((I,n)—I—

e = | s
o = | on.
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S“ is an extension of S by constant symbols. For n € N, ®" is consistent by induction. &%
is consistent by the lemma on unions of consistent sets.
(2) ®“ contains witnesses.
Proof . Let Ve L”. Let n € N such that Voo eL®". Then ~Vzp— —mp% contlC v,
ged(2)
(3) Let L° be countable. Then L% and ®“ are countable.
Proof. Since L® is countable, there can only be countably many symbols in the alphabet
of S%=S. The alphabet of S! is obtained by adding the countable set {cy|v € L5}; the
alphabet of S! is countable as the union of two countable sets. The set of words over a
countable alphabet is countable, hence L "and ®! crL’ " are countable.

Inductive application of this argument show that for any n € N, the sets L°" and ®"
are countable. Since countable unions of countable sets are countable, L% = U Ls"

" nelN
and also ®* C L5 are countable.

To get HENKIN sets we have to ensure derivation completeness.

Theorem 59. Let S be a language and let ® C L° be consistent. Then there is a consistent
d* C LS, ®* D which is derivation complete.

Proof. Define the partial order (P, C) by

P={UCL®|¥D® and ¥ is consistent}.

P+ since ® € P. P is inductively ordered by a previous lemma: if F C P is linearly ordered
by inclusion, i.e., for all ¥, ¥’ € F holds ¥ C ¥’ or ¥/ C ¥ then

U VePp.

veF

Hence (P, C) satisfies the conditions of ZORN’s lemma. Let ®* be a maximal element of (P,
Q). By the definition of P, ®*C L% & D@, and ®* is consistent. Derivation completeness
follows from the following claim.

(1) For all ¢ € L° holds ¢ € ®* or ~p € ®*.

Proof. ®* is consistent. By a previous lemma, ®*U {p} or ®*U{-p} are consistent.
Case 1. ®*U{p} is consistent. By the C-maximality of ®*, ®*U{p} =" and ¢ € d*.
Case 2. ®* U {—} is consistent. By the C-maximality of ®*, ®* U {—=p} = &* and
—p e d”. O

The proof uses ZORN’s lemma. In case LS is countable one can work without ZORN’s
lemma.

Proof. (For countable L°) Let L® = {¢,|n € N} be an enumeration of L°. Define a
sequence (®,|n € N) by recursion on n such that

i. ®C P, C Ppy1 C LY
ii. ®,, is consistent.

For n =0 set &9=P. Assume that &, is defined according to i. and ii.
Case 1. ®,U{pp} is consistent. Then set @11 =L, U{pn}.
Case 2. ®,U{p,} is inconsistent. Then ®, U {—py} is consistent by a previous lemma,
and we define ®,,11=®,U{—p,}.
Let

@*:U P, .

neN



40 SECTION 14

Then ®* is a consistent superset of ®. By construction, ¢ € ®* or = € ®*, for all ¢ € L.
Hence ®* is derivation complete. O

According to Theorem 58 a given consistent set ® can be extended to ®* C L5
containing witnesses. By Theorem 59| ®¥ can be extended to a derivation complete ®* C
L5“. Since the latter step does not extend the language, ®* contains witnesses and is thus
a HENKIN set:

Theorem 60. Let S be a language and let ® C L° be consistent. Then there is a language
S* and ®* C L°" such that

a) S*2S is an extension of S by constant symbols;
b) ®*D & is a HENKIN set;

¢) if L° is countable then so are L°" and ®*.

14 The completeness theorem

We can now combine our technical preparations to show the fundamental theorems of first-
order logic.

Combining Theorems 60 and 55, we obtain a general and a countable model existence
theorem:

Theorem 61. (HENKIN model existence theorem) Let ® C L°. Then ® is consistent iff
d is satisfiable.

By Lemma 49, Theorem 61 the model existence theorems imply the main theorem.

Theorem 62. (GODEL completeness theorem) The sequent calculus is complete, i.e.,
F=F.

The GODEL completeness theorem is the fundamental theorem of mathematical logic. It
connects syntax and semantics of formal languages in an optimal way. Before we continue
the mathematical study of its consequences we make some general remarks about the wider
impact of the theorem:

— The completeness theorem gives an ultimate correctness criterion for mathematical
proofs. A proof is correct if it can (in principle) be reformulated as a formal deriv-
ation. Although mathematicians prefer semi-formal or informal arguments, this
criterion could be applied in case of doubt.

— Checking the correctness of a formal proof in the above sequent calculus is a
syntactic task that can be carried out by computer. We shall later consider a
prototypical proof checker Naproche which uses a formal language which is a subset
of natural english.

— By systematically running through all possible formal proofs, automatic theorem
proving is in principle possible. In this generality, however, algorithms immediately
run into very high algorithmic complexities and become practically infeasable.

— Practical automatic theorem proving has become possible in restricted situations,
either by looking at particular kinds of axioms and associated intended domains, or
by restricting the syntactical complexity of axioms and theorems.
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— Automatic theorem proving is an important component of artificial intelligence
(AI) where a system has to obtain logical consequences from conditions formulated
in first-order logic. Although there are many difficulties with artificial intelligence
this approach is still being followed with some success.

— Another special case of automatic theorem proving is given by logic programming
where programs consist of logical statements of some restricted complexity and a
run of a program is a systematic search for a solution of the given statements. The
original and most prominent logic programming language is Prolog which is still
widely used in linguistics and Al

—  There are other areas which can be described formally and where syntax/semantics
constellations similar to first-order logic may occur. In the theory of algorithms
there is the syntax of programming languages versus the (mathematical) meaning
of a program. Since programs crucially involve time alternative logics with time
have to be introduced. Now in all such generalizations, the GODEL completeness
theorem serves as a pattern onto which to model the syntax/semantics relation.

— The success of the formal method in mathematics makes mathematics a leading
formal science. Several other sciences also strive to present and justify results form-
ally, like computer science and parts of philosophy.

— The completeness theorem must not be confused with the famous GODEL incom-
pleteness theorems: they say that certain axiom systems like PEANO arithmetic are
incomplete in the sense that they do not imply some formulas which hold in the
standard model of the axiom system.

15 The compactness theorem
The equality of F and F and the compactness theorem |41 for - imply

Theorem 63. (Compactness theorem) Let ® C L° and o € ®. Then

a) ®E ¢ iff there is a finite subset &9 C @ such that ok .

b) ® is satisfiable iff every finite subset ®gC P is satisfiable.

This theorem is often to construct (unusual) models of first-order theories. It is the
basis of a field of logic called Model Theory.

We present a number theoretic application of the compactness theorem. The language

of arithmetic can be naturally interpreted in the structure N= (N, +,-,0,1). This structure
obviously satisfies the following axioms:

Definition 64. The aziom system PA C LSAR of PEANO arithmetic consists of the fol-
lowing sentences

— Vzz+1+#0

- VaVyz+l=y+l-oz=y

— Vzzx+0==x

- VaVyz+(y+1)=(z+y)+1

— Vzz-0=0

— VaVyz-(y+1)=z-y+zx
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—  Schema of induction: for every formula ¢(x, ..., Tn_1, Tn) € L9AR:

V.. Ve, —1(e(z0y ..y Tn_1,0) AV, (0 — @(x0,..., Tp_1,2n+ 1)) =V, @)

The theory PA is allows to prove a lot of number theoretic properties, e.g., about
divisibility and prime numbers. On the other hand the first incompleteness theorem of
GODEL shows that there are arithmetic sentences ¢ which are not decided by PA although
they are true in the standard model IN of PA. Therefore PA is not complete.

If ¢ and —¢p are both not derivable from PA then PA 4+ —¢ and PA + ¢ are consistent.
By the model existence theorem, there are models 91~ and 9™ such that M~ FPA + -
and MT EPA + . MM~ and M™ are not isomorphic. So there exist models of PA which
are not isomorphic to the standard model IN.

We can also use the compactness theorem to obtain nonstandard models of theories.
Define the Sar-terms 1 for n € N recursively by

0 = 0,
n+l = (n+1).
Define divisibility by the Sar-formula é(z,y) =3z z-2=1y.
Theorem 65. There is a model 9 E PA which contains an element oo € M such that

MEO(n,00) for every n € N\ {0} (we use ME (1, 00) as an intuitive abbreviation for
ME (1, vo)[o0]).

So “from the outside”, oo is divisible by every positive natural number. This implies
that 91 is a nonstandard model with T2 N .

Proof. Consider the theory
®=PAU{d(n,v9) | neN\{0}}.
(1) @ is satisfiable.
Proof. We use the compactness theorem 63(b). Let &9 C ® be finite. It suffices to show
that ®¢ is satisfiable. Take a finite number ng € N such that
(I)QQPAU{5(ﬁ,UQ) \nelN,l <n<n0}
Let N=mn!. Then
NEPA and NE§(n,N) for I<n<ng.
So INU—A; Edy. ged(1)
By (1), let M'E . Let oo =M'(vg) € |9M|. Let M be the Sar-structure which extends
to the model M’ i.e., M=M' [ {V} USar. Then M is a structure satisfying the theorem. O]

This indicates that the model class of PA is rather complicated and rich. Indeed there
is a subfield of model theory which primarily studies models of Peano arithmetic.

We define notions which allow to examine the axiomatizability of classes of structures.

Definition 66. Let S be a language and K be a class of S-structures.

a) K ist elementary or finitely axiomatizable if there is an S-sentence ¢ with K =
Mod“p.

b) R is A-elementary or axiomatizable, if there is a set ® of S-sentences with KK =
Mod“®.

We state simple properties of the Mod-operator:
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Theorem 67. Let S be a language. Then
a) For ®C W C L5 holds ModS® DMod V.
b) For ®, W C L3 holds Mod®(® U ¥) = ModS® N ModS¥.

¢) For ®C Lj holds ModS® = __g Mod%p.

d) For o, ..., on_1€ L holds Mod®{ ¢y, ..., pn_1} =Mod® (0o A... A on_1).

)
)
)
e) For ¢ € Lg holds Mod®(—¢) = Mod®f\Mod® ().

c) explains the denotation “A-elementary”, since Mod®® is the intersection (“Durch-
schnitt”) of all single Mod®y .

Theorem 68. Let S be a language and IC, L be classes of S-structures with
L =Mod*0\ K.
Then if K and L are axiomatizable, they are finitely axiomatizable.

Proof. Take axiom systems ® i and ®, such that K= Mod®®j and £=Mod°®;. Assume
that R is not finitely axiomatizable.
(1) Let &9 C @i be finite. Then ®yU Py, is satisfiable.
Proof: Mod®®y D Mod®®y . Since £ is not finitely axiomatizable, Mod“®q + Mod®® .
Then Mod®*®yN £+ ). Take a model A€ £, A € Mod*®y. Then AEFPUP,. ged(1)
(2) ®x U Dy is satisfiable.
Proof: By the compactness theorem 63 it suffices to show that every finite ¥ C &5 U dp,
is satsifiable. By (1), (¥ N®x)U Py, is satisfiable. Thus ¥ C (VNP x) U Py is satisfiable.
ged(2)

By (2), Mod®®x N Mod®®,+ (). But the classes & and £ are complements, contradic-
tion. Thus R is finitely axiomatizable. O

16 The LOWENHEIM-SKOLEM theorems

Definition 69. An S-structure 2 is finite, infinite, countable, or uncountable, resp., iff
the underlying set || is finite, infinite, countable, or uncountable, resp..

If the language S is countable, i.e., finite or countably infinite, and it ® C L° is a
countable consistent set of formulas then an inspection of the above construction of a term
model for ® shows the following theorem.

Theorem 70. (Downward LOWENHEIM-SKOLEM theorem) Let ® C L° be a countable
consistent set of formulas. Then ® possesses a model M= (A, B)E D, A= (A,...) with a
countable underlying set A.

