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1 Introduction

Mathematics models real world phenomena like space, time, number, probability, games, etc. It
proceeds from initial assumptions to conclusions by rigorous arguments. Its results are “uni-
versal” and “logically valid”, in that they do not depend on external or implicit conditions which
may change with time, nature or society.

It is remarkable that mathematics is also able to model itself: mathematical logic defines rig-
orously what mathematical statements and rigorous arguments are. The mathematical enquiry
into the mathematical method leads to deep insights into mathematics, applications to classical
field of mathematics, and to new mathematical theories. The study of mathematical language
has also influenced the theory of formal and natural languages in computer science, linguistics
and philosophy.

1.1 A simple proof

We want to indicate that rigorous mathematical proofs can be generated by applying simple
text manipulations to mathematical statements. Let us consider a fragment of the elementary
theory of functions which expresses that the composition of two surjective maps is surjective as
well:

Let f and g be surjective, i.e., for all y there is x such that y = f(z), and for all y
there is x such that y = g(z).

Theorem. go f is surjective, i.e., for all y there is z such that y= g(f(z)).

Proof. Consider any y. Choose z such that y = g(z). Choose x such that z = f(z).
Then y = g(f(x)). Thus there is = such that y = g(f(x)). Thus for all y there is z
such that y=g(f(x)).

Qed.

These statements and arguments are expressed in an austere and systematic language, which
can be normalized further. Logical symbols like V and 3 abbreviate figures of language like “for
all” or “there exists™

Let Vy3zy = f(x).

Let Vy3zy = g(x).
Theorem. Vy3dxy= g(f(x)).
Proof. Consider y.
Jry=g(z).

Let y = g(2).

3 z= f(x).

Let z = f(x).

y=g(f(z)).

Thus Jzy = g(f(z)).
Thus Jzy = g(f(z)).
Thus VyIz y = g(f(x)).
Qed.

These lines can be considered as formal sequences of symbols. Certain sequences of symbols
are acceptable as mathematical formulas. There are rules for the formation of formulas which
are acceptable in a proof. These rules have a purely formal character and they can be applied
irrespectively of the “meaning” of the symbols and formulas.
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1.2 Formal proofs

In the example, 3z y = g(f(z)) is inferred from y = g(f(x)). The rule of existential quantifica-
tion: “put Jx in front of a formula” can usually be applied. It has the character of a left-multi-
plication by Jx.

dx, p—3x .

Logical rules satisfy certain algebraic laws like associativity. Another interesting operation is
substitution: From y= g(z) and z= f(x) infer y = g(f(z)) by a “find-and-replace”™substitution of
z by f().

Given a sufficient collection of rules, the above sequence of formulas, involving “keywords”
like “let” and “thus” is a deduction or derivation in which every line is generated from earlier
ones by syntactical rules. Mathematical results may be provable simply by the application of
formal rules. In analogy with the formal rules of the infinitesimal calculus one calls a system of
rules a calculus.

1.3 Syntax and semantics

Obviously we do not just want to describe a formal derivation as a kind of domino but we want
to interpret the occuring symbols as mathematical objects. Thus we let variables z, y, ... range
over some domain like the real numbers R and let f and g stand for functions F'; G: R — R .
Observe that the symbol or “name” f is not identical to the function F', and indeed f might also
be interpretated as another function F’. To emphasize the distinction between names and
objects, we classify symbols, formulas and derivations as syntaxr whereas the interpretations of
symbols belong to the realm of semantics.

By interpreting z, y, ... and f, g, ... in a structure like (R, F, G) we can define straightfor-
wardly whether a formula like 3z g(f(z)) is satisfied in the structure. A formula is logically
valid if it is satisfied under all interpretations. The fundamental theorem of mathematical logic
and the central result of this course is GODEL’s completeness theorem:

Theorem. There is a calculus with finitely many rules such that a formula is derivable in the
calculus iff it is logically valid.

1.4 Set theory

In modern mathematics notions can usually be reduced to set theory: non-negative integers cor-
respond to cardinalities of finite sets, integers can be obtained via pairs of non-negative integers,
rational numbers via pairs of integers, and real numbers via subsets of the rationals, etc. Geo-
metric notions can be defined from real numbers using analytic geometry: a point is a pair of
real numbers, a line is a set of points, etc. It is remarkable that the basic set theoretical axioms
can be formulated in the logical language indicated above. So mathematics may be understood
abstractly as

Mathematics = (first-order) logic + set theory.

Note that we only propose this as a reasonable abstract viewpoint corresponding to the log-
ical analysis of mathematics. This perspective leaves out many important aspects like the appli-
cability, intuitiveness and beauty of mathematics.

1.5 Circularity

We shall use sets as symbols which can then be used to formulate the axioms of set theory. We
shall prove theorems about proofs. This kind of circularity seems to be unavoidable in compre-
hensive foundational science: linguistics has to talk about language, brain research has to be car-
ried out by brains. Circularity can lead to paradoxes like the liar’s paradox: “I am a liar”,
or “this sentence is false”. Circularity poses many problems and seems to undermine the value of
foundational theories. We suggest that the reader takes a naive standpoint in these matters:
there are sets and proofs which are just as obvious as natural numbers. Then theories are
formed which abstractly describe the naive objects.
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A closer analysis of circularity in logic leads to the famous incompleteness theorems of
GODEL’s:

Theorem. Formal theories which are strong enough to “formalize themselves” are mot complete,
i.e., there are statements such that neither it nor its megation can be proved in that theory.
Moreover such theories cannot prove their own consistency.

It is no surprise that these results, besides their initial mathematical meaning had a tremen-
dous impact on the theory of knowledge outside mathematics, e.g., in philosophy, psychology,
linguistics.

2 Set theoretic preliminaries

To model the mathematical method, we have to formalize mathematical language and general
structures by mathematical objects. The most basic mathematical objects seem to be sets. We
briefly present some facts from set theory which are used in the sequel.

In line with our introductory remarks on circularity we initially treat set theory naively, i.e.,
we view sets and set theoretic operations as concrete mental constructs. We shall later introduce
a powerful axiom system for sets. From an axiomatic standpoint most of our arguments can be
carried out under weak set theoretical hypotheses. In particular it will not be necessary to use
sets of high cardinality.

The theory of finite sets is based on the empty set ) ={} and operations like

e={al z,y—={r,yhz,y— Uy, y— Ny, y— o\ y.

The operation z, y — {{z}, {z, y}} defines the ordered pair of x and y. Its crucial property is
that

e}, {z,y}}={{z'}, {2/, v'}} if and only if x=2" and y=1y'.

The ordered pair {{z}, {z, y}} is denoted by (z, y). Ordered pairs allow to formalize (binary)
relations and functions:

— a relation is a set R of ordered pairs;

— a function is a relation f such that for all x, y, y’ holds: if (z, y) € f and (x, y’) € f then
y=1vy’. Then f(z) denotes the unique y such that (z,y) € f.

We assume standard notions and notations from relation theory, see also Definition 2 below. For
binary relations R we can use the infiz notation a Rb instead of (a,b) € R.
If a function maps the elements of a set a into a set b we write

fra—b.

In case we do not want to specify the target set b, we can also write f:a— V where V is under-
stood to be the universe of all sets. We assume the usual notions of function theory like injec-
tive, surjective, bijective, etc.

It is natural to formalize the integer n by some set with n elements. We shall later see that
the following formalization can be carried out uniformly in set theory:

0 =0
1 = {0}

2 = {0,1}
n+1 : {0,1,...,n} ={0,1,...,n—1}U{n} =nU{n}

N=w = {0,1,...}

These integers satisfy the usual laws of complete induction and recursion.
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A finite sequence is a function w:n — V for some integer n € N which is the length of w. We
write w; instead of w(i), and the sequence w may also be denoted by wg...w,_1 . Note that the
empty set () is the unique finite sequence of length 0.

For finite sequences w = wq...wy,—1 and w’' = w(...w),_1 let w w’ = wg... Wy, —1W}...w,,_1 be
the concatenation of w and w’. w w’:m+n—V can be defined by

e w(@), i i <m;
ww(’)_{w'(i—m),ifz‘>m.

We also write ww’ for w w’. This operation is a monoid satisfying some cancellation rules:

Proposition 1. Let w,w’,w” be finite sequences. Then
a) (ww) w' =w"(w "w").

b) Pw=wl=w.

w Tw=w""w=w =w".