The word “downward” emphasises the existence of models of “small” cardinality. We
shall soon consider an “upward” LOWENHEIM-SKOLEM theorem.

Theorem 71. Assume that ® C L° has arbitrarily large finite models. Then ® has an
infinite model.

Proof. For n € N define the sentence

Oen=300,..., V-1 /\ ;= vy,
1<j<n
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where the big conjunction is defined by
N Cii=vo 1A Aot AL 2 A LAY 1 A A1
i<j<n
For any model 971
ME ¢, iff A has at least n elements.
Now set
P'=dU{p>y |neN}

(1) @’ has a model.
Proof. By the compactness theorem 63b it suffices to show that every finite 9 C ® has a
model. Let &3 C ® be finite. Take ng € N such that

‘I’OQ‘I’U{@>n\n<no}-

By assumption ® has a model with at least ng elements. Thus ® U{p>, [n<np} and &
have a model. ged(1)
Let M FE®’. Then M is an infinite model of ®. Il

Theorem 72. (Upward LOWENHEIM-SKOLEM theorem) Let ® C L° have an infinite S-
model and let X be an arbitrary set. Then ® has a model into which X can be embedded
mgectively.

Proof. Let 9t be an infinite model of ®. Choose a sequence (¢, |z € X) of pairwise
distinct constant symbols which do not occur in S, e.g., setting ¢, = ((z, S), 1, 0). Let
S'=85U{c; |z € X} be the extension of S by the new constant symbols. Set

P'=0U{-c,=cy|z,ye X, x4y}

(1) ' has a model.
Proof . Tt suffices to show that every finite ®y C ®’ has a model. Let ® C @’ be finite. Take
a finite set Xy C X such that

P CPU{~c,=cy |z, yeXo,z £y}

Since |M1| is infinite we can choose an injective sequence (az|x € Xo) of elements of |9
such that x #+ y implies a; + ay . For x € X \ Xo choose a, € || arbitrarily. Then in the
extended model

M =MU{(¢cz,az)|z € X}EQU{—cy=cy |z, ye Xo,z £y} D Do

ged(1)
By (1), choose a model 9'E ®’. Then the map

i X — ||, x> M (cy)
is injective. The reduct M" =M’ [ {V} U S is as required. O
Theorem 73. Let S be a language.

a) The class of all finite S-structures is not axiomatizable.

b) The class of all infinite S-structures is ariomatizable but not finitely axiomatizable.

Proof. a) is immediate by Theorem 71.
b) The class of infinite S-structures is axiomatized by

(I):{‘vp)n ‘TLGN}
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If that class were finitely axiomatizable then the complementary class of finite S-structures
would also be (finitely) axiomatizable, contradicting a). O

17 Normal forms

There are many motivations to transform formulas into equivalent normal forms. The
motivation here will be that normal forms are important for automated theorem proving
and for logic programming.

We are particularly interested in transforming formulas v into formulas 1)’ such that
is consistent iff v’ is consistent. This relates to provability as follows: @+ ¢ iff P U{-¢p} is
not satisfiable /inconsistent. So a check for provability can be based on inconsistency checks.

Work in some fixed language S.

Definition 74.
a) An S-formula is a literal if it is atomic or the negation of an atomic formula.
b) Define the dual of the literal L as

I =L, if L is an atomic formula;
| K, if L is of the form —K.

¢) A formula ¢ is in disjunctive normal form if it is of the form

e=\ (N Lij)
. . i<m  j<n;
where each L;; is a literal.
d) A formula ¢ is in conjunctive normal form if it is of the form
o=/ (\ Lij)
<m  j<n,

where each Lij; is a literal. Sometimes a disjunctive normal form is also written in
set notion as

©0={{Loo, ... Long—=1}+-s {Lm=1,0, oo Ln—1,np_1 } }-

Theorem 75. Let ¢ be a formula without quantifiers. Then ¢ is equivalent to some @’ in
disjunctive normal form and to some ©" in conjunctive normal form.

Proof. By induction on the complexity of ¢. Clear for ¢ atomic. The — step follows from

the de Morgan laws:
=V (A Lip) & N\ ~(N\ Lij)

i<m  j<n; <m Jj<mn;
o NV L.
i<m  j<n;

The A-step is clear for conjunctive normal forms. For disjunctive normal forms the asso-
ciativity rules yield

V(A Lipa (A L) <« [ (A Zisgn N\ L)
i<m  j<n; i<m’ j<n! i<m,i’'<m/ j<n; j<n!

which is also in conjunctive normal form. (]
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Definition 76. A formula ¢ is in prenex normal form if it is of the form

0=Qox0Q121...Qm—-1Tm-17

where each Q; is either the quantifier ¥ or 3 and v is quantifier-free. Then the quantifier
string Qo xo Q1 T1...Qm—1Tm—1 1s called the prefix of ¢ and the formula 1 is the matrix

of .

Theorem 77. Let @ be a formula. Then ¢ is equivalent to a formula ¢’ in prenex normal
form.

Proof. By induction on the complexity of ¢. Clear for atomic formulas. If
e QoroQ1 1. Qm-1Tm—1Y
with quantifier-free ¢ then by the de Morgan laws for quantifiers
0 ¢ Qu 0 Q1. Q1T 1Y

where the dual quantifier Q is defined by 3=V and V=3.
For the A-operation consider another formula

0 Qo Q1 a1 Q1 Ty 1 Y

with quantifier-free )’. We may assume that the bound variables of of the prenex normal
forms are disjoint. Then

WA @ Qoro Q121 Q1 Tim—1Q0 ) Q11 Q1 Ty —1 (Y A Y).

(semantic argument). O

Definition 78. A formula ¢ is universal if it is of the form
p=VroVr1..Ve,_1¢

where ¥ is quantifier-free. A formula ¢ is existential if it is of the form
p=drodx1...dxm_1 ¢

where ¥ is quantifier-free.

We show a quasi-equivalence with respect to universal (and existential) formulas which
is not a logical equivalence but concerns the consistency or satisfiability of formulas.

Theorem 79. Let ¢ be an S-formula. Then there is a canonical extension S* of the
language S and a canonical universal ¢* € L™ such that

© is consistent iff p* is consistent.

The formula ¢* is called the SKOLEM normal form of ¢.

Proof. By a previous theorem we may assume that ¢ is in prenex normal form. We prove
the theorem by induction on the number of existential quantifiers in ¢. If ¢ does not
contain an existential quantifier we are done. Otherwise let

p=Vri..Vr,IJyy

where m < w may also be 0. Introduce a new m-ary function symbol f (or a constant
symbol in case m =0) and let

o =y, g LB Em
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By induction it suffices to show that ¢ is consistent iff ¢’ is consistent.

(1) o' = .

Proof. Assume ¢’. Consider 1, ..., x,,. Then wm. Then Jyip. Thus Vzy...Va,,Iy.
ged(1) ’

(2) If ¢’ is consistent then ¢ is consistent.

Proof. If ¢ — L then by (1) ¢'— L. ged(2)

(3) If ¢ is consistent then ¢’ is consistent.

Proof . Let ¢ be consistent and let M =(M,...)F ¢. Then

ValeM...VameMﬂbeMM%—zlzz/}.

Using the axiom of choice there is a function h: M™ — M such that
a h(a1, ceey am)
Ty

Expand the structure M to M’=MU{(f,h)} where the symbol f is interpreted by the
function h. Then h(ai, ..., am) = M'Z(fr1...2,n) and

Yaie M ...Va,, € MM Ey.

s 14 ., .8
Ya, € M...Va EM,/\/lla M %(fxlwm) ZMIE M g(fana:m) -
L Vag, 77 . ;
By the substitution theorem this is equivalent to
Vai € M.. Vay, eMM’%p wfxlTxm
Hence
M EVa1. Ny, wfxlTxm — .

Thus ¢’ is consistent. 0

18 HERBRAND’s theorem

By the previous chapter we can reduce the question whether a given finite set of formulas
is inconsistent to the question whether some universal formula is inconsistent. By the
following theorem this can be answered rather concretely.

Theorem 80. Let S be a language which contains at least one constant symbol. Let

p=VroVr1..Vr,m_19

be a universal S-sentence with quantifier-free matriz ¢ . Then @ is inconsistent if there are
variable-free S-terms (“constant terms”)

0 0 N-1 N-1

10y eeer b1y eees by yeeesbyp—1

such that

j j 0 0 N-1 N-1
tt [ t to— t U AN
l b0y bmm—1 0y o) bm—1 0 yeeey bm—1
o= N\ o —y A ppl0 e tmel
ZOyeeey Tm—1 L0y ey Tm—1 L0y eees T —1

i<N

15 tnconsistent.

Proof. All sentences ¢’, for various choices of constant terms, are logical consequences of
©. So ¢ is consistent, all ¢’ are consistent.
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Conversely assume that all ¢’ are consistent. Then by the compactness theorem

b= {wM |to, ..., tm—1 are constant S-terms}
L0, ey Tm—1

is consistent. Let M = (M,...)F ®. Let
H={M(t) |t is a constant S-term}.

Then H + () since S contains a constant symbol. By definition, H is closed under the
functions of M. So we let H=(H,...) C M be the substructure of M with domain H.
(1) HEp.

Proof. Let M(to), ..., M(tm—1) € H where tg, ..., t,;,—1 are constant S-terms. Then
wLi’:;ll edb, ME %ﬁﬁ’""ﬁ and by the substitution theorem

)
L0y G Tm—1

M(to), ..., M(tm—1)

Z0yeeey Tm—1

M

1.

Since % is quantifier-free this transfers to H :

M(to), ..., M(tm—1)

" T0y.ery T—1 =y
Thus
HEVzoVry. . Ve,_1¢=p.
qed(1)
Thus ¢ is consistent. U

In case that the formula 1 does not contain the equality sign = checking for inconsist-
ency of

% ) 0 0 N—-1 N-1
SOI: /\ ,l/}t()a---atm—l :'l/J 10y oy tm—1 A /\,l/}to 7"-7tm—1
ZOyeeey Tm—1 L0y ey Tm—1 L0y eees Tmn—1

i<N
is in principle a straightforward finitary problem. ¢’ contains finitely many constant S-
terms. ¢’ is consistent iff the relation symbols can be interpreted on appropriate tuples
of the occuring S-terms to make ¢’ true. There are finitely many possibilities for the
assignments of truth values of relations. This leads to the following (theoretical) algorithm
for automatic proving for formulas without =:
Let Q C L be finite and x € L°. To check whether QF y:

1. Form ® =Q U {-x} and let ¢ =V(A ®) be the universal closure of A\ & . Then
QF x iff ®=QU{-x} is inconsistent iff (A ®)F L iff V(A @) L.

2. Transform ¢ into universal form " =VaoVzy...Vo,,_1 1 (SKOLEMization).

3. Systematically search for constant S-terms

0 0 N-1 N-1
18, e 80t N

m—
such that

thy ot 19,19, _ A S\

@/:/\wm 7m1:,¢} 0529 im /\/\1/}0 m—1

LOyeeey Tmm—1 LQyeeey Ly —1 LQyeeey Lyym—1

i<N
is inconsistent.
4. If an inconsistent ¢’ is found, output “yes”, otherwise carry on.

Obviously, if “yes” is output then QF x . This is the correctness of the algorithm. On the
other hand, HERBRAND’s theorem ensures that if Q F y then an appropriate ¢’ will be
found, and “yes” will be output, i.e., the algorithm is complete.
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Let us assume from now on, that the formulas considered do not contain the symbol =.