)
¢) ww'=ww"—sw=w".
d)

Proof. We only check the associative law a). Let n, n’, n” € N such that w = wq...wp—1, W' =
W W —1, w'=w{...wr_;. Then

(ww') w” = (Wo...Wp—1Wh...Whs_1) WE oWy 1

li "
WO Wy — W Wiy WG W 111

~ / / /! 1
= Wo...Wp—1" (WQ... Wy _ WY Wy 11_1)
~ li li ~ " "
= Wo...Wp -1 (Wh.- Wy _ 1 WG Wy _ 1)
= w (w "w").

3

The trouble with this argument is the intuitive but vague use of the ellipses “...”. In mathemat-

ical logic we have to ultimately eliminate such vaguenesses. So we show that for all i <n +n’+

n//

(0 w’) w") (i) = (w” (w" "w"))().
Case 1: i<n. Then

(w w') w”)(i) = (w w’)(i)
w(7)
= (w (v w")) ().

Case 2: n<i<n+n'. Then
(w w) w") (@) = (w w)()
= w'(i—n)
(w" w")(i )
= (w™(w "w")) ().
Case 8:n+n'<i<n-+n’+n". Then
(w w') w")(i) = w’(i—(n+n))
= ww'(i—(n+n")+n')=w"w"(i—n)
= (w™(w "w”)(i—n+n)

= (W™ (w " w"))(@).
O

A set x is finite, if there is an integer n € IN and a surjective function f: n — x. The smallest
such n is called the cardinality of the finite set x and denoted by n = card(z). The usual cardi-
nality properties for finite sets follow from properties of finite sequences.
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A set x is denumerable or countable if there is a surjective function f: N — x. If the set is
not finite, it is countably infinite. Its cardinality is w, written as w = card(x). Under sufficient
set theoretical assumptions, the union

U @

new

where each z,, is countable is again countable.

If a set  is not countable, it is uncountable. Within set theory one can develop an efficient
notion of cardinality for uncountable sets.

The theory of infinite sets usually requires the aziom of choice which is equivalent to ZORN’s
lemma.

Definition 2. Let A be a set and < be a binary relation. Define
a) (A, <) is transitive if for all a,b,c€ A

a<b and b<c implies a<c.

b) (A, <) is reflexive if for alla€ A holds a<a.

¢) (A, <) is a partial order if (A,<) is transitive and reflevive and A+ 0.
So let (A,<) is be a partial order.

a) z€ A is a maximal element of A if there is no a € A with z<a and z#+a.

b) If X C A then u is an upper bound for X if for all x € X holds x <wu.

¢) I C A islinear if for all a,bel

a<borb<a.
d) (A, <) is inductive if every linear subset of A has an upper bound.
ZORN’s lemma states

Theorem 3. FEvery inductive partial order has a mazimal element.

3 Symbols and words

Intuitively and also in our theory a word is a finite sequence of symbols. A symbol has some
basic information about its role within words. E.g., the symbol < is usually used to stand for a
binary relation. So we let symbols include such type information. We provide us with a suffi-
cient collection of symbols.

Definition 4. The basic symbols of first-order logic are
a) = for equality,
b) —,—, L for the logical operations of negation, implication and the truth value false,
¢) V for universal quantification,
d) (and ) for auziliary bracketing.
e) variables vy, for n € N.

Let Var = {v,|n € N} be the set of variables and let Sy be the set of basic symbols.

An n-ary relation symbol, for n € N, is (a set) of the form R = (x, 0, n); here 0 indicates
that the values of a relation will be truth values. 0-ary relation symbols are also called proposi-
tional constant symbols. An n-ary function symbol, for n € N, is (a set) of the form f = (z, 1,
n) where 1 indicates that the values of a function will be elements of a structure. 0-ary function
symbols are also called constant symbols.

A symbol set or a language is a set of relation symbols and function symbols.

We assume that the basic symbols are pairwise distinct and are distinct from any relation or
function symbol. For concreteness one could for example set ==0, -=1, =2, 1 =3, (=4, ) =
5, and v, = (1,n) for neN.
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An n-ary relation symbol is intended to denote an m-ary relation; an n-ary function symbol
is intended to denote an m-ary function. A symbol set is sometimes called a type because it
describes the type of structures which will later interpret the symbols. We shall denote variables
by letters like z, y, z, ..., relation symbols by P, @, R, ..., functions symbols by f, g, h, ... and
constant symbols by c, cg, c1, ... We shall also use other typographical symbols in line with stan-
dard mathematical practice. A symbol like <, e.g., usually denotes a binary relation, and we
could assume for definiteness that there is some fixed set theoretic formalization of < like <=
(999, 0, 2). Instead of the arbitrary 999 one could also take the number of < in some typograph-
ical font.

Example 5. The language of group theory is the language
SGr - {Oa 6}7

where o is a binary (= 2-ary) function symbol and e is a constant symbol. Again one could be
definite about the coding of symbols and set Sg, = {(80, 1, 2), (87,1, 0)}, e.g., but we shall not
care much about such details. As usual in algebra, one also uses an extended language of group
theory

SGr: {Oa_la 6}

lis a unary (= l-ary) function symbol.

to describe groups, where ~

Definition 6. Let S be a language. A word over S is a finite sequence
w:n— SgUS.

Let S* be the set of all words over S. The empty set 0 is also called the empty word.

Let S be a symbol set. We want to formalize how a word like 3z y = g(f(z)) can be pro-
duced from a word like y = g( f(z)).

Definition 7. A relation R C (S*)™ x S* is called a rule (over S). A calculus (over S) is a set
C of rules (over S).

We work with rules which produce words out of given words. A rule
{(arguments, production)|...}

is usually written as a production rule of the form

arguments preconditions
production conclusion

For the existential quantification mentioned in the introduction we may for example write

£
Jxp

where the production is the concatenation of 3z and ¢.
Definition 8. Let C be a calculus over S. Let R C (5*)™ x S* be a rule of C. For X C S* set
R[X]={w € S*| there are words ug, ..., un—1 € X such that R(u, ..., un—1,w) holds}.
Then the product of C is the smallest subset of S* closed under the rules of C:
Prod(C) = ﬂ {X C8*| for all rules ReC holds R[X]C X }.

The product of a calculus can also be described “from below” by:

Definition 9. Let C be a calculus over S. A sequence w'?, ..., w* =Y € §* is called a derivation
in C if for every l <k there exists a rule REC, RC (S*)" x S* and lg,...,1n—1 <l such that

R(w(lo), ey w(l"”), w(l)).



INDUCTION AND RECURSION ON CALCULI 7

This means that every word of the derivation can be derived from earlier words of the derivation
by application of one of the rules of the calculus. We shall later define a calculus such that the
sequence of sentences

Let Vy3zy = f(x).

Let Vy3zy = g(x).

Consider y.

Jry=g(z).

Let y=g(2).

Jxz= f(x).

Let z = f(x).

y=g(f(2)).

Thus Jzy=g(f(x)).

Thus Jzy=g(f(x)).

Thus Vydz y = g(f(z)).

Qed.

is basically a derivation in that calculus.
Everything in the product of a calculus can be obtained by a derivation.

Proposition 10. Let C be a calculus over S. Then

Prod(C) = {w |there is a derivation w®, ..., w*~Y=w in C}.

Proof. The equality of sets can be proved by two inclusions.
(C) The set

X = {w|there is a derivation w®,...,w* =Y =w in C}
satisfies the closure property R[X] C X for all rules R € C. Since Prod(C) is the intersection of
all such sets, Prod(C) C X.
(D) Consider w € X. Consider a derivation w(®, ..., w* = = w in C. We show by induction on
I <k that wY) € Prod(C). Let I <k and assume that for all i < holds w¥ € Prod(C). Take a rule
ReC, RC (A" x A* and ly, ..., l,_1 < I such that R(w), ..., w1 w®). Since Prod(C) is
closed under application of R we get w() e Prod(C). Thus w= w1 ¢ Prod(C). U

Exercise 1. (Natural numbers 1) Consider the symbol set S = {|}. The set S* ={0, |, ||, |||, ...} of words
may be identified with the set N of natural numbers. Formulate a calculus C such that Prod(C) = S*.

4 Induction and recursion on calculi

Derivations in a calculus have finite length so that one can carry out inductions and recursions
along the lengths of derivations. We formulate appropriate induction and recursion theorems
which generalize complete induction and recursion for natural numbers. Note the recursion is
linked to induction but requires stronger hypothesis.