We shall see that the search for those S-terms and the inconsistency-check can be
further systematized. We can assume that the quantifier-free formula 1) is in conjunctive
normal form, i.e., a conjunction of clauses ¥ =coAciA... A¢;—1. Then VeogVay..Vr, 1 ¢
is inconsistent iff the set

10y ..oy bim—1

\to, ...,tm—1 are constant S—terms}
LQyeeey Lm—1

{ci
is inconsistent.
The method of resolution gives an efficient method for showing the inconsistency of
sets of clauses.

Definition 81. Let ¢c™={Kjy,..., Kx_1} and ¢~ ={Lo,..., L;_1} be clauses with literals K;
and L;. Note that {Ko,..., Kp_1} stands for the disjunction KoV ...V Kj_1. Assume that
Kg and Lg are dual, i.e., Lo=Kg . Then the disjunction

{Kl, cees Kk—l} U {Ll, cees Ll—l}
is a resolution of ¢c* and c™.

Resolution is related to the application of modus ponens: ¢ — ¢ and ¢ correspond to
the clauses {—¢, 1} and {p}. {¢} is a resolution of {—p, ¢} and {¢}.

Theorem 82. Let C be a set of clauses and let ¢ be a resolution of two clauses ¢*, ¢~ € C.
Then if CU{c} is inconsistent then C is inconsistent.

Proof. Let C+={K0,...,Kk_1}, C_Z{—!KQ,Ll...,Ll_l}, and CZ{Kl,...,Kk_l}U{Ll,...,
L;_1}. Assume that M EC is a model of C.
Case 1. MEKy. Then MEc—, MFE{L;y...,L;_1}, and

M):{KL...,Kk_l}U{L1,...,L1_1}=C.

Case 2. ME-Ky. Then MEct, ME{K;...,Ki_1}, and
M):{Kl,...,Kk_l}U{Ll,...,Ll_l}ZC.

Thus MECU{c}. O

Theorem 83. Let C be a set of clauses closed under resolution. Then C' is inconsistent
iff e C. Note that the empty clause {} <> L.

Proof. If ) € C then C is clearly inconsistent.
Conversely assume that C' is inconsistent. By the compactness theorem there is a finite
set of atomic formulas {¢o, ..., ¢n—1} such that

C’"={ce C|for every literal L in ¢ there exists i <n such that L = p; or L=-¢;},

the restriction of C' to { o, ..., on—1} is inconsistent. Assume that the number n of atomic
formulas with that property is chosen minimally.

Case 1. n=0. Since the empty set of clauses is consistent, C’= (). On the other hand the
only clause built from zero atomic formulas is the clause {} =(. Thus )€ C"'CC.

Case 2. n=m+1>0. Assume for a contradiction that ¢ C. Let

Ct={cel'|=po¢ c}, C~={ceC'|po ¢ c}
and

Co = {c\ {po}lce C7}, Cg = {c\ {~po}lce C}.
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(1) Cf and Cj are closed under resolution.

Proof. Let d” be a resolution of d,d’ € Cy. Let d =c \ {@o} and d’ = ¢’ \ {g} with c,

¢’ € Ct. The resolution d” was based on some atomic formula ¢;+# ¢o. Then we can also

resolve ¢, ¢’ by the same atomic formula ;. Let ¢” be that resolution of ¢, ¢’. Since C' is

closed under resolution, ¢’ € C, ¢ € C*, and d"=c"\ {po} € Cf . qed(1)

(2) 0¢ Cy or 0 Cy .

Proof. If ) € Cf and §) € Cy, and since () ¢ C we have {@g} € C* and {-po} € C~. But

then the resolution @) of {¢g} and {—¢o} would be in C, contradiction. ged(2)

Case 1. B¢ Cy. By the minimality of n and by (1), Cf is consistent. Let M Cy. Let

the atomic formula g be of the form rtg...ts—1 where r is an n-ary relation symbol and

to, ..., ts—1 € TS. Since the formula rt...ts_1 does not occur within C’J, we can modify the

model M to a model M’ by only modifying the interpretation M (r) exactly at (M (to),...,

M(ts—1)). So let M'(M(tp),..., M(ts—1)) be false. Then M'E —py. We show that M'EC".
Let c € C'. If =g € ¢ then M’ E ¢ . So assume that =g ¢ c¢. Then ¢ € C and

c\{po} €Cd. Then MEc\ {po}, M'Ec\{wo}, and M’Ec. But then C' is consistent,

contradiction.

Case 2. ) ¢ C,. We can then proceed analogously to case 1, arranging that

M'(M(ty), ..., M(ts—1)) be true. So we get a contradiction again. O

This means that the inconsistency check in the automatic proving algorithm can be
carried out even more systematically: produce all relevant resolution instances until the
empty clause is generated. Again we have correctness and completeness for the algorithm
with resolution.

19 Logical programming

To give a small impression of the logical programming language Prolog let us consider a
theory about the recursive definition of formulas. Let

fm(psi)

fm(phi)

VXY (fm(X) AMfm(Y) — fm(and(X,Y)))
be a small axiom system concerning the formation of formulas; here “psi” and “phi” are

constant symbols, “and” is a binary function symbol, and “fm” is a unary relation symbol.
To show that ¥ A (¢ A1) is a formula one has to derive

fm(and(psi, and(psi, psi)))
from the axioms. This is equivalent to showing that
fm(psi)
fm(phi)
VXY (fm(X) AMfm(Y) — fm(and(X,Y)))
—fm(and(psi, and(psi, psi)))

is inconsistent. We can write the matrix of the conjunction of these formulas in conjunctive
normal form as

C = {{fm(psi)}, {fm(phi)}, {-fm(X), ~fm(Y"), fm(and(X, Y'))}, {~fm(and(psi, and(psi,
psi)))}}-
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Obviously the universally quantified clause {—fm(X), =fm(Y"), fm(and(X,Y"))} implies all
its instantiations by constant terms. So we close the set C' under such instantiations and
under resolution. Deriving the empty clause {} shows the desired inconsistency. We write
the sequence of derived clauses in the format of a formal proof:

1 | fm(psi) assumption

2 | fm(phi) assumption

3 | ~fm(X), ~fm(Y), fm(and(X,Y)) assumption

4 | =fm(and(psi, and(psi, psi))) assumption

5 | ~fm(psi), ~fm(and(psi, psi)), fm(and(psi, and(psi, psi))) | instance of 3

6 | —~fm(psi), ~fm(and(psi, psi)) resolution of 4, 5
7 | 7fm(and(psi, psi)) resolution of 1,6
8 | —~fm(psi), fm(and(psi, psi)) instance of 3

9 | —fm(psi) resolution of 7,8
10 | {} resolution of 1,9

The choice of instances of the universal clause {—fm(X), —~fm(Y), fm(and(X, Y))}
was directed by the desire to resolve certain clauses along the derivation. It is possible to
find “fitting” instances by the method of unification, which finds substitutions to produce
literals that are dual to each other. Indeed we did use informal and simple unification in
the example:

—  tomake 3 = —fm(X),~fm(Y),fm(and(X,Y")) and 4 = —fm(and(psi, and(psi, psi)))
resolve we chose substitutions for X and Y such that the literals fm(and(X, Y))

and —~fm(and(psi, and(psi, psi))) became dual. This lead to setting X = psi and Y
= and(psi,psi). The resolution then was 6 = —fm(psi), =fm(and(psi, psi)).

— to make 1 = fm(psi) and 6 = —fm(psi), ~fm(and(psi, psi)) resolve, no further
substitution was required.

—  tomake 3 = ~fm(X),fm(Y),fm(and(X,Y")) and 7 = —fm(and(psi, psi)) resolve we
chose the substitutions X = psi and Y = psi. The resolution then was 9 = —fm(psi).

— tomake 1 = fm(psi) and 9 = —fm(psi) resolve, no further substitution was required.

The above example can be viewed as the execution of a program in Prolog. Prolog
systematically searches for unifications and keeps track of the required substitutions. The
composition of all those substitutions is the computational result of the program.

To demonstrate how one can compute in Prolog let us consider the addition “2 + 2 =
V?”. We represent natural numbers by terms in a language with the constant symbol zero
and the successor function succ. Addition is represented as a ternary predicate

add(X,Y,2) o X +Y =2.

The following program describes the recursive definition of add. To compute 2 + 2 one
leads the assumption —add(succ(succ(zero)), succ(succ(zero)), X), which expresses that
there is no solution to the addition problem, into a contradiction.

add(X , zero, X)

(add(X,Y, Z) — add (X, succ(Y), succ(2)))

—add (succ(succ(zero)), succ(succ(zero)), V)
In Prolog notation, this can be written as

add (X, zero,X).
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add (X,succ(Y),succ(Z) :- add(X,Y,Z).
?- add(succ(succ(zero)),succ(succ(zero)),V).

Execution of this program will lead to a substitution of V which makes the program
inconsistent: we begin with the clauses

1. add(X,zero,X)

2. —add(X,Y,Z), add(X,succ(Y),succ(Z))

3. —add(succ(succ(zero)),succ(succ(zero)),V)
(The final literals of) 2 and 3 can be unified by the substitutions X:=succ(succ(zero)),
Y:=succ(zero), V:=succ(Z). One obtains the resolvent:

4. —add(succ(succ(zero)),succ(zero),Z)
This should again resolve against 2. However to avoid variable clashes, we first rename
the (universal) variables in 2:

5. —add(X1,Y1,Z1), add(X1,succ(Y1),succ(Z1))
4 and 5 can be wunified by the substitutions X1:=succ(succ(zero)), Yl:=zero,
Z:=succ(Z1). One obtains the resolvent:

6. —add(succ(succ(zero),zero,Z1)
This should resolve against 1. We first rename variables in 1:

7. add(X2,zero,X2).
6 and z can be unified by the substitutions X2:=succ(succ(zero)), Z1:=X2. As resolvent
one obtains the desired contradiction

8. {}

A /the value for V' which leads to this contradiction is obtained by chasing through the
substitutions:

V=succ(Z)=succ(succ(Z1))=succ(succ(X2))=succ(succ(succ(succ(zero)))).
Thus 2+2=4!

20 ZERMELO-FRAENKEL set theory

Almost all mathematical notions can be defined set-theoretically. Georg Cantor the creator
of set theory gave the following definition or description:

Unter einer Menge verstehen wir jede Zusammenfassung M von bestim-
mten, wohlunterschiedenen Objekten m unsrer Anschauung oder unseres
Denkens (welche die “Elemente” von M genannt werden) zu einem Ganzen.

Felix Hausdorff begins the Grundziige der Mengenlehre with a concise description,
which seems less dependent on human minds:

Eine Menge ist eine Zusammenfassung von Dingen zu einem Ganzen, d.h.
zu einem neuen Ding.

The notion of set is adequately formalized in an first-order axiom system introduced
by ZERMELO, FRAENKEL and others. Together with the GODEL completeness theorem
for first-order logic this constitutes a “formalistic” answer to the question “what is math-
ematics”: mathematics consists of formal proofs from the axioms of ZERMELO-FRAENKEL
set theory.

Definition 84. Let € be a binary infix relation symbol; read x € y as “x is an element of
y”. The language of set theory is the language {€}. The formulas in L€} are called set
theoretical formulas or €-formulas. We write L€ instead of Li€t,
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The naive notion of set is intuitively understood and was used extensively in previous
chapters. The following axioms describe properties of naive sets. Note that the axiom
system is an infinite set of axioms. It seems unavoidable that we have to go back to some
previously given set notions to be able to define the collection of set theoretical axioms -
another example of the frequent circularity in foundational theories.