Theorem 11. (Induction Theorem) Let C be a calculus over S and let o(—) be a property which
is inherited along the rules of C:

YReC,RC (S*)F x S*VYuwW, . w® wes* Rw®, ..., w* w) (o(w®)A. .. Apw®) = pw)).

Then
Vw € Prod(C) ¢(w).

Proof. By assumption, {w € S*|¢(w)} is closed under the rules of C. Since Prod(C) is the inter-
section of all sets which are closed under C,

Prod(C) C{w € S*|¢(w)}. O



8 SECTION 5

Definition 12. A calculus C over S is uniquely readable if for every w € Prod(C) there are a
unique rule R€C, R C (S*)F x S* and unique wW, ., w® e §* such that

R(w(l), e w® w).

Theorem 13. (Recursion Theorem) Let C be a calculus over S which is uniquely readable and
let (Gr|R € C) be a sequence of recursion rules, i.e., for R€C, R C (S*)F x S* let Gr: VF =V
where V is the universe of all sets. Then there is a uniquely determined function F:Prod(C) —V

such that the following recursion equation is satisfied for all R € C, R C (S*)* x S* and w, .
w® weProd(C), R(wW,...,w® w):
F(w) =Gr(F(wY),...,F(w®)).
We say that F is defined by recursion along C by the recursion rules (Gr|R€C).
Proof. We define F(w) by complete recursion on the length of the shortest derivation of w in
C. Assume that F(u) is already uniquely defined for all uw € Prod(C) with shorter derivation
length. Let w have shortest derivation w®, ..., w1 By the unique readability of C there are
ReC, RC (5% x §* and w'™), ..., w*-1) with i, ...,ix_1 <! —1 such that
R(w(), (=1 ).

Then we can uniquely define

F(w)=Gr(F(w'), ..., F(wi*-)). O
Remark 14. The previous Theorem states the existence of a function F' as a set of ordered
pairs, but the proof argues that F' can be defined (by some intuitive “procedure”). To complete

the argument one would have to use the recursion theorem from set theory which says that defi-
nitions of a certain kind correspond to certain functions in the set theoretic universe.

5 Terms and formulas

Fix a symbol set S for the remainder of this section. We generate the terms and formulas of the
corresponding language L by calculi.

Definition 15. The term calculus (for S) consists of the following rules:
a) —— for all variables x;

b) — for all constant symbols c€ S;

) tot1...tn—1

Tt for all n-ary function symbols f € S.

Let TS be the product of the term calculus. T is the set of all S-terms.

Definition 16. The formula calculus (for S) consists of the following rules:

a) —— produces falsity;

for all S-terms to,t, € T produces equations;

b) to=t1
c) ot for all n-ary relation symbols R € S and all S-terms tg, ..., t,_1 € TS produces
relational formulas;

d) % produces negations of formulas;

€) (; —:bw) produces implications;
f) 2 for all variables x produces universalizations.

Va o
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Let L® be the product of the formula calculus. L° is the set of all S-formulas, and it is also
called the first-order language for the symbol set S. Formulas produced by rules a-c) are called
atomic formulas since they constitute the initial steps of the formula calculus.

Example 17. S-terms and S-formulas formalize the naive concept of a “mathematical formula”.
The standard axioms of group theory can be written as in the extended language of group
theory as Sqg,~-formulas:

a) Yo Vg Vg ovg 0 0109 = 0ovguyve ;
b) Yvg ovge=wp;
c) Yugovyg lvg=e.

Note that in c) the ~!-operator is “applied” to the variable vg . The term calculus uses the
bracket-free polish notation which writes operators before the arguments (prefiz operators). In
line with standard notations one also writes operators in infizx and postfir notation, using
bracket, to formulate, e.g., associativity:

Yo Y1 Vg vg o (v1 0v2) = (Voo v1) 0 V2.

Since the particular choice of variables should in general be irrelevant they may be denoted by
letters z, y, z, ... instead. Thus the group axioms read:

a) VaVyVz zo(yoz)=(roy)oz;

b) Vzazoe=x;

c) Vexozr l=e.
Let g, = {VaVyVz zo(yoz)=(zoy)oz,Vrxoe=x,Vraxzox !t =e} be the azioms of group
theory in the extended language.

To work with terms and formulas, it is crucial that the term and formula calculi are uniquely
readable. We leave the proof of these facts as exercises.

Although the language introduced will be theoretically sufficient for all mathematical pur-
poses it is often convenient to further extend its expressiveness. We view some additional lan-
guage constructs as abbreviations for formulas in LS.

Definition 18. For S-formulas ¢ and ¢ and a variable x write
— T (“true”) instead of —L ;
— (V) (“p or”) instead of (—— 1) is the disjunction of v, ¥ ;
—  (@eAY) (“p and ¢”) instead of —(@— —1))is the conjunction of ¢, v ;
— (oY) (o iff ) instead of ((p— ) A (Y — @) )is the equivalence of ¢, ;
—  Jxe (“for all x holds ¢”) instead of ~Vr—¢p.

For the sake of simplicity one often omits redundant brackets, in particular outer brackets. So
we usually write ¢ V ¢ instead of (¢ V ).

6 Structures and models

We shall interpret formulas like Vy3zry = g¢g(f(z)) in adequate structures. This interaction
between language and structures is usually called semantics. Fix a symbol set S.
Definition 19. An S-structure is a function A: {V}US— V such that

a) A(V)#0; A(V) is the underlying set of A and is usually denoted by A or |2|;

b) for every n-ary relation symbol R € S, A(R) is an n-ary relation on A, i.e., a(r) C A™;

¢) for every n-ary function symbol f € S, A(f) is an n-ary function on A, i.e., a(r): A" —
A.
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Again we use customary or convenient notations for the components of the structure 2, i.e., the
values of 2. One often writes R, f%, or c¢* instead of A(r), A(f), or A(c) resp. In simple cases,
one may simply list the components of the structure and write, e.g.,

Ql: (A’R%’R%l7 fgl)

or “U has domain A with relations R3, R} and an operation f7.
One also uses the same notation for a structure and its underlying set like in

A: (A’Rgl7 R%? fm)'

This “overloading” of one notation is quite common in mathematics (and in natural language).
There are methods of “disambiguating” the ambiguities introduced by multiple usage. Another
common overloading is given by a naive identification of syntax and semantics, i.e., by writing

A= (AaROaRlv f)

Since we are particularly interested in the interplay of syntax and semantics we shall try to
avoid this kind of overloading.

Example 20. Formalize the ordered field of reals R as follows. Define the language of ordered
fields

SoF = {<7 +,-,0, 1}
Then define the structure R: {V} U S,r — V by

R(Y) = R

= {(u,v) eR?*|u<v}
H)=4+8 = {(u,v,w) eR3|lut+v=w}
R() =1 = {(u,v,w) eR3|u-v=w}
R(0)=0% = 0eR

R(1)=1% = aeR

T2
|

A

5

|

This defines the standard structure R = (R, <®, 48 .R R 1R)
Observe that the symbols could in principle be interpreted in completely different, counterin-
tuitive ways like

R/(V) N

R/(<) = {(u,v)eN?|u>v}
R'(+) = {(u,v,w)eEN3|u-v=w}
R'() = {(u,v,w) eN}|ut+v=w}
R'(0) = 1

R/(1) = 0

Example 21. Define the language of Boolean algebras by
SBA = {/\7 \/a ) 07 1}

where A and V are binary function symbols for “and” and “or”, — is a unary function symbol
for “not”, and 0 and 1 are constant symbols. A Boolean algebra of particular importance in logic
is the algebra B of truth values. Let B = |B| = {0, 1} with 0 =B(0) and 1 = B(1). Define the
operations and = B(A), or = B(V), and not = B(—) by operation tables in analogy to standard
multiplication tables:

and [0 1 or|0|1 not
0 |0|0|,|0]0|1|,and| O [1].
1 ]0]|1 1111 1

Note that we use the non-exclusive “or” instead of the exclusive “either - or”.
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The notion of structure leads to some related definitions.

Definition 22. Let A be an S-structure and ' be an S’-structure. Then 2 is a reduct of 2,
or A is an expansion of A, if SCS’ and A’ [({VIUS)=2A.