Definition 85. The system ZF of the ZERMELO-FRAENKEL axioms of set theory consists
of the following axioms:

a) The axiom of extensionality (Ext):
VaVy(Vz(z €z z€y) »x=1y)

- a set 1s determined by its elements, sets having the same elements are tdentical.
b) The axiom of set existence (Ex):
JaVy—-yex
- there is a set without elements, the empty set.
¢) The separation schema (Sep) postulates for every €-formula ¢(z,x1,...,2):
Ve Ve VedyVz (z €y z€x A (2, 21,..., 2p))

- this is an infinite scheme of axioms, the set z consists of all elements of x which
satisfy .

d) The pairing axiom (Pair):
VaVydVw (w € zow=cVw=y).
- z is the unordered pair of x and y.
e) The union axiom (Union):
VedyVz(z €y Jw(w ez Az e w))

-y 1s the union of all elements of x.

f) The powerset axiom (Pow):
VedyVz(z €y Vw(w € z—w € x))

-y consists of all subsets of x.

g) The axiom of infinity (Inf):
Ty (yexAVz—zey) AVy(yexz— z(z€x ANVw(w ez weyVw=y))))
- by the closure properties of x, x has to be infinite.

h) The replacement schema (Rep) postulates for every €-formula p(z,y,1,...,2n):

Var. Ve, (VaevVyvy' ((e(z, y, 21, x0) Ap(x, Yy 21, 2)) 2 y=y') —
VuduVy (y v Jz(x e u p(z,y, x1,...,20))))

- v 18 the image of u under the map defined by .

i) The foundation schema (Found) postulates for every €-formula o(x,x1,...,xy):
Ve Vo,(Fze(z, 21, ..., ) = Jx(@(z, 21, ...y 0p) AV (' € — —p(a), 21,00, 20))))

- if @ is satisfiable then there are €-minimal elements satisfying .
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Most of the axioms have a form like
VZIYyVz (z €y ).
Intuitively, y is the set of sets z which satisfy ¢. The common notation for that set is
{zle}-

This is to be seen as a term, which assigns to the other parameters in ¢ the value {z|p}.
Since the result of such a term is not necessarily a set we call such terms class terms. It
is very convenient to employ class terms within €-formulas. We view this notation as an
abbreviation for “pure” €-formulas.

Definition 86. A class term is of the form {x|¢} where x is a variable and ¢ € L<. If
{z|p} and {y|v} are class terms then

— wu€e{x|e} stands for ap% :

—  u={z|¢} stands for Yv (v Eu<> (p%)’.

— Az|¢}=u stands for V’U(SO%H'U cu);

— A{zle}={yl¥} stands for Vv (@%deg);

— Az|¢} €u stands for v(veunv={x|p};

— Az|e}e{y|v} stands for 31)(1/;%/\1):{35‘@}.

In this notation, the separation schema becomes:
Vay.Ve,Vedyy={z|z€x A p(z,x1,...,2,) }.

We shall further extend this notation, first by giving specific names to important formulas
and class terms.

Definition 87.
a) 0:={x|x+x} is the empty set;
b) V:={x|r==a} is the universe.
We work in the theory ZF for the following propositions.

Proposition 88.
a) DeV.
b) V¢V (RUSSELL’s antinomy).

Proof. a) () € V abbreviates the formula
Fv(v=vAv=0).
This is equivalent to Jvv={ which again is an abbreviation for
JuVw (w € v w+w).

This is equivalent to JuVww ¢ v which is equivalent to the axiom of set existence. So ) € V
is another way to write the axiom of set existence.
b) Assume that V € V. By the schema of separation

Jyy={z]z€VAz¢ =z}
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Let y={z|z€V Az¢ z}. Then
Vz(z€yrzeV Az¢2).
This is equivalent to
Vz(z€y<>rz¢ 2).
Instantiating the universal quantifier with y yields

yeEyrydy
which is a contradiction. O

We introduce further abbreviations. By a term we understand a class term or a variable,
i.e., those terms which may occur in an extended €-formula. We also introduce bounded
quantifiers to simplify notation.

Definition 89. Let A be a term. Then Yz € A stands for Ve(r € A— ¢) and Jx € Ay
stands for Jx (x € AN @).
Definition 90. Let x,y, z,... be variables and X ,Y ,Z,... be class terms. Define
a) XCY:=VxeXzeY, X is a subclass of Y;
b) XUY:={zlreXVaxeY} is the union of X and Y;
c) XNY:={z|lre XAz €Y} is the intersection of X and Y;
d) X\Y:={zlze X Ax¢ Y} is the difference of X and Y;
e) U X:={z|JyeXxecy} is the union of X ;
) N X:={x|Vye X x €y} is the intersection of X ;
) P(X)={x|xr C X} is the power class of X;
) {X}={xz|xr=X} is the singleton set of X;
) {X,Y}={z|lr=XVaz=Y} is the (unordered) pair of X and Y;
)

{X()a n—l}:{x‘fE:Xo\/...\/(B:Xn_l}.

g
h

1

J

One can prove the well-known boolean properties for these operations. We only give a
few examples.

Proposition 91. X CYAY CX—-X=Y.
Proposition 92. |J {z,y}=2Uy.

Proof. We show the equality by two inclusions:
(©). Let uel {z,y}. v(ve{z,y}Auev). Letve{z,y} Aucv. (v=zVv=y)Aucwv.
Case 1. v=2. Thenuex. ucxVucy. HenceuexUy.
Case 2. v=y. Thenuecy. ucxVuecy. HenceuexUy.
Conversely let uexzUy. uexVuecy.
Case 1. ucx. Then xe{z,ytANucz. v(ve{zr,y} Auecv)anduecl {z,y}.
Case 2. ucy. Thenxe{z,ytANuecz. v(vef{zr,y}Auecv)and ueclJ {z,y}. O

We can now reformulate the ZF axioms using class terms.

a) Extensionality: VaVy (zx CyAyCz—x=1y).
b) Set existence: ) € V.
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¢) Separation schema: for all terms A with free variables x,...,z,_1
Vao.. Vo, VeazNAeV.

d) Pairing: VaVy {xz,y} V.

e) Union: Vz|J x € V.

f) Powerset: Vx P(x) eV

g) Infinity: 3z (0ex AVuez uU{u}€x).

h) Replacement: see later.

i) Foundation: for all terms A with free variables x, ..., x,_1

Vg, .o, n_1(A£D =Tz e AxznA=0).

21 Relations and functions
Ordered pairs are the basis for the theory of relations.
Definition 93. (z,y)={{z},{x,y}} is the ordered pair of z and y.

Proposition 94. (z,y) e V.
(@, y) = (¢, y) me=yra'=y"
Definition 95. Let A, B, R be terms. Define
a) Ax B={z|3a€ AFbe B z=(a,b)} is the cartesian product of A and B.
b) R is a (binary) relation if RCV x V.
¢) If R is a binary relation write a Rb instead of (a,b) € R.

We can now introduce the usual notions for relations:

Definition 96.
a) dom(R)={z|3y (z,y) € R} is the domain of R.

b) ran(R)={y|3x (z,y) € R} is the range of R.

¢) RIA={z|z€ RA323y((z,y) =2z Ax € A)} is the restriction of R to A.
d) R[A]={y|dz € AxRy} is the image of A under R.

e) R~'={z|323y (x Rynz=(y,x))} is the inverse of R .

f) R7YB]={z|3yc Bz Ry} is the preimage of B under R.

One can prove the usual properties for these notions in ZF. One can now formalize the
types of relations, like equivalence relations, partial and linear orders, etc. We shall only
consider notions which are relevant for our short introduction to set theory.

Definition 97. Let F', A, B be terms. Then
a) F is a function if VaVy,y' (zFyAzFy' —y=1').

b) F: A— B if Fis a functionAdom(F) = A A ran(F) C B. The sequence notions
(F(x)|lz € A) or (F(x))zea are just other ways to write F: A— V.
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¢) F(zx)={v|3y (e FyAVy' (x Fy' — y=19") = 3y (x Fy\v € y)} is the value of F at x.

Note that if F: A— B and = € A then x FF(x). If there is no unique y such that x Fy
then F(x) =V which we may read as F(z) is “undefined”.
Using functional notations we may now write the replacement schema as

for all terms F: F' is a function — Flz]€V.

22 Ordinal numbers

It is natural to formalize the integer n by some set with n elements. This intuitive plan
will be implemented in the sequel. We shall have

0 =10
1 = {0}

2 = {0,1}
n+1 : {0,1,...,n} ={0,1,....n =1} U{n} =nU{n}

N=w = {0,1,...}
We note some properties of this informal presentation which will be the basis for the
formalization of numbers:
1. "Numbers” are ordered by the €-relation:
m<n iff men.
E.g., 3€5 but not 5€3.

2. On each “number”; the €-relation is a strict linear order: 4 =1{0, 1,2, 3} is strictly
linearly ordered by €.

3. "Numbers” are “complete” with respect to smaller “numbers”
1<j<m—=i1Em.
This can be written with the &-relation as
1€EJEM—=T1EM,
a property termed transitivity.
Definition 98.

a) A is transitive, Trans(A), iff Vye AVe e yz € A.

b) z is an ordinal (number), Ord(z), if Trans(z) A Vy € x Trans(y).

¢) Let Ord={z|Ord(x)} be the class of all ordinal numbers.

d) Set 0=0; for allz let x+1=zU{x}.

We shall see that this defines a notion of “number” which extends the integers and which
is in particular adequate for enumerating infinite sets. We work in the theory ZF.
Theorem 99.

a) 0€O0rd.
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b) Vx€eOrd x+1€0rd.

Proof. a) Trans(()) since formulas of the form Vy € (... are tautologously true. Similarly
Vy € () Trans(y).

b) Assume z € Ord.

(1) Trans(xz +1).

Proof. Let ucver+1=azU{x}.

Case 1. vex. Then u ex Cx+1, since z is transitive.

Case 2. v=x. Thenuex Cx+1. ged(1)

(2) Vy €z + 1 Trans(y).

Proof. Let yex+1=aU{z}.

Case 1. y€x. Then Trans(y) since z is an ordinal.

Case 2. y=x. Then Trans(y) since z is an ordinal. O

Definition 100. Set 1=0+1,2=1+1,3=241, etc.

By the previous result, 0,1,2,... € Ord. The class Ord shares many properties with its
elements:

Theorem 101. Let x € Ord and y € x. Then y € Ord.
Proof. This follows immediately from the transitivity definition of Ord. 0

Before we proceed in demonstrating that Ord satisfies further “number properties” we
proof a convenient consequence of the foundation schema.

Lemma 102. There is no finite sequence xo,x1,..., Ty which forms an €-cycle with
TOETIE...CETpLEXY-

In particular Vex & x .

Proof. Assume that zg€x1€... €z €Exg. Let A= {wo,...,2n}. A+ since zo€ A. By
foundation, take z € A such that ztNA=0.

Case 1. x=x0. Then z,€xN A+, contradiction.

Case 2. x=ux; for some 1 <i<n. Then z;_1€xNA=0, contradiction. O

Theorem 103. The class Ord is strictly linearly ordered by €, i.e.,
a) Ve,y,z€0rd (z€yANyEz— € 2).
b) Vx€Orda ¢ x.
¢) Ve,yeOrd(xeyVa=yVycx).

Proof. a) Let z,y,2€Ord and z € y Ay € z. Then z is transitive, and so x € z.
b) by Lemma 102.
c¢) Assume that there are “incomparable” ordinals. By the foundation schema choose zy €
Ord €-minimal such that 3y € Ord = (zg € y Vag=y V y € xg). Again, choose yy € Ord &-
minimal such that —(zo € yoVzo=yoV yo € z9). We obtain a contradiction by showing that
o= Yo:

Let x € zg. By the e-minimality of x(, x is comparable with yo: € yoVr=ygVyo€x.
If = yo then yo € x¢ and xg, yo would be comparable, contradiction. If yo € x then yg€ xq
by the transitivity of x¢ and again g, yo would be comparable, contradiction. Hence = € yq.
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For the converse let y € yg . By the €-minimality of yg, y is comparable with zq :
yexgVy=xoVro€y. If y=uxqthen xq€ yy and g, yo would be comparable, contradiction.
If zg € y then xg € yo by the transitivity of yg and again xg, 9 would be comparable,
contradiction. Hence y € zg.

But then zy= yg contrary to the choice of yyq. U

Definition 104. Let <=€NOrd x Ord={(z,y)|r €OrdAy€Ord Az €y} be the natural
strict linear ordering of Ord by the €-relation.

Let us use small greek letters «, 3, v, ... as variables for ordinals. There are many
parallels between the intuitive natural numbers and the ordinal numbers.

Lemma 105. Let « € Ord. Then a+1 is the immediate successor of o in the €-relation:
a) a<a+1;
b) if B<a+1, then =« or < a.
Lemma 106.
a) a+1+40;
b) a+1=38+1=a=4.

Proof. a) o€ a+1 whereas a¢ 0. By extensionality, « +1+0.
b) Assume a+1=/+1but a+# . Then a < 5+ 1 and by the previous Lemma a < /3.
By symmetry we also get <« . But then a € 8 € o, contradicting Lemma 102. O

Theorem 107. (Burali-Forti) Ord ¢V, i.e., the class of ordinals is not a set.

Proof. Assume that Ord € V. By Lemma 101, Trans(Ord). By the definition of ordinal
number, Vz € Ord Trans(z). Thus Ord is an ordinal number and Ord € Ord. But this
contradicts Lemma 102. O

This result was discovered by Cesare Burali-Forti and was seen as a paradox. Without
the set/class distinction one wants to postulate the set of all ordinals which leads to a
contradiction. On the other hand the result is very important since it expresses that there
are “unboundedly” many ordinals, so that they can be used to “count” arbitrary sets.

22.1 Induction

The ordinals satisfy an induction theorem which generalizes complete induction on the
integers:

Theorem 108. Let p(z,v,...,vn—1) € LS and xg, ..., x,_1 € V. Assume that the property
o(z,xg, ..., xp—1) is inductive, i.e.,

Ve e Ord (Vy €z o(y, 20, Tn—1) = @(T, 20, .., Tn—1)).
Then @ holds for all ordinals:
Vz e Ord ¢(z,o,...,Tn—1)).

Proof. Assume not. This means that there are x satisfying the property:

x € Ord A —p(z, 2oy, Tn—_1).
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According to the schema of foundation one can take an €-minimal x with that property:
x € O0rd A—p(z, 20, ...y Tn—1) AVY(y €x— -y € Ord A —p(y, o, ..., Tn—1)).
The clause y € Ord is redundant since x C Ord:
2 €O0rd A —p(x, 20, ...; Tn—1) A\VY(y €x— (¥, 20, ..., Tn—1))-
By the inductivity of ¢ the right-hand clause implies ¢(z, zy, ..., z,—1) and so

x € Ord A —p(z, 20, ..., Tn—1) A (T, T0y ..., Tn—1).
Contradiction. m

22.2 Natural numbers

We have 0, 1,... € Ord. We shall now define and study the set of natural numbers/integers.
Recall the axiom of infinity:

Jz (exAVu(uez—uU{u} €x)).
Or, with notations from the theory of ordinals:
dr (0exAVuezu+1lex).

The set of natural numbers should be the C-smallest such z.

Definition 109. Let w =) {z|]0 €z AVuecx u+ 1€z} be the set of natural numbers.
Sometimes we write N instead of w.

We will show that this is an adequate formalization.

Theorem 110.
a) weV.
b) wCOrd.
¢) w e Ord.

Proof. a) By the axiom of infinity take a set xg such that

OcxpAYucxzgu+1leuxg.
Then
w:ﬂ {m\Oem/\Vuemu—i—lem}:moﬂﬂ {zl0ezAVuezu+lex}teV
by the separation schema.
b) By a), wnNOrd e V. Obviously 0 e wNOrd AVuewNOrd u+1€wnOrd. So wNOrd

is one factor of the intersection in the definition of w and so w CwNOrd. Hence w C Ord.
c) By b), every element of w is transitive and it suffices to show that w is transitive. Let

r={nncwAVmenmew} Cw.

We show that the hypothesis of ¢) holds for x. 0 € z is trivial. Let u € z. Then u+ 1 € w.
Let meu+1. If m €wu then m € w by the assumption that u € z. If m=w then mex Cw.
Hence u+1€x and Vuezu+1€z. By b), z=w. SoVnewnecx, ie.,

VnewVmenmew. O
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Theorem 111. (w,0,+1) satisfies the axioms of second order PEANO axiom, i.e.,
a) 0 Ew and w is closed with respect to the +1 operation.
b) +1+0;
¢) x+l=y+lox=y;
d) VeCw(0ezAVuezu+ler—r=w).
Proof. a) holds because w is an intersection of sets with these closure properties. b) and

¢) follow from Lemma 106. For d) assume that x Cw such that 0ex AVuecxu+1lex.
Then z is one of the factors in the intersection that defines w. Hence w Cx and so z=w. O

22.3 Limit ordinals

We have seen that w is an ordinal that is not a natural number. To study such numbers
we define:

Definition 112. Let v be an ordinal.

a) 7y is a successor ordinal if y=a+1 for some a € Ord. Let Succ={~ | is a successor
ordinal } be the class of all successor ordinals.

b) v is a limit ordinal if y=£ 0 and v is not a successor ordinal. Let Lim={~ |~ is a
limit ordinal }.

Lemma 113. w s the smallest limit ordinal.

Proof. Assume for a contradiction that w was a successor ordinal, say w =mn + 1. Then
n€w and n+ 1 €w since w is closed under +1. But then w € w, contradiction. Thus w is
a limit ordinal.

Assume that A <w is a smaller limit ordinal. If u€ A then u+ 1<\ and so u < A. Also
0 < A. But then A was used in the intersection defining w, and w C . This implies w < w,
contracition. O

One can continue counting through the ordinals by defining

w+2 = (w+1)+1
w+3 = (w+2)+1

so that the ordinals begin like
0,1,2,...,w,w+1L,w+2,w+3,...

Once we have introduced the principle of recursion, we shall see that there are many more
limit ordinals above w like the limit of the w+n .

22.4 Recursion

Recursion, often called induction, over the natural numbers is a ubiquitous method for
defining mathematical object. We show a more general recursion theorem.

Theorem 114. Let G:V — V. Then there is a canonically defined class term F such that
F:0rd—V and YaeOrd F(a)=G(F | a).
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We then say that F' is defined by recursion over the ordinals with the recursion rule G.
Moreover, the function F' is uniquely determined: if F': Ord — V with Yo € Ord F'(«) =
G(F'| «) then F=F'.

Proof. We begin by showing the compatibility of functions satisfying the recursion equa-

tion:

(1) Let F, F' be terms such that Yo € Ord N dom(F) F(a) = G(F | a) and Va €

OrdNdom(F’) F'(a)=G(F' | ). Let a € Ord such that o+ 1 C dom(F) Ndom(F’). Then

F(a)=F'(a).

Proof. By the induction theorem it suffices to show that the property
a+1Cdom(F)Ndom(F’') — F(a)=F'(a)

is inductive, i.e.,

Va € Ord (VB € a (f+ 1 Cdom(F)Ndom(F') = F(B8)=F'(B8)) = (a«+1C dom(F)N

dom(F') = F(a) =F'())).

So let @ € Ord and VB € a (8 + 1 C dom(F) N dom(F’) —F(B) = F'(B)). Let

o "

(
a+ 1 C dom(F)Ndom(F’). For § < a we have § + 1 C dom(F') N dom(F”’) and hence
F(B)=F'(B). Thus

Fla=F'|a.

By the recursion equation

F(a)=G(Fa)=G(F'|a)=F'(a).

~—

ged(1)
Let

F={f|30€0rd(f:0—V and Ya <4 f(a)=G(fa)}

be the class of all approzimations to F'. By (1), the elements of F are pairwise compatible
functions. Hence

F=|J{f36€0rd(f:6—V and Va <d f(a) =G(f [ a)}.

is a function defined on a subclass of the ordinals. We show that F' also satisfies the
recursion rule G where F' is defined:

(2) Yae dom(F) (a« Cdom(F) A F(a) =G(F | a)).

Proof. Let a € dom(F). Take some approximationf € F such that a € dom(f). Since
dom( f) is an ordinal and transitive, we have

a Cdom(f) Cdom(F).

Moreover

ged(2)
It remains to show that dom(F') =0rd, i.e.,
(3) VaeOrd a € dom(F).
Proof. By induction on the ordinals. We have to show that o € dom(F') is inductive in
the variable a. So let o€ Ord and V3 € a € dom(F'). Then a Cdom(F). Let

f=FTlau{(e,G(Fa))}.

f is a function with dom(f)=a+1€Ord. Let o’ < a+ 1. If o/ <« then
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If o’ =« then
f(@)=fla)=G(Fa)=G(fa)=G(f ).

Hence f e F and a € dom(f) C dom(F). ged(3)
The uniqueness of the function F follows from (1). O

There are various special cases of recursion in which the recursion rule G is determined
in ways adequate for the application. Like in complete induction and recursion one often
distinguishes 0-, successor and limit cases:

Theorem 115. Let Go€V, Geuee: V2=V, and Giim: V — V. Then there is a canonically
defined class term F such that

Go, if a=0
F:0rd —Vand Va € Ord F(a) =4 Geuec(F(5),0a), if a=F+1
Gim(F [ a,a), if a € Lim

We then say that F is defined by recursion over the ordinals with the recursion rules Gy,
Gsuce » and Giim -

Proof. We have to combine the recursion rules Go, Ggucc, and Gy into a single rule G:
V-V
Gy, if f=0
G(f) = Gsuce( f(5), @), if Func(f) and dom(f) =«
Giim(f, @), if Func(f) and dom( f) € Lim
0, else

Let F: Ord =V be recursively defined by G. Then we have
for a=0: F(0)=G(F [0)=G(0)=Gy.
fora=pF+1: F(a)=G(F | a)=Gsucc(F(B), ).
for aeLim: F(a)=G(F | a) =Gim(F | a, a). O

Note that class terms involved in recursion can also have extra parameters.

23 Ordinal arithmetic

We can now define arithmetical operations on the ordinals, using familiar recursive prop-
erties.

Definition 116. Define the term add(d,«) by ordinal recursion on the variable o (taking
0 as a parameter) such that

0, if a=0
add(8,a) =< add(d, ) +1, ifa=0+1
Uica add(d,7), if « € Lim

add(d, ) is the ordinal sum of 0 and a. We also write § + «v instead of add(d,«). Then
the recursive equation can be written as

0+0 = ¢
S+(B+1) = (6+8)+1
d+a = |J (6+1), f a€Lim

<o
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One can show that ordinal addition satisfies several natural properties.

Proposition 117.
a) a+ pfe€0rd.
b) a+0=0+a=qa.
c) (a+B)+v=a+(B+7).
d) a,few—a+pfew.

Proof. By induction. O

Note that ordinal addition is in general not commutative:

1+w= U l+n=w+w+1
new

We have shown by the side that
Lemma 118. There are limit ordinals >w : w+w € Lim .

Proof. w+we&Ord and w+ w>w . Assume that

B<wtw= U w+n.

n<w

Let B €w +ng for some ng € w. Then

Btle(w+no)+l=w+m+1)C | w+n=wtw.

n<w

Definition 119. Define the ordinal product 6 -« of § and « recursively:

-0 =0
d-(B+1) = (6-8)+1
d-a = (0-1), if a € Lim
i<a

Ordinal multiplication satisfies natural properties.

Proposition 120.

e

a) a-pe0rd.

b) -0=0-a=0.

c) (a-B)-y=a-(8-7).

d) a-(B+7)=(a-B)+(a-7).
)

a,few—a-feEw.