According to this definition, the additive group (IR, +, 0) of reals is a reduct of the field (R,
+5 05 1)

Definition 23. Let U, B be S-structures. Then 2A is a substructure of B, A C B, if B is a
pointwise extension of A, i.e.,

a) A=[A[C|B];

b) for every n-ary relation symbol R € S holds R* = R® N A";

c) for every n-ary function symbol f € S holds f*= f® | A"
Definition 24. Let A, B be S-structures and h: |A| — |B|. Then h is a homomorphism from 2
into B, h:A—B, if

a) for every n-ary relation symbol R € S and for every ag,...,an—1€ A
R¥*aog,...,an_1) implies R®(h(ag),..., h(an_1));
b) for every n-ary function symbol f € S and for every ag,...,an—1 € A

fE(h(ag), ..., h(an—1)) =h(f*aog,...,an_1)).
h is an embedding of 2 into B, h:A— B, if moreover
a) h is injective;
b) for every m-ary relation symbol R€ S and for every ag,...,an_1 € A
R¥*ag, ...,an—1) iff R®(h(ag), ..., h(an_1))-

If h is also bijective, it is called an isomorphism.

An S-structure interprets the symbols in S. To interpret a formula in a structure one also
has to interpret the (occuring) variables.

Definition 25. Let S be a symbol set. An S-model is a function
m:{viuSuVar—V

such that M [ {V}US is an S-structure and for all n € N holds M(vy,) € |IM]. M(vy,) is the inter-
pretation of the variable v, in 9.

It will sometimes be important to modify a model M at specific variables. For pairwise dis-
tinct variables g, ..., x.—1 and ag, ..., a,—1 € |9M| define

agp...ar—1 o

931—7 (931\ {(ZL'(),Q[(ZL'())), ceey (.Irfl,gl(xrfl))}) U {(SC(), 0,0), ceey (ZL'Tfl, arfl)}.

... Ty -1

7 The satisfaction relation

We now define the semantics of the first-order language by interpreting terms and formulas in
models.

Definition 26. Let 9 be an S-model. Define the interpretation 9(t) € |M| of a term t € T* by
recursion on the term calculus:

a) fort a variable, M(t) is already defined;
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b) for an n-ary function symbol and terms to,...,t, 1 €T, let

M(fto...tn_1) = AN (to), ..., M(t,_1)).

This explains the interpretation of a term like v3 + v3y in the reals.
Definition 27. Let 9 be an S-model. Define the interpretation M () € B of a formula p € L®,
where B=1{0,1} is the Boolean algebra of truth values, by recursion on the formula calculus:

a) M(L)=0;

b) for terms to,t1 €T M(to=t1) =1 iff M(to) =M(t1);

¢) for every n-ary relation symbol R € S and terms to,...,t; € T°

M(Rto...tn—1) =1 iff R™(M(to), ..., M(tn—1));

d) M(=p) =1 iff M(p)=0;

e) M(o— ) =14f M(p)=1 implies M(Y) =1;

) M(Vonp) =1 iff for all a € |IM| holds vai(cp) =1.
We write M E ¢ instead of M(p) = 1. We also say that M satisfies ¢ or that ¢ holds in M.
For ® C L® write ME® iff ME ¢ for every p € .

Definition 28. Let S be a language and ® C L°. ® is universally valid if ® holds in every S-
model. ® is satisfiable if there is an S-model M such that IME P.

The language extensions by the symbols V, A, <+, 3 is consistent with the expected meanings
of the additional symbols:

Exercise 2. Prove:
a) ME(p V) iff MEe or ME ;
b) ME (V) iff ME ¢ and ME P,
c) ME(p <+ ) iff MEp is equivalent to ME ;
d) ME v, ¢ iff there exists a € |9N| such that zmvi"h ®.

With the notion of £ we can now formally define what it means for a structure to be a group or
for a function to be differentiable. Before considering examples we make some auxiliary defini-
tions and simplifications.

It is intuitively obvious that the interpretation of a term only depends on the occuring vari-
ables, and that satisfaction for a formula only depends on its free, non-bound variables.

Definition 29. For t € T define var(t) C {v,|n € N} by recursion on the term calculus:
— var(z)={x};
—  wvar(c)=0;
- var(fto...tn—1) =U,.,, var(ti)-
Definition 30. Fiir ¢ € L° define the set of free variables free() C {v,|n € N} by recursion on
the formula calculus:
—  free(tg=t1) =var(to) Uvar(ty);
—  free(Rto...tn—1) =var(to) U...Uvar(tn_1);
—  free(—p) =tree(yp);
—  free(yp— 1) =free(yp) Ufree()).
—  free(Vzp)=free(p)\ {z}.
For ® C LS define the set free(®) of free variables as

free(®) = U free(y) .

ped®
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Example 31.

free(Ryz —Vy-y=z) = free(Ryx)Ufree(Vy-y=z)

= free(Ryx) U (free( ~y=2) \ {y})
free(Ryz) U (free(y=2)\{y})
{2} U{y, 2z} \{y})
{y,xyu{z}

{z,y,2}.

Definition 32.
a) Forn€N let L ={pc L% |free(p) C {vy,...,vn_1}}.
b) p€ LS is an S-sentence if free(p)=0; L§ is the set of S-sentences.

13

Theorem 33. Let t be an S-term and let M and M’ be S-models with the same structure M |

{MUS='[{V}US and D [ var(t) =D [ var(t). Then IM(t)=;'(t).

Theorem 34. Let t be an S-term and let M and M’ be S-models with the same structure M |

{MVPUS='[{V}US and M | free(t) =M’ | free(t). Then
ME @ iff M'E .
Proof. By induction on the formula calculus.
@ =tog=t1: Then var(to) Uvar(t1) =free(y) and
ME (2 iff 9)?(1&0) = Dﬁ(tl)
iff 9M'(to) =9M'(t1) by the previous Theorem,
it ME .
¢ =19 — x and assume the claim to be true for ¥ and x. Then
ME @ iff ME Y implies ME x
iff 9 F «) implies MM’ E x by the inductive assumption,
iff M'E .

© =Y, and assume the claim to be true for 1. Then free(v)) C free(p) U{v,}. For alla € A=

|90 M- | free(y)) = M= | free(¢)) and so
ME ¢ iff for all a € A holds M- F v

n

iff for all a € A holds Dﬁ’vi F ¢ by the inductive assumption,
iff M'E .

This allows further simplifications in notations for F:

Definition 35. Let 2 be an S-structure and let (ag, ..., an—1) be a sequence of elements of A.

Let t be an S-term with var(t) C {vg,...,vn—1}. Then define
tm[ao, vy an_l] = 9)?(1&),

where MDA is an S-model with M(vo) =ag,..., M(Vp—1) =an_1.
Let ¢ be an S-formula with free(t) C {vo,...,vn_1}. Then define

AE plag, ...,an—1] iff ME,
where MDA is an S-model with M(vo) =ag,..., M(vp—1) =apn_1.

In case n=0 also write t* instead of t*[aq, ..., an_1] and AF ¢ instead of AF lao, ...

In this case we also say: 2 is a model of ¢, A satisfies ¢ or ¢ is true in 2A.

7a’n71]-
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For ® C L§ a set of sentences also write
AED iff for all p € P holds: AF .

Example 36. Groups. Sg,: ={o, e} with a binary function symbolo and a constant symbol e is
the language of groups theory. The group axioms are

a) Yo Yuy Yog ovg 0 v1v9 = oovguvs ;
b) Yugovge=wy ;
¢) Yoy ovguy =€ .
This define the axiom set
D, = { Vg V1 Yug ovg 0 0102 = 00vgu1v2, Yoy ovg e = vy, YugTduy ovguy =e .

An S-structure & = (G, *, k) satisfies @, iff it is a group in the ordinary sense.

Definition 37. Let S be a language and let ® C L§ be a set of S-sentences. Then
Mod®® = {2A|2A is an S-structure and AF O}

is the model class of ®. In case ® = {®} we also write Mod®p instead of Mod®®. We also say
that ® is an axiom system for Mod®®, or that ® axiomatizes the class Mod°® .

Thus Mod®%®¢, is the model class of all groups. Model classes are studied in generality
within model theory which is a branch of mathematical logic. For specific ® the model class
Mod®® is examined in subfields of mathematics: group theory, ring theory, graph theory, etc.
Some typical questions questions are: Is Mod®® +0, i.e., is ¢ satisfiable? Can we extend Mod®®
by adequate morphisms between models?

8 Logical implication and propositional connectives

Definition 38. For a symbol set S and ® C L® and ¢ € L® define that ® (logically) implies ¢
(PE @) iff every S-model TE @ is also a model of .

Note that logical implication E is a relation between syntactical entities which is defined
using the semantic notion of interpretation. We show that F satisfies certain syntactical laws.
These laws correspond to the rules of a logical proof calculus.