Proof. By induction. Let us prove d) by induction on +. For v=0

a-(f+0)=a-B=(a-B)+0=(a-B)+(a-0).
For y=0+1
a-B+E0+1))=a-(B+0)+D)=(a-B+))+a=(a-B+a-0)+a=
(- B)+ (- 6) +a)=(a-B)+(a-(6+1)).
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For v € Lim
a-(ﬂ—lr’Y):Oé'(U (ﬂ+i)>=U (a-(B+i) = ((@-B)+ (@)= |J (@ B)+j)=
(@ B)+(a-7). =

Again, ordinal multiplication is not commutative:

2-w= U 2 n=wFwtw=w-2.

n<w

Also “left-distributivity” does not hold:
1+1)-w=]J (A+1) n)=wtwtw=(1-w)+(l-w).

nw

Finally define ordinal exponentiation by

Definition 121. Define the ordinal power §“ of § and o recursively:

0 =1
§B8+1 — (5B).5
5o = U 8%, if a € Lim
<o

Ordinal exponentiation satisfies natural properties.

Proposition 122.

a) o €Ord.

b) a’=1,a'=a, and a’=a-«.
¢) (aP)r=al".

d) o7 =(af)- ().

e) a,fecw—alcw.

24 Number systems

24.1 The structure IN

The arithmetical operations on IN can be defined by restricting ordinal arithmetic to IN:
N=(w,<,+,-,0,1)
where +=+[(w X w) and -=-[(w X w). Then

Theorem 123. N is a model of the first-order axziom system PA given in Definition 6/.
Hence PA is consistent.

Note that we are proving the consistency of PA in the stronger system ZF so that we
do not have a contradiction to Gédel’s second incompleteness theorem.

Proof. It remains to check the schema of induction in IN :
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for every formula ¢ (o, ..., Z,_1, T,) € LAR:

V.. Ve, —1(e(z0y ..y Tn_1,0) AV, (0 — @(x0,..., Tp—1,2n + 1)) =V, ).
So let (g, ..., Tn_1, Tn) € L% and ay, ..., a, —1 € N. Also assume that

NE ¢(ag, ..., an—1,0) AVx,(p(ag, ..., an—1, Tn) = ©(a0, ... Tn—1,Tn + 1)).
Define

X={ueN|NEp(ag,...,an—1,u)} CN.
By assumption, 0 € X and Vu € X u + 1 € X. Since N satisfies the second-order Peano
axioms (see Theorem 111), X =N. So
NEVz, p(ag, ..., an—1, Ty).
O

The structure N = (N, <, +, -, 0, 1) or indeed the structure (N, +1, 0) has a unique
characterization up to isomorphism.

Theorem 124. Let N'=(N', S, Z) be a structure satisfying the axioms of second-order
Peano arithmetic:

W) @)+ 2;

b) S(2)=S(y) o=y

c) VeCN' (ZexANVuex S(u)cx—xz=N’).
Then (N, +1,0) is isomorphic to (N',S,Z).

Proof. Define a map h: IN— N’ by (complete) recursion:

ho) = Z
hin+1) = S(h(n))

(1) h is a homomorphism.

Proof. This is exactly expressed in the recursive definition of h. ged(1)

(2) h is injective.

Proof. Assume not. Let n € N be minimal such that there is some m € N such that m=+£n
and h(m)=h(n).

Case 1. n=0. Then m=1[+1 for some [ €N.

S(h()) = h(l+1) = h(m) = h(n) = h(0) = Z.

But this contradicts Peano axiom a).
Case 2. n=k+1 for some k € N. By the minimality of n we have m >0. Let m=1+1
for some [ € N.

S(h(k))=h(k+1)=h(n)=h(m)=h(l+1)=S(h()).
By Peano axiom b) we get h(k)=~h(l). By the minimality of n we have that k=1. But then

m=Il+1=k+1=n,

contradiction. ged(2)
(3) h is surjective.
Proof. Let x =ran(h). Then Z=h(0)€x. If u=h(n) €z then

S(u)=S(h(n))=h(n+1) €.
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By the Peano axiom c) we get z=N'. O

24.2 The structure Q>

(Non-negative) rational numbers are constructed as “quotients” of natural numbers.
According to the laws of fractions, quotients like % and % can be identified. The iden-

tification proceeds via a canonical equivalence relation, hence rational numbers will be
equivalence classes of quotients.

Definition 125. A quotient is an ordered pair (m, n) where m € N and n € N\ {0};
N x (N\ {0}) is the set of all quotients. Define an equivalence relation ~g on N x (N\ {0})
by

(m,n)~q(m',n') iff m-n"=m'-n.
For (m,n) €N x (N\{0}) let

m

™ (', )| (m, )~ ()}

be the equivalence class of (m,n). Let

Q>o={

iy
n

(m,n) €N x (N\ {0}) |

be the set of non-negative rational numbers.
Define a binary addition operation +q on Qxo by

m  m' _m-n'4+n-m'

n Qn’ n-n'

Define a binary multiplication - on Q>0 by

Define a relation <q on Qx>0 by

!/
m _ m' .
—<qQ— ffm-n"<m’-n.
n n

Define a map m: N — Q>0 by

m(n)==1.

Lemma 126. The preceding definition is correct, i.e.,
a) ~q is an equivalence relation on IN x (N'\ {0}).
b) Every rational % s a set.

c) Q>0 is a set.

)

d) +q and - are well-defined binary functions, and <g is a well-defined binary rela-
tion.

e) +q is associative and commutative on Q¢ with neutral element 7(0).
f) ‘@ is a commutative group operation on Qxo\ {0} with neutral element 7(1).

9) <q 1s a strict linear order on Qxo.
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h) The distributive law holds:
rqQyter)=rqQyter qz
i) m (N, <,+,-,0,1) = (R0, <@, +Q, @, 7(0),7(1)) is an embedding.

/
)

Proof. a) ~qis obviously reflexive and symmetric. For transitivity consider (m,n) ~g(m
n') and (m/,n’) ~g (m”,n”). Then

m-n'=m’-nand m’-n"=m"-n'.
Then m-n'-m’-n"=m'-n-m"-n’ hence m-n"=n-m" and (m,n) ~q (m”,n").
b) N x (N\ {0}) is a set, since V is closed under cartesian products. Then the equivalence
class % CN x (N\ {0}) is a set by separation.
¢) Apply replacement to the function (m,n)+— % Then

Qzo0={2|(m,n) €N x (N\ {0}) }

is a set.
d) We have to show independence of representatives. Let (a,b) ~q(a’,b’) and (¢,d) ~q (¢,
d'). Then a-b'=a’-b and ¢-d’=¢’-d. This implies

(a-d+c-b)-b-d=a-d-VV-d+cb-b-d=d-d-b-d+c-b-b-d=(a"-d+c-b)-b-d

and

(@-d+cbb-d)~(a d+c-bb-d).
Also

a-c-b-d=d-c-b-d=da-cb-d
and

(a-c,b-d)~gq(a" -,V -d).
Finally
ad<cbiff adb’d' <cbb'd iff a’dbd' <c'bb'diff a’d' <c'b

h)
g<£+£>:g<cf+ed>:a(cf+ed):acf—i-aed:acbf—i-aebd:%_i_ﬁz
b \d 7)o\ " dys bd f bd f bdbf bd " bf
ac ace
IXARYA

1) m is obviously injective. Now it suffices to see:

m+n_m n
m(m+n)= 7 :T—FQT:W(m) +qm(n)
and
mn_m n
m(mmn) :T:T-QT:W(m) -Qm(n).

We can now identify the natural number n with the rational number = and obtain

1
NC Qo
and
<IN?=(<q) IN?, +IN’=(+q) IN?, and [N?=(-q) [ N*.
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For simplicity we can now write n, <, +, and - instead of %, <@, +qQ, and -q.

24.3 The structure R
(Non-negative) real numbers are constructed as (left halves of) Dedekind cuts in the (non-
negative) rational numbers. If the cut determines a rational number, we require that that
rational number is in the left-half of the cut.
Definition 127. A non-negative real (number) is a subset r C Q>o such that

a) 0€r and r is bounded, i.e., there is a rational number q € Q>0 such that

Vper: p<gq;
b) r is an initial segment of Q>¢, i.e.,
VperVp € Qso:p' < p—per;
¢) r is open above 0, i.e.,
Vper\{0}Ip' erp<yp’.
Let
R>o={r CQx0|r is a non-negative real }.
Define a binary addition operation +r on R>o by
r+wrr’'={p+p'|per,p'er}.
Define a binary multiplication -r on Rxo by
rrr’'={p-p'|per,per'}.
Define a relation < on Rx>q by
r<mr’ iff rCr’ and r+£r'.
Define a map 7" Q>0— Rx>o by 7'(0) ={0}, and
(@) ={peQxolp<q}

for q=#+0.
Lemma 128. The preceding definition is correct, i.e.,

a) Rxp is a set.

b) +r and ‘R are well-defined binary functions.
¢) 4R is associative and commutative on Rso with neutral element 7'(0).

e

)
)
d) ‘m is a commutative group operation on Qxo\ {{0}} with neutral element 7'(1).
) <@ is a strict linear order on Qxo.

)

f) The distributive law holds:
rY+e2)=rqQyter Q2
g) ™ (QRz0,<,+,-,0,1) = (R>0, <R, +R, ‘R, 7' (0),7'(1)) is an embedding.

Proof. a) R>oC P(QRxo) is a set by the powerset axiom and separation. O
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By 7’ we can now identify the structure Q> with a substructure of R>o, and we can
write ¢, <, +, and - instead of 7'(q), <gr, +R, and ‘R.

Dedekind cuts were introduced to obtain closure properties for certain irrational limit
processes.
Definition 129. Let (L, <) be a strict linear order and X C L. Then

a) be L is a lower bound of X if Ve e Xb<z.

b) be L is an infimum of X if b is a lower bound of X and for every lower bound b’ of
X we have b’ <b.

¢) be L is an upper bound of X if Ve € Xx <b.
d) be L is a supremum of X if b is an upper bound of X and for every upper bound b’
of X we have b<<b'.

Note that an infimum resp. supremum of X is uniquely determined if it exists.

Lemma 130. Let X CRy0 be non-empty and bounded, i.e, there is some a € R such that
Vre X0<r<a.

Then the infimum and supremum of X both exist.

Proof. We show that
b= U X

is the supremum of X. The set b C Q>0 is obviously bounded by a, and it is an initial
segment of Q¢ which is open above 0. So b€ R . b is an upper bound for X since by
construction Vr € Xr <b. Assume that b’ is another upper bound for X, i.e., Vr € Xr <b'.
Then b={J X Cb" and so b<b'. Hence b is the least upper bound of X .

For the infimum let '’ =) X. @’ is a bounded initial segment of Q> with 0€d’. If a’
possesses a maximal element ¢ then let a=a’\ {m}; otherwise set a=a’. It is easy to see
that a is the infimum of X . O

Theorem 131. Let (R, <) be a strict linear order which densely contains (Qxo, <) and
which is complete with respect to suprema, i.e.,
a) (Rz0,<) € (R, =);
b) Vre RIge Q=00=x1r<q;
c) Vr,s€R(r<s—3qg€Qxor<q=<s);
)

d) If 0+ X CR is bounded in R, i.e., there is r € R such that Vx € Xx <1, then the
supremum of X in (R, <) exists.

Then under these hypotheses there is an isomorphism
o: ('R, -<) = (R)o, <)
such that o | Q>0=1id.

Proof. Define
o:R— IR>0
by o | Q=p=id and, for re R \ Q>0, by

o(r)={q€Qxo0lq=<r}.
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It is straightforward to check that o(r) € Rxg .
(1) o is order-preserving.
Proof. Let r < s. It suffices to check that case where r, s € R \ Q>0 . By hypothesis c)
there is ¢ € Q>0 such that r < ¢ <s. Then g€ o(s)\o(r). So a(r)<o(s). ged(1)

This implies immediately
(2) o is injective.
(3) o is surjective onto Rxg.
Proof. Let 7 € R>0 \Qx0. Set X ={q€Q>0| ¢<r}. X is a non-empty bounded subset
of R. By the completeness assumption let 7’ be the supremum of X in (R,<). If ¢€ Q>0
and ¢ <7 then ¢ <7’ since ' is an upper bound of X . Conversely if ¢ <7’ then g€ X and
q <r. Hence

o(r')={q€Qxolq=<rt ={q€Qxolg<r}=r.

24.4 The structures Z, QQ, and R

The structures N, Q>¢, and R3¢ are not closed under additive inverses. We complete R>¢
to the set of all real numbers and use this to also define Z and Q. R is defined by formal
differences from Ry like Qo was defined by formal quotients from IN .

Definition 132. A difference is an ordered pair (r,s) where r,s € R>o; R>ox Rxg is the
set of all differences. Define an equivalence relation ~r on R>o x Rx¢ by

(rys)~r(r',s) iff r+s'=r"+s.
For (r,s) € Rxox Rxo let

r—s={0",8)[(r,s)~r(r',s)}
be the ~gequivalence class of (r,s). Let

IRZ{?“— S ‘ (?“,8) €R>0 X R)o}

be the set of all real numbers.
Define a binary addition operation +r on R by

(= 8) i /= ) =(r+7) = (545,
Define a binary multiplication -r on R by
(r—s) r(r'—s)=(rr'+ss’)—(rs'+r's).
Define a relation <r on R by
r—s<mgr' —s iff r+s'<r’'+s.
Define a map ©":R>o— R by

m(r)=r—0.

Lemma 133. The preceding definition is correct, i.e.,
a) ~R s an equivalence relation on Qéo.
b) Every real number r — s is a set.
¢) R is a set.
)

d) +r and -r are well-defined binary functions, and <R is a well-defined binary rela-

tion.
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e) +r is a commutative group operation on R with neutral element ©"(0).

) ‘R is a commutative group operation on R\ {0} with neutral element ©'(1).
g9) <R 1s a strict linear order on R.

h) The distributive law holds:

rR(Y+RZ) =T RY+RT R2-
i) m (Rx0,<,+,0,1) = (R, <m, +R, '®, 7" (0),7"(1)) is an embedding.
j) For every real number r — s there is some t € Rxo such that
r—s=t—0orr—s=0—t.

By i) one can identify t —0€ R witht € R>o. For 0 —t € R we simply write —t .

Assuming that we have ensured that
NCRz0CR>0CR

as substructures, we can now define

Definition 134.
a) The substructure ZC R of integer numbers is defined by Z=NU{—n|neN}.

b) The substructure @ C R of rational numbers is defined by Q = Q>oU {—q | q €
Qxo0} -

On can show that the structure Z, Q, and IR can be characterized up to isomorphisms
by 2nd-order properties.

24.5 On mathematical foundations

Mathematics is based on certain domains like numbers, functions, sets etc. with their basic
properties. These domains have definite intuitive meanings and can be viewed as consisting
of objects in space and time or in our (common) imagination. Despite intuitive insights,
there has been a tendency since greek mathematics to express the basic properties exactly,
in axiomatic form. This was partially necessitated by the wish for absolute exactness: the
sum of angles in a triangle is exactly m and not just approximately; so what are the ezxact
premisses for that result. Also one encountered unintuitive situations like in the beginnings
of analysis where one uses the infinite to analyse situation in the finite.

Axiomatics in geometry led to questions of completeness and consistency of axioms.
The consistency of mathematics as a whole appeared problematic, so that David Hilbert
proposed a programme of proving the consistency of all of mathematics. This requires one
unifying framework in which the standard mathematical domains can be explained. Set
theory from its beginnings in the 19th century was used as an encompassing domain in
which the other domains could be defined appropriately.

So how should we understand the formalization of domains like N, Z, and IR within
the theory ZF? Is the real number 3.1416 “really” a Dedekind cut, consisting of equivalence
classes of ordered pairs of natural numbers? It is obviously better to “think” of real numbers
as objects in their own right, which can be described categorically by some 1st and 2nd-
order properties. Also it is natural to imagine that the number domains are included in
each other as substructures:

NCZCRCCand NCOrd.
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Sets form another domain, where e.g. R €V but where 3.1416¢ V. This suggests a different
but more “mathematical” setup of domains. Also the language of mathematics has a rich
spectrum of notions to describe those domains in a comprehensive and varied system of
axioms. The preceding constructions of number domains can be seen as providing a model
for the mathematical axioms within ZF. We thus have a relative consistency result: if the
axioms of ZF are consistent then the usual mathematical axiomatics is consistent.

In view of Godel’s second incompleteness theorem this is the best one can hope for. If
one could prove the consistency of the usual axioms, this would include the axioms of ZF.
Since ZF allows to carry out all mathematical proofs, ZF would prove its own consistency.
But then, by Goédel’s theorem, ZF would be inconsistent. So we have to assume the
consistency of ZF as an empirical and intuitive fact and proceed from there.

25 Finite and infinite cardinalities

(Natural) numbers are mainly used to “count” the size of collections, i.e., sets. This leads
to the notion of cardinal numbers.
Definition 135.

a) card(z) =) {a|3f (fra—x A f is surjective)} is the cardinality of x.

b) k € Ord is a cardinal (number) if k = card(z) for some x € V; let Card =
{card(x) |z €V} be the class of all cardinals.

c¢) x is finite if card(z) <w.

d) x is infinite if card(z) £ w.

e) x is countable if card(x)<w.

f

Lemma 136. Let k =card(x). Then there is a bijection k<> x .

)
)
)
)

x 1s uncountable if x is not countable.

Proof. Take a surjective f:x— x. Define g: x — k by
g(z) = the smallest 7 such that f(v)=z.

Let X =ran(g) C k. Note that f: X — x is a bijection. Define h: k41— X U{X } recursively
by

_ J min (X \{r(B)| B<a}),if X\{n(B)|B<a}t+0
h(e) X, else

One can show inductively:
(1) If B<a<k and h(a)# X then h(f8) <h(a) and a < h(a).
(2) There is A < k such that h(\) = X.
Proof. Otherwise, by (1), h(k) > k. But by the definition of h, h(k) € X Ck and h(k) <k.
Contradiction. ged(2)
So assume that A <k is the minimal ordinal such that h(\) = X.
(3) h 1A Ao X,
Proof. h | X is injective by (1). Since h(A\) = X, we have X \ {h(83) | S <A} =0 and so
X =ran(h [ A). So h [\ is bijective. ged(3)
fo(h[A): A=z is a bijection. By the minimality of k= card(z) we get A\=k. O

So card(z) allows to enumerates x by a bijection.
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Theorem 137.

a) Vn<w card(n)=n; hence Vn <wn € Card .

b) card(w)=w and so w € Card .

¢) card(w+1) =w.
Proof. a) By “complete induction” on n < w.
n=0:0: 0 — 0 is surjective. Hence

0=10 C card(0) :ﬂ {a|3f (f:a—x A [ is surjective) } T =0.

n=m+ 1, and assume that card(m)=m. Assume for a contradiction that card(n) <m.
Take f:m — n surjective. Then m =0 and we can take [ such that m=1+1.

Case 1. f(I)=m. Then f [l:l—m is surjective and card(m) <! <m. Contradiction.
Case 2. f(I)<m. Then define f:1—m by

v [ TR, F(E) <m
J'k) ‘{ F(1), i F(k)=m

Then f’:1— m is surjective and card(m) <! <m . Contradiction.

b) Obviously card(w) <w. Assume for a contradiction that n = card(w) <w. Then there is
a surjection from n onto w. This implies the existence of a surjection from n onto n + 1.
Then card(n + 1) < n contradicting a).

c¢) Define f:w—w+1 by
fn)= { Z’—lffif:s >0
frw—w+1 is surjective and so card(w+ 1) = w. O
By ¢) the infinite has paradoxical properties.

Lemma 138.
a) Let a,b be finite sets. Then aUb, a x b, and P(a) are finite.

b) Let x,y be countable sets. Then Uy and x X y are countable.

Proof. By constructing certain surjections. We only consider b). Let f:w—x and g:w—y
be surjective. Define a surjection h:w—z Uy by

h(n):{ f(@), if n=2i

g(i), if n=2i+1

Define a surjection h':w—x X y by

However:
Theorem 139. (Cantor) The set P(w) is uncountable.

Proof. Assume instead that card(P(w)) <w and let f:w— P(w) be surjective. Define

a={nn<wAng¢ f(n)} € P(w).
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Since f is surjective, take ng < w such that a= f(ng). Then

no€asnoé f(ng) =a.

Contradiction. H
Let us generalize the argument to arbitrary cardinals.
Theorem 140. Let o be an ordinal. Then there is no surjection from a onto P(«).

Proof. Assume instead that f:a— P(«) were surjective. Define
a={vlv<anvé f(v)} eP(a).
Since f is surjective, take vy <« such that a = f(1p). Then

veasvéd f(v)=a.
Contradiction. m

26 The axiom of choice
Consider the following commonly used proposition:

Lemma 141. Assume AC. A countable union of countable sets is countable: let (apn)n<w

be a sequence of countable sets. Then |, _ , an is countable.

Proof. (1st attempt)We may assume without loss of generality that all a,, are nonempty.

For n € w “choose” a surjection fy,: w— ap . Then define a surjection h:w —J, _, an by
), if k=2"-3
hky=1{ I, 0
(k) { 15(0), else

This argument is not complete. How should the “choices” of f, be carried out? We
cannot make these choices in some temporal succession. In a standard first-order proof,
they have to be made instantaneouly at one step of the proof. Many arguments in infinitary
mathematics depend on the possibility of making infinitely many assignments or choices:
choices of sequences in analysis, choices of basis vectors in vector spaces, etc.. It can be
shown that infinitely many choices are in general not implied by the ZF-axioms, and one
has to add choice principles or axioms.

Definition 142. The axiom of choice, AC, is the following statement:

Ve(Vu,vex(u# DA (u£tv—unv=0)) —»32VueczIvunz={v})).

This says that the set x, consisting of pairwise disjoint non-empty elements possesses
a choice set z which “chooses” exactly one element from each member of x .

Definition 143. The axiom system ZFC (Zermelo-Fraenkel with choice) consists of the
axiom of ZF together with the axiom of choice.

The system ZFC is the usual foundational axiom system for mathematics. We are able
to prove the above lemma:
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Lemma 144. Assume AC. A countable union of countable sets is countable: let (an)n<w

be a sequence of countable sets. Then |, _ , an is countable.

Proof. We may assume without loss of generality that all a,, are nonempty. For n € w let
Fo,={f|f:w— a, is surjective} £ (.

Each F,, CP(w X ay) is a set by the powerset axiom.
To choose surjections f,, from the F, let

z={{n} x F,|n<w}.

x is a set by replacement. The elements {n} x F}, of = are nonempty and pairwise disjoint.
By the axiom of choice take a set z such that for all n < w, the intersection
{n} x F)Nz

contains just a single element (n, f,). Hence f:w—V given by n— f, is a choice function
which “chooses” f,, € F, for all n <w .

We can now define a surjection h:w — Un<w a, by
h(k) = fn('l), if k=292n.3¢
(&) { f0(0), else

O

One can show that one cannot prove this lemma in ZF alone - unless ZF is inconsistent.

26.1 Zorn’s lemma
The most popular choice principle is ZORN’s lemma which we already used in the proof of

the general completeness theorem.

Definition 145. Let (Z,<) be a partial order. A chain in Z is a subset C C Z such that
Ve,ycCz<yVy<a).
u € Z is an upper bound of Z if
VeeCx<u.