Theorem 39. Let S be a symbol set, t e TS, p, ¢ € L°, and T,® C L. Then
a) (Monotonicity) If T C® and T'F ¢ then ®FE .

b) (Assumption property) If p €T then T'E .

¢) (—-Introduction) If T U @E Y then T'E p— ).

d) (—-Elimination) If TE ¢ and TE p— 9 then TFE .
e) (L-Introduction) If TE ¢ and T'E—yp then TE L.
f) (L-Elimination) If TU{=p}E L then TFE .

9) (=-Introduction) TEt=t.

Proof. f) Assume I'U{-¢}F L. Consider an S-model with MM ET. Assume that 9Dt¥ ¢. Then
ME —p. MET U {—p}, and by assumption, MM = L . But by the definition of the satisfaction
relation, this is false. Thus 9MkEF ¢. Thus I'F ¢. O

9 Substitution and quantification rules

To prove further rules for equalities and quantification, we first have to formalize substitution.
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Definition 40. For a term s € TS, pairwise distinct variables xo, ..., ,_1 and terms tg, .
t._1 €T define the (simultaneous) substitution

aey

to....tr—1
S—
. To---Tp—1
of tg, ..., tr_1 for xg,...,x_1 by recursion:

£0.. by — ; .
a) pttrol = { @, if TF Doy, CF Tr1 for all variables x;
TQe Ty —1 ti, ifc=x;

b) c% =c for all constant symbols c;

¢) (fS0---8n—1) io ;T L= fs 0 o -~-Sn71;0+ for all n-ary function symbols f.

Note that the simultaneous substitution
to....tr—1
S S —
L. Lpr—1

is in general different from a succesive substitution

to 11 lra
1'0351 Tp_q

which depends on the order of substitution. E.g., 2 2= =1y, z%%: y%: x and x%%: x % =y.

Ty
Definition 41. For a formula ¢ € L, pairwise distinct variables xq, ..., x._1 and terms to, ...,
t._1 €T define the (simultaneous) substitution
to....tr—1
To...Tr—1
of to, ..., tr_1 for xg,...,x_1 by recursion:

toe e tou b tomr b
a) (sp=s87) =t =gp el =gy 2 — L foralltermsso,sleT

ZLQeeiLp—1 ZLQeeiLp —1 Qe

b0t totr toerr ity .
b) (RSo---Sn—1) ﬁ =Rsp ;)mlrill...sn,l m(:)mlri for all n-ary relation symbols R and

terms S, ..., Sp—1€T3;

to....tr— t0... b —
) (0¢) poe— ===

Loy —1 Lol —1
tr—1 to....tr—1 to....tr—1y |
d) (p—¢p) 2iesd = (p il g 0,
e) for (VZE(,D) $ distinguish two cases:
— ifxe€{xg, ..., xr—1}, assume that v = xy . Choose i € N minimal such that u = v;
does not occur in Vrp, tg,....,t,—1 and xg,...,r.—1. Then set
to....tr— t1e...tr—
(V:C(,D) 0 T 1=Vu(g0 1 r—1U )
To...Tr—1 L1.e.Xyp—1T

— ifxé¢{xg,...,xr_1}, choose i € N minimal such that u=v; does not occur in Vzp,
to,....,tr—1 and xg,...,x,._1 and set

to....trfl to....t,«,lu
Vrp) ————=Vu(p———).
( 80) To..-LTpr—1 (80 1'0...1'»,‘,1:6)

The following substitution theorem shows that syntactic substitution corresponds semantically
to a (simultaneous) modification of assignments by interpreted terms.

Theorem 42. Consider an S-model 9N, pairwise distinct variables xg, ..., x,._1 and terms to,.
tr—1€ TS,

a) If s€T® is a term,

ey

to...tr—1 —m m(to)...m(tr_ﬂ

Lo Lpr—1 Lo o Lyr—1

M(s (s).

b) If p€ L® is a formula,
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otroy e Do) Mt 1)

ME
e olpr—1 Lo oLy —1

Proof. By induction on the complexities of s and .
a) Case 1: s=x.
Case 1.1: x ¢ {xo,...,xr—1}. Then

().

Sﬁ(x to...tr—1 ):gﬁ(x) —m m(to)...gﬁ(tr_ﬂ
Lo Ly —1 e Llpr—1

Case 1.2: x=x;. Then

m(x to...tr—1 ):m(ti) —m Dﬁ(to)...m(tr_ﬂ
el —1 Lo oLy —1

Case 2: s=c is a constant symbol. Then

M(to)...M(tr—1)

(e L0lr=1y _on(e) —om ().

To---LTp—-1 To..-LTp—1
Case 3: s = fsg...5n_1 where f € S is an n-ary function symbol and the terms s, ..., 5,1 € T
satisfy the theorem. Then
to...tr— to...tr— to...tr—
M(( Fsonnm 1) L0mlr=1) g pgg Lotrot o totry
To---Tp—1 To..-Tp—1 To.--Tp—1
_ to..tr_1 to..tr_1
o m(f)(gﬁ(So $0...$T_1)7 “.7m(sn71 $0....TT_1))
M(to)... M (tr— M(to)... M (t,—
= n(gy(om DU )y oy DU 1)
Lo Ly —1 Lo Ly —1
M (to).... M (tr—
= M (O) ( 1)(f80...8n_1).
el —1

Assuming that the substitution theorem is proved for terms, we prove
b) Case 4: ¢p=s9=5s1. Then

to....tr—1 _ to....tr—1
=S

2o...Tpr—1 Z0o...Tyr—1 =t 20o...Tpr—1
i I(s0 to....trfl):j(s1 to....t,«,l)
... Tpy—1 Zo...-Ty—-1
T J(to)....J(trfﬂ (30) —7 j(to)....j(trfﬂ (31)
To...Lpr—1 el —1
iff th So=51.
To...Lpr—1

Propositional connectives of formulas like = and — behave similar to terms, so we only consider
universal quantification:
Case 5: ¢ = (Voip) L =1 assuming that the theorem holds for .

ZLQeeilp —1
Case 5.1: © =xy. Choose 7 € N minimal such that u=wv; does not occur in Vz, tq, ....,t.—1 and
o, ...,Tr_1. Then
to....tr—1 ti...tr—1u
Veyp) ———=Vu (p ————).
( (,0) To...Tr—1 ((‘0 L1011 T
to...tr—1 . ti1...tr—1u
ME (Vo) ——— iff MEYu(p—————
( (P) Lo oLy —1 ((pxl...xr_lx

it for all a € M holds M2 &= p Tl =L

(definition of F)
iff for all a € M holds
Dﬁ%(tl)...i)ﬁ“ (tr_1) Dﬁ%(u)

u

L1...Tpr-1T

(M)

u L1...0p-1T
(inductive hypothesis for ¢)

Fo
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iff for all a € M holds

(Dﬁg) Dﬁ(h)...gﬁ(trfl) a
u L1100 Xpp—1 T
(since u does not occur in t;)

Fe

iff for all a € M holds

iff

iff

iff

gﬁ(tl)...gﬁ(trfl) a
L1...0p-1T
(since u does not occur in @)
for all a € M holds
(Sﬁ Dﬁ(h)...gﬁ(tr_ﬂ )ﬂ': o
T1...0p -1 X
(by simple properties of assignments)
(m Dﬁ(h)...gﬁ(tr_ﬂ ) EVzg
T1...0p -1
(definition of F)
(m gﬁ(to) m(h)...gﬁ(tr_ﬂ
Tox1...Lp -1
(since x =z is not free in V).

m Ee

VEVz

17

Case 5.2: x ¢ {xo,...,xr—1}. Then proceed similarly. Choose ¢ € N minimal such that u=wv; does

not occur in Vz, tg,....,t,—1 and xg,...,x,—1. Then
to...trfl o to...t,«,lu
(Vo) Z0...Ty—1 =Vu( Ty 1T
Dﬁ':(v.%‘(p) to...tr—1 i m':vu((p to...tr—1u
To.--LTp—-1 Ty -Lyp—1T
iff for all a € M holds ML  L0x-tr=1U
u Lol —1T
(definition of F)
iff for all a € M holds
M (to)... M= (tr—1) ME(u)
a
)= T
u Lo lpp—1T
(inductive hypothesis for ¢)
iff for all a € M holds
(m%) m(tz)...m(tr_ﬂ a o
0---Lp 1T
(since u does not occur in t;)
iff for all @ € M holds
m Dﬁ(to)...m(tr_ﬂ a o
Lo lpp—1T
(since u does not occur in )
iff for all a € M holds
(m m(t;)...m(tr,l) )2': o
0---Lp—1 X
(by simple properties of assignments)
i (M M (to)...M(tr—1) )E Vg

Q..o Lpr—1
(definition of &)

We can now formulate further properties of the F relation.