(Z,<) is inductive if every chain in Z has an upper bound.
a € Z is a maximal element of (Z,<) if

—dreZa<zx.
The lemma of Zorn is the statement “every inductive partial order which is a set has a
maximal element”.
To prepare the proof of Zorn’s lemma, we show another choice principle.
Lemma 146. Assume AC. Let x be a set. Then there is a choice function f:z\{0}—J =
forx, i.e.,

Vuex \ {0} f(u) €u.

Proof. Define 2/ = {{u} x u|u €z, u£0}. 2’ is a set consisting of non-empty pairwise
disjoint elements. By AC take a set z such that for all u € z, u (), the intersection

{u} xu)Nz
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is a singleton set {(u, f(u))}. Then f is a choice function for x . O
Theorem 147. AC implies the lemma of ZORN.

Proof. Let (Z,<), Z € V be an inductive partial order. Let f be a choice function for
P(Z). Define a function h: Ord — Z U {Z} recursively:

h(a)—{ f{u € Z |u is an upper bound for {h(5)|8 <} and u¢ {h(B)|8 < a}}), if this exists
| Z, else.

By definition,
(1) If a< B and h(B)+ Z then h(a) <h(B) € Z.
(2) There exists A € Ord such that h(\)=Z.
Proof . If not, then h: Ord — Z would be an injection, contradiction. ged(2)
Let A € Ord be minimal such that h(\)=Z.
(3) A is a successor ordinal.
Proof. h(0) +# Z: () is a (trivial) chain in Z. Since Z is inductive, () has an upper bound
uin Z. Hence the set of upper bounds in the definition of i (0) is non/empty and f chooses
one such u € Z.

Assume that A were a limit ordinal. {h(f)|5 < A} is a chain in Z. By inductivity
it has an upper bound w. Since (h(f5)|5 < A) is strictly increasing in the partial order,
ué¢ {h(B)|B < A}. Therefore h(\) is defined by an application of the choice function and
h(\)+# Z . Contradiction. ged(3)

Solet A=r+1. {h(B)|B< K} is a strictly increasing chain in Z .

(4) h(k) is a maximal element of Z .

Proof. Assume not. Take some u € Z such that h(k) < u. Then u is an upper bound of
{h(B)|B <k} with u¢ {h(B)|5 < k}. But then h(\) € Z would be defined, contradicting
h(N\)=2Z. O

Let us apply a similar argument to the study of cardinals.
Theorem 148. Assume AC. Then card(x) € Ord for every x € V.

Proof. Let x € V. Let f be a choice function for P(z). Define a function h: Ord -z U{x}
recursively:

x, else.

h(a) = { f@\{h(B)|B <a}), if this exists,

By definition,

(1) If a< B and h(B)+# x then h(a)+£ h(B) € .

(2) There exists A € Ord such that h(\) =z

Proof . If not, then h: Ord — = would be an injection, contradiction. ged(2)
Let A € Ord be minimal such that A(\) =2z . By the definition of A,

z\{h(B)|B <A} =0.

Hence h | A\: A — x is surjective, and card(z) < A€ Ord. O

Theorem 149. Assume AC. Let k be a cardinal. Then there is a cardinal A > k. Let kT
be the least cardinal >k .

Proof. Let A=card(P(k)). If A< k. Then there is a surjection from x onto P (k) which
is impossible. Hence A >k . O

Now we can define, in the system ZFC, the sequence of Alef’s:
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Definition 150. Define recursively:

NQ = w
Noz—i—l = N;t
Ny = U Ry , for limit ordinals A
a<A

So there is a proper class of infinite cardinals. One can naturally define an arithmetic
on cardinals.

Definition 151. For x, A € Card define
a) the cardinal sum k+ X =card(({0} x k) U ({1} x X));
b) the cardinal product k- A= card(k x \);
¢) the cardinal power k* = card({f| f: A= k}).

Cardinal arithmetic shows unusual properties:

Theorem 152. For «, 8 € Ord
Na—FNﬁ:Na-Nﬁ:ma}((Na,Nﬁ).

On the other hand, already the value of 2%0 is not determined. Georg Cantor make the
following conjecture:

Definition 153. Cantor’s Continuum Hypothesis (CH) is the statement

N0 —N; .

This was generalized by Felix Hausdorff:

Definition 154. Hausdorfl’s Generalized Continuum Hypothesis (GCH) is the statement

Vo QNQ = Na+1 .

Axiomatic set theory has shown, that these hypotheses are independent of the ZFC
axioms of set theory. If the axiom system ZFC is consistent, then so are the system
ZFC+GCH and the system ZFC+2% £ R; . So the simplest question about infinitary
cardinal exponentiation cannot be resolved in the standard axioms.

Luckily such independencies seldomly affect usual mathematical questions. The axioms
of ZFC are strong enough to decide most mathematical questions. If a proof does not yet
exist this is in most cases due to the difficulty of finding a proof or disproof, but not to
incompleteness.

So in ZFC together with 1st-order logic we are in a comfortable situation: ZFC is
sufficient for all but a tiny minority of problems; at the fringes, axiomatic set theory
exhibits exotic possibilities for the behaviour of infinities.

Index

PEANO arithmetic . . . . .. ... .. ... 41 GODEL completeness theorem . . . . .. .. 40
PEANO axiom, second order . . . . ... .. 61 HENKIN model existence theorem . . . . .. 40



INDEX

SKOLEM normal form . . . ... ... ... 46
HENKINSet .. ... ... ... .. ..... 34
ZERMELO-FRAENKEL set theory . . . .. .. 53
+1 57
0 e 58
1 58
2 e 58
1S 59
E 17
W e e e e e e e e e e e e e e e e e e e e 60
e 26
AC . . 75
antecedent . . . . . ... ..o 25
atomic formula . . . . . ... ... 13
axiomatizable . . . . . ... ... ... ... 42
Boolean algebra . . . . . ... ... ... 15
bounded quantifier . . . . ... ... .. .. 55
cardinality . . .. .. ... ..o . 73
cartesian product . . . . . . ... ... ... 56
choice, axiom of . . .. ... ... ..... 75
classterm . . . ... ... ... 54
compactness theorem . . . . . ... .. 27,41
completeness . . . ... ..o 27
conjunction . . . . ... 14
conjunctive normal form . . . . ... . ... 45
consistent . . . . ... ..o 31
constant symbol . . . ... ..o 11
constant term . . . . . ... ..o L. 47
contains witnesses . . . . . . ... .. ... 34
contraposition . . . . ... ... 28
correct sequent . . . . ... oo 25
countable (set) . . ... .. ... ... ... 73
countable structure . . . . .. .. ... L. 43
cutrule . . ... 28
deduction . . . .. ... 26
derivable . . . ... ... ... ... 26
derivation . . . . . .. ..o 26
derivation complete . . . . ... ... .. 34
derivedrule . . . . ... ... 27
difference class . . . . . . ... ... 55
disjunction . . . ... ..o 0oL 14
disjunctive normal form . ... . ... ... 45
domain . . .. ... ... 56
downward LOWENHEIM-SKOLEM theorem . . 43
dual (literal) . . ... ... ... ... ... 45
elementary . . .. ... ... 42
A-elementary . . . .. ... 42
embedding . . .. ... ..o 16
emptyset . ... ..o 54
empty word . . . . ... ..o 12
equivalence . . . ... ..o 14
ex falsum libenter . . . . . . ... ... 27
existential formula . . . . ... ... ... 46
exXpansion . . . ... ..o 16
extensionality . . . .. .. ... ... .. 53, 55
finite (set) . . . ... ... ... 73
finite structure . . . . . . ... oL 43
finitely axiomatizable . . ... .. .. ... 42
finiteness theorem . . . . ... ... .. 27, 41

first-order language

79
formal proof . . . ... ... L. 26
formula . ... .. .. 0oL 13
e-formula . ... ... ... L. 52
foundation schema . . . .. ... .. .. 53, 56
free() . . oo 17
free variable . . . .. ... .00 17
function . . . . . ... Lo 56
function symbol . . . . ... oL oL 11
holds in a structure . . . .. ... .. ... 17
homomorphism . . ... ... ... ..... 16
IMage . « « v v v v v e 56
implication . . . .. ... o000 19
inconsistent . . . . . ... .o 31
induction (for ordinals) . . .. ... .... 59
inductive . . . . ... 59
infinite (set) . . . ... ... ... oL 73
infinite structure . . . . ... ... ... .. 43
infinity, axiom of . . . . . .. ... ... 53, 56
interpretation . . . . ... ..o 17,117
intersection . . . . . . . ... ... ... 55,55
INVEISE .+ v v v v v v e e e e e e e 56
language . . . . ... ..o 0oL 11
language of group theory . . .. ... ... 12
language of group theory (extended) . ... 12
language of set theory . . . ... ... ... 52
literal . . ... ... ... 45
logical implication . . . . . ... ... ... 19
matrix (of a formula) . ... ... .. ... 46
model . . ... ... 16
modelclass . . . . ... ... ... L. 19
modelof . . . . ... L. 19
model theory . . . .. ... ... ... ... 19
natural numbers . . . ... ... 60
Ord . ... ... i 57
ordered field . . . ... ... ... ... .. 15
ordinal (number) . . . ... ... ... .. 57
pair, ordered . . . . .. ... ... ... 56
pair (unordered) . . . . ... ... ... .. 55
pairing axiom . . . . . ... ... ... 53, 56
power class . . . . ... ..o L. 55
powerset axiom . . . . . .. ... ... 53, 56
prefix (of a formula) . . ... ... .. ... 46
preimage . . . . . ... ... 56
prenex normal form . . ... .. ... ... 46
propositional constant symbol . . . . . . .. 11
TANGE  « « v v e e e e e e e e e e e e 56
recursion (for ordinals) . . . . ... .. ... 61
recursion rule . . .. ..o Lo 62
reduct . . . .. ..o 16
relation, binary . . . . . ... ... 56
relation symbol . . . . .. ..o oL 11
replacement schema . . ... ... ... 53,57
resolution . . . . ... ..o 49
restriction . . . . .. .. oo 56
RUSSELL’s antinomy . . . .. ... ... .. 54
HENKIN’s theorem . . . . . ... ... ... 35
HERBRAND’s theorem . . . . .. ... ... 47
CANTOR’s theorem . . . . .. .. ... ... 74
satisfiable . . . ... ... oo 17
satisfies . . . . . ... oL 17



80

semantics . . . . ... ... ..o 14
sentence . . . . . .. ... .00 e 18
separation schema . . .. ... ... .. 53, 56
sequent . . ... o oo 25
sequent rules . . ... ..o 25
singletonset . . . ... ... ... 59
structure . . . . ... Lo 14
subclass . . .. ... Lo oL 55
substitution . . . . ... ... ... ... 20, 21
substitution theorem . . . ... .. ... .. 21
substructure . . .. ... ... L. 16
succedent . . . . . ... oL 25
symbol set . . .. ... L oL 11
term model . . . . ... ... 33
term (set theory) . . . ... .. .. ..... 55

transitive . . . . .. ..o 000 57

SECTION

truein . .. .. L0 Lo oo 19
truth values . . . . . . .. .. ... ..... 15
type . . . ..o 11
uncountable (set) . . . . .. ... ... .. 73
uncountable structure . . . ... ... ... 43
underlying set . . .. ... o000 14
UNION .+« « v v v e e e e e e e e e 55, 55
union axiom . . . . . ... ... ... 53, 56
universal formula . . . . ... ... ... .. 46
universally valid . .. ... ... ... ... 17
UNIVETSE . . v v v v v v e e e e e e e e e 54
upward LOWENHEIM-SKOLEM theorem . . . 44
var(t) . ... 17
variable . . . . .. ... oL 11
word ... ... 12
ZF e 53