Theorem 43. Let S be a language. Let x,y be variables, t,t' € TS, ¢ € LS, and T C LS. Then:
a) (V-Introduction) If T E go% and y ¢ free(TU{Vzp}) then TEVx .
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b) (V-elimination) If T EVzp then Tk ga%.

¢) (=-Elimination or substitution) If T'E @% and TEt=t' then TE @% .
Proof. a) Let Tk ¢ £ and y ¢ free(T' U {Vz¢}). Consider an S-model J with JFT. Let a € A=
|3]. Since y ¢ free(T"), j% FT'. By assumption, j% E @% . By the substitution theorem,

T

E v and so (J

)

SHES)

Fey

< |2

Case 1: x=1y. Then 3% Fo.
Case 2: v+ y. Then JZ—ZHD, and since y ¢ free(p) we have 3= k= ¢.

Thus JEVxe. Thus 'EVze.

b) Let I' EVaxp . Consider an Smodel J with JET'. For all a € A = |J| holds J % Ey . In par-
ticular 3 2 Fy . By the substitution theorem, JF w%. Thus I'kE ¢ % .

x

c) Let T' F go% and I' £t = t’. Consider an S-model J mit J F I". By assumption J F go% and
JEt=t'. By the substitution theorem

J(t)
J=~Fp.
J " p
Since J(t) =3(t'),
~(+!
TJ(; ) Eo
and again by the substitution theorem
!/
JE oL
x
Thus TE o~ O

Note that in proving these proof rules we have used corresponding forms of arguments in the
language of our discourse. This “circularity” is a general feature in formalizations of logic.

10 A sequent calculus

We can put the rules of implication established in the previous two sections in the form of a cal-
culus which leads from correct implications ® F ¢ to further correct implications &’ F ¢’. Our
sequent calculus will work on finite sequents (po, ..., Yn—1, ©n) of formulas, whose intuition is
that {o, ..., pn—1} implies ¢, . The GODEL completeness theorem shows that these rules actu-
ally generate the implication relation F. Fix a language S for this section.

Definition 44. A finite sequence (o, ..., Pn—1, Pn) is called a sequent. The initial segment T'=
(©0, -y @n—1) is the antecedent and ¢, is the succedent of the sequent. We usually write
©0 - Pn—1 @n or Ty, instead of (po, .-, Pn—1, ¢n). To emphasize the last element of the
antecedent we may also denote the sequent by T ¢, _1 @, with T'= (g, ..., pn—2).

A sequent pg...on—1 @ is correct if {@g...on—1}F @.

Definition 45. The sequent calculus consists of the following (sequent-)rules:

—  monotonicity (MR) gTZZ
—  assumption (AR) ——
Iy g
—  —-introduction (—1I) E 2 Z/;—”P
Iy
—  —-elimination (—=E) T o—
L
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e
— L-introduction (LI) T -
I L
—  L-elimination (LE) Loy 4
r 2
r o2
—  V-introduction (V1) T VI ,if y ¢ free(TU{Vzp})
. I Vay
—  V-elimination (VE) T of ifte T’
—  =-introduction (=I) T ifteTs
r (p%
—  =-elimination (=E) T t=t’
r got—/

The deduction relation is the smallest subset -CSeq(S) of the set of sequents which is closed
under these rules. We write g ... pp—1F @ instead of ©g... pn—1p €. For ® an arbitrary set of
formulas define ® = ¢ iff there are g, ..., pn—1 € ® such that ¢q ... pn—1F @ . We say that ¢ can
be deduced or derived from g ...0n_1 or ®, resp. We also write = instead of O+ ¢ and say
that ¢ is a tautology.

Theorem 46. A formula ¢ € L° is derivable from T' = g ... pon_1 (T'F ) iff there is a deriva-
tion or a formal proof

(Towo: 101, Ti—1605—1)
of o =Tk_10k-1, in which every sequent T';p; is generated by a sequent rule from sequents

Fiocpim ey Fin—lcpin—l with io, ey Z.nfl <7i.
We usually write the derivation (Towo, T1¢1,...,Tk—1¢k—1) as a vertical scheme

I'o o
I' »1
| AR

where we may also mark rules and other remarks along the course of the derivation.
In our theorems on the laws of implication we have already shown:

Theorem 47. The sequent calculus is correct, i.e., every rule of the sequent calculus leads from
correct sequents to correct sequents. Thus every derivable sequent is correct. This means that

FCE.
The converse inclusion corresponds to
Definition 48. The sequent calculus is complete if FCl.

The GODEL completeness theorem proves the completeness of the sequent calculus. The defi-
nition of F immediately implies the following finiteness or compactness theorem.

Theorem 49. Let ® C L and ¢ € ®. Then ® F ¢ iff there is a finite subset &y C & such that
(I)O F @Y.

After proving the completeness theorem, such structural properties carry over to the implica-
tion relation F.
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11 Derivable sequent rules

The composition of rules of the sequent calculus yields derived sequent rules which are again
correct. First note:

Lemma 50. Assume that
' o

I' or1
I ok

s a derived rule of the sequent calculus. Then

Fo o

: , where Ty, ...,T'x_1 are initial sequences of T’
U1 9r—1

r Pk

s also a derived rule of the sequent calculus.
Proof. This follows immediately from iterated applications of the monotonicity rule. O

We now list several derived rules.

11.1 Auxiliary rules

We write the derivation of rules as proofs in the sequent calculus where the premisses of the
derivation are written above the upper horizontal line and the conclusion as last row.

ex falso quodlibet E L :

1. T i 4

2. T - 1

3. T %)

—-Introduction $:
B

1. T o 1L

2. T p— 1

3. T alv2 Y2

4. T =29 ¢ g

5 T 2 (V2 1

6. I alv2) (2

7. T alv2 1

8. T -

1. T -

2. T ¢ ¢

3.7 ¢ L

4. T ¢ v

5. T =Y

1. T 0

2.7 o v

3. T =Y

Cut rule
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=

W
=

AS)
ASH RSN RSERS

Contraposition

Y
(=)
(=)
@

(0

-

L
- a2

Sl PR el S
] s s Mo B Mlaw Mo
J
<=
ST ST S SR Y

11.2 Introduction and elimination of V, A, ...

V-Introduction

r @

I' =¢ —p

F @ L

|

r =)
r eV

S AN ] e

Introduction

r Y
L' =g 9
r =Y
r VY

V-
1.
2.
3.
4.

V-Elimination

1. T eV
2. T =X
3. T Y
4. T =P
5 I =x X

6. I' =x ¢ ¢

7. T =x ¢ x

8 I =x ¢ L

9. T —x -

10. T' —y P

11. T' —y X

12. T =y L

13. T X
A-Introduction

1. T %)

2. T )
3.7 o= o—=—9p
4. T o=y

4. T o—-y L

5. T ~(p— 1)
6. T pANY

21
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N-Elimination

r AP

r —(p— 1)
' =¢p —p

I' = o=

I' = L

r @

S|t L o=

A-Elimination

r pAY

r (o= 1)
r -y -y

' ¢ o=

I - 1

r ©

OO W N

J-Introduction
1. T o
I' Ve—-p Vr—p

I' Ve ﬂp%

T V.Tﬁ(p 1

T V-
Tr Jxp

S A

3-Elimination
1. T Jxp

@% P where y ¢ free(T U {3z, ¢ })
—Vr-p

i

- Vaeop

- L
(G

NS ot W
oo o Ml Bl Bl | o

11.3 Manipulations of antecedents

We derive rules which show that the formulas in the antecedent may be permuted arbitrarily,
showing that only the set of antecedent formulas is relevant.

Transpositions of premisses

LT ¢4 x

2. T ¢ P—x
3. T o= (Y—x)
4. T o P

5. 'y ¢ o

6. ' ¥ o v—x
7.0 Y p x

Doublication of premisses

1. T ¢ P
2.0 o ¢ 9
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Elimination of double premisses

1.T o o v

2. T ¢ p— P

3. T p—(p—=1)
4. T ¢ %)

5 T ¢ )

Iterated applications of these rules yield:

Lemma 51. Let @q...0;m—1 and o...100n—1 be antecedents such that

{©0,.s pm—1} ={v0, ..., ¥n-1}
and x € L°. Then

$o .- Pm—1 X
Yo o Yn-1 X

1s a derived rule.

11.4 Examples of formal proofs
We give some examples of formal proofs which show that within the proof calculus
equivalence relation.
Lemma 52. We prove the following tautologies:
a) Reflerivity: FNzrx=x
b) Symmetry: FYaVy(z=y— y=2x)
¢) Transitivity: EVaVyVz(z=yAy=z—x=2)

Proof. a)

T=x

Ver=x

b)

T=Yy T=vy

T=y r=x

T=y (zzx)f

=y (zz:c)%

T=y Y=z
T=Yy— Y=z
Vy(r=y—y=x)

T=YNY=2—0r=2
Ve(z=yAy=z—1=2)
VyVz(e=yAy=z—x=2)
VaVyVz(r=yAy=z—x=2)

We show moreover that = is a congruence relation from the perspective of .

23
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Theorem 53. Let p € LS and to,...,tn_1,t0,...,th_1€TS. Then

A !
Fto=toA ... At_1=t, _1—(p tO...tn71<_> to...th—1

V0...Un—1 vVo...Un—1

Proof. Choose pairwise distinct “new” variables ug, ..., uy—1. Then

to..tn—1 _ wour Un—1to t1  ln-1

V0---Vn—1 Vo V1 Up—1 Uo UL Up—1
and

thtn_1  upur Un—1ty t1 tn_q

V... Un—1 Vo V1 Up—1 Uo UL Up—1

Thus the simultaneous substitutions can be seen as successive substitutions, and the order of the
substitutions i— may be permuted without affecting the final outcome. We may use the substitu-

tion rule repeatedly:

o to...tn—1 o to...tn—1
V0...Un—1 V0..-Un—1
U Un-1to  tno U Un-1to  bno
Vo Un—1 UQ Unp —1 Vo Un—1 U0 Unp—1

I

up  Un—1to  Tn-—1 _ up  Un—1to  Tp_1
2 Un-1 0 tn_1=th_, =2 . 2.
Vo Un—1 UQ Un —1 Vo Un—1 U0 Unp—1

! I
up  Un—1 to tn—1

Uy Up—1 to tn—1 s _
—_— ... th-1=tn_1...-t0=1g ©—...
Vo Un—1 UQ Unp —1 Vo Un—1 U Unp—1
to...th—1 , , to...th_1
p——— o=ty ... tn—1=Tp -1 _
V0...Un—1 V... Un—1

12 Consistency

Fix a language S.

Definition 54. A set ® C LS is consistent if ®¥ L. ® is inconsistent if &+ L .
We prove some laws of consistency.

Lemma 55. Let ® C L° and ¢ € LS. Then
a) ® is inconsistent iff there is 1) € L° such that ® 1) and ®F —.
b) ®F ¢ iff PU{~p} is inconsistent.
¢) If ® is consistent, then ®U{p} is consistent or ®U{—p} is consistent (or both).
)

d) Let F be a family of consistent sets which is linearly ordered by inclusion, i.e., for all @,

VeF holds DCWV or WC®. Then

=) @

. . D F
18 consistent.

Proof. a) Assume ®+ L. Then by the ez falso rule, @+ ¢ and O+ —e.
Conversely assume that ®F 1) and ® - - for some 1 € L°. Then ®+ L by L-introduction.
b) Assume ® F ¢ . Take g, ..., pn—1 € ® such that g...¢0,—1 F ¢ . Then we can extend a
derivation of g...0,—1F ¢ as follows
Yo .-+ Pn-1 2
$0 o Pn-1 TP TP
o ..o Pn-1 T L
and ® U {—¢} is inconsistent.
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Conversely assume that ® U {-p}F L and take ¢y, ..., pn—1 € ® such that pg...con_170F L.
Then ¢q...on—1F @ and &+ .
¢) Assume that ® U {¢} and ® U {—¢} are inconsistent. Then there are o, ..., ¢n—1 € ¢ such
that ¢g...on—1F @ and @g...c0,—1 F —p. By the introduction rule for 1, yq...¢0,,—1F L. Thus ®
is inconsistent.
d) Assume that ®* is inconsistent. Take g, ..., pn—1 € ®* such that ¢g ... on—1 b L . Take
Dy, ...P,,_1 € F such that ¢y € @y, ..., 1 € P,_1 . Since F is linearly ordered by inclusion
there is ® € {®y,...P,,_1} such that ¢, ..., ¢, —1 € P. Then P is inconsistent, contradiction. ]

Note that d) implies the inductivity required for the lemma of ZORN. The proof of the com-
pleteness theorem will be based on the relation between consistency and satisfiability.

Lemma 56. Assume that ® C L° is satisfiable. Then ® is consistent.

Proof. Assume that ® - L . By the correctness of the sequent calculus, ® F L . Assume that ¢
is satisfiable and let 3= ® . Then JF L . This contradicts the definition of the satisfaction rela-
tion. Thus ® is not satisfiable. O

Theorem 57. The sequent calculus is complete iff every consistent ® C L° is satisfiable.

Proof. Assume that the sequent calculus is complete. Let ® C LS be consistent, i.e., ®¥ 1 . By
completeness, ® ¥ | , and we can take an S-interpretation JF @ such that J# 1 . Thus ® is sat-
isfiable.

Conversely, assume that every consistent ® C L° is satisfiable. Assume ¥ F 1. Assume for a
contradiction that UF ¢. Then WU {—1} is consistent. By assumption there is an S-interpreta-
tion TEWU{—-¢}. TF ¥ and J¥ ¢, which contradicts ¥E . Thus U+ . O

13 Term models and HENKIN sets

In view of the previous lemma, we strive to construct interpretations for given sets ® C L of S-
formulas. Since we are working in great generality and abstractness, the only material available
for the construction of structures is the language L itself. We shall build a model out of S-
terms.

Definition 58. Let S be a language and let ® C L° be consistent. The term model T2 of ® is
the following S-model:

a) Define a relation ~ on T,
tONtl Zﬁ (I)Ftogtl.
~ is an equivalence relation on T°.
b) ForteT? lett ={s€T"|s~t} be the equivalence class of t.

¢) The underlying set T® =T®(Y) of the term model is the set of ~-equivalence classes
T®={t |teT"}.
d) For an n-ary relation symbol R€ S let R on T? be defined by
(£05 s tn_1) € RT" iff ®F Rtg...tp_1.
e) For an n-ary function symbol f €S let qu) on T® be defined by
S (B Frt) = Tl
f) For n€N define the variable interpretation T®(v,) =1, .

The term model is well-defined:



26 SECTION 13

Lemma 59. In the previous construction the following holds:

a) ~ is an equivalence relation on T°.
b) The definition of R is independent of representatives.

¢) The definition of f‘zq)is independent of representatives.

Proof. a) We derived the axioms of equivalence relations for =:

- FVrz=x

- FYaVy(z=y—y=x)

— FVaVyVz (z=yAy=z—z=2)
Consider t € T°. Then Ft=t. Thus for all t € T° holds t~t.

Consider to, t1 € TS with to ~t. Then Fto =1. Also Fto =t >t = to s Ftl = to y and ty~ to .

Thus for all to,t; € T with tg~t; holds t; ~tg.

The transitivity of ~ follows similarly.
b) Let t_o, . t_n,1 € TKI)7 t_() = 50, -1y t_n,1 = 35,_1 and ® F Rtg...t,,_1 . Then Fg = sg, ... ,
Ft,_1 = sp_1 . Repeated applications of the substitution rule yield ® - Rsq...s,_1 . Hence
P F Rtg...t,—1 implies ® - Rsg...s,—1 . By the symmetry of the argument, ® - Rtg...t, 1 iff
P+ RSO...Sn,1 .
C) Let t_o, vany t_n,1 S T¢, and t_() = §0, vany t_n,1 = Sp—1 - Then Fto =S80, -0 Ftn,1 = Sp—1 -
Repeated applications of the substitution rule to & ftq...t,, 1 = fto...tn_1 yield

Ffto...tn,1£ fSO...Sn,1
and ft()...tn_lszQ...Sn_l. ]

We aim to obtain T%F ®. The initial cases of an induction over the complexity of formulas is
given by
Theorem 60.
a) For terms t € T holds T2(t)=t.
b) For atomic formulas o € L° holds
TPE iff P

Proof. a) By induction on the term calculus. The initial case ¢t = v, is obvious by the definition
of the term model. Now consider a term t = fty...t,—1 with an n-ary function symbol f €S, and
assume that the claim is true for to,...,t,—1. Then
T2(ftotn_1) = fT(ZT2(t), ..., T2 (tn_1))
= qu>(t_Oa sy tn—l)
= Tto.tn_1.
b) Let ¢ = Rty...t,_1 with an n-ary relation symbol R € S and t, ...,t,_1 €T°. Then

TPE Rig...ty 1 iff RT(T2(to), ..., T2(tn_1))
iff R (fo,....,Tn_1)
iff ®F Rtg...t, 1.
Let ¢ =to=t; with to,t; € T°. Then
‘I(D':foEfl iff ‘I(D(to):‘z(b(tl)

iff to=t
iff to~t
iff (I)Ftogtl.

To extend the lemma to complex S-formulas, ® has to satisfy some recursive properties.
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Definition 61. A set ® C L of S-formulas is a HENKIN set if it satisfies the following proper-
ties:

a) ® is consistent;
b) ® is (derivation) complete, i.e., for all p € L°
Pl or ®F -y

¢) ® contains witnesses, i.e., for all Yz € LS there is a term t € TS such that

PV — ﬁap%.

Lemma 62. Let ® C L° be a HENKIN set. Then for all x, 1 € L° and variables x:
a) ¥ x iff PF-yx.
b) ®F x implies PEY, iff PFx— 1.
¢) For all t € TS holds ®t x— iff ®FVax.

Proof. a) Assume ® ¥ x . By derivation completeness, ® - -y . Conversely assume ® F -y .
Assume for a contradiction that ®F x. Then & is inconsistent. Contradiction. Thus ®F x .
b) Assume ®+ x implies @+ ).
Case 1. ®F x. Then ®+ ¢ and by a previous derivation @+ x — 9.
Case 2. ®F x . By the derivation completeness of ® holds ® -y . And by a previous derivation
SFx— 1.
Conversely assume that ® - y — 1 . Assume that ® - x . By —-elimination, ® - ¢ . Thus
P x implies PH.
c) Assume that for all ¢ € 7" holds ® F Xi Assume that ® ¥ Vacx By a), ® - —=Vzy . Since
P Contalns witnesses there is a term t € T such that ® - —Vz x—>ﬁx— By —-elimination, &+ -
. Contradiction. Thus ®FVzy. The converse follows from the rule of V-elimination. 0

Theorem 63. Let ® C L° be a HENKIN set. Then

a) For all formulas x € L®, pairwise distinct variables Z and terms terTs

goeyLogary L.
X X
b) TPE .

Proof. b) follows immediately from a). a) is proved by induction on the formula calculus. The
atomic case has already been proven. Consider the non-atomic cases:

i) x=L1. Then J_E =1.%3% 1= ‘ is false by definition of the satisfaction relation F, and ® X%:

is false smce P is consistent. Thus TPk L iff ok L%.
i) x= =9 ' and assume that the claim holds for ¢. Then

— —

‘I‘bhﬁgoi iff not ‘I‘bhgoé
T

—

iff not &+ go% by the inductive assumption

—

iff oF mp% by a) of the previous lemma.

and assume that the claim holds for ¢ and ¥. Then

8i|

iii.) x = (¢ — )

TPE(p— ) = iff Tbhtpéimplies Eq)':’L/Jé

S

—» —»

iff dFo ; implies ® - 1/1 by the inductive assumption

iff ok @é — 1/1% by a) of the previous lemma

—

i D (o 1) % by the definition of substitution.
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iv.) x = (Vo) 2r=1 and assume that the claim holds for . By definition of the substitution
ZLQeeelp —1

X is of the form

to....trf1u) oder Vu (<P t1...tr—1u
Lo olyp—1T L1eeelyp 1T

Yu (o
with a suitable variable u. Without loss of generality assume that x is of the first form. Then
W TPE Iy (<P to....tr—1u
0. Lppr—1T

it for all ¢ €T holds T F

S

TPE (Vo)

to....tr—1u
L. Lyp—-1T

P
ff for all £ €T holds T2 i, fo b1
u Lo olyp—1T

iff for all t € T holds Tk (¢ M)% by the substitution lemma

To...-Tpy—1
to....tr—1t
Loeoolyp—1 T

iff for all ¢ € TS holds ®+ o L0=tr=10
Q.- Lp—-1T
. S to...tr—1u, t . .
iff for all t€T" holds @+ (¢ ——"——)— by successive substitutions
Loeolyp—1T U

by a previous lemma

iff for all t €T holds TPF ¢ by successive substitutions

by the inductive assumption

i dFYu(p M) by ¢) of the previous lemma
.- Lyp—-1T
iff o (V) % .

14 Constructing HENKIN sets

We shall show that every consistent set of formulas can be extended to a HENKIN set by “adding
witnesses” and then ensuring negation completeness. We first consider witnesses.

Theorem 64. Let ® C L7 be consistent. Let ¢ € L° and let z be a variable which does not occur
in ®U{p}. Then the set

dU{-Vrp— ﬁapg}
18 consistent.
Proof. Assume for a contradiction that ® U {(-3z¢ V ga%)} is inconsistent. Take o, ..., n—1 €
® such that

z
00 Pr—1 ﬁV:mp—)ﬁ(pE L.

Set I'= (o, .--s ¢n—1). Then continue the derivation as follows:

1. T ﬁV$<p—>ﬁ<p§ 1

2. T =Vzop ——Vxp

3. T -Vzop —Wzga%ﬂcpg
4. T ﬁﬁvx(p 1L

5. T —Vz

6. T ﬁtpf ﬁtpé

7. T ﬂgag —Wzga%ﬂcpg
8. T —p= 1

9. T ga%

10. T Vap

11. T €
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Hence @ is inconsistent, contradiction. ]

This means that “unused” variables may be used as HENKIN witnesses. Since “unused” con-
stant symbols behave much like unused variables, we get:

Theorem 65. Let ® C L° be consistent. Let ¢ € L° and let ¢ € S be a constant symbol which
does not occur in ®U{p}. Then the set

DU {—Wzga%ﬂcpg}

1S consistent.
Proof. Assume that ®U{(-JzpV gp%)} is inconsistent. Take a derivation

Towo
Lipr

anl POn—-1

with T';, € ® . Choose a variable z, which does not occur in the derivation. For a formula
define ¢’ by replacing each occurence of ¢ by z, and for a sequence I' = (4o, ..., ¥r_1) of for-
mulas let T/ = (4, ..., ¥%_1). Replacing each occurence of ¢ by z in the deriavation we get

Lo¢o
191

o1 @n-1
V4

The particular form of the final sequence is due to the fact that ¢ does not occur in ® U{p}. To
show that (2) is again a derivation in the sequent calculus we show that the replacement ¢ — z
transforms every instance of a sequent rule in (1) into an instance of a (derivable) rule in (2).
This is obvious for all rules except possibly the quantifyer rules.
So let
r g2
x

, with y ¢ free(T U {Vzy})
T Vzy

be an V-introduction in (1). Then (¢2)" = '2 | (Vo) = Vay/, and y ¢ free(T” U {(Vzy))'}).
Hence

’ Yy
(vl
T (Vd)
is a justified V-introduction.
Now consider an V-elimination in (1):
' Vay
r wi
T

Then (Vz1))' =Vay)' and (w%)' =)’ % where ¢’ is obtained from ¢ by replacing all occurences of
c by z. Hence
' (Vay)'
t
r (uly
is a justified V-elimination.

The derivation (2) proves that
dU{(-Vzp— mpg) FL,

which contradicts the preceding lemma. 0
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We shall now show that any consistent set of formulas can be consistently expanded to a set
of formulas which contains witnesses.

Theorem 66. Let S be a language and let ® C L° be consistent. Then there is a language S*
and ®¥ C L°" such that

a) S¥ extends S by constant symbols, i.e., S C S¥ and if s € S¥ \ S then s is a constant
symbol;

YD P;

) =

QU

)

) ®¥ is consistent;

) ®¥ contains witnesses;
)

e) if L® is countable then so are L5 and ®¥.

Proof. For every a define a “new” distinct constant symbol ¢,, which does not occur in S, e.g.,
ca=((a,9),1,0). Extend S by constant symbols ¢y, for 1 € L9:
St=Su {Cw|’t/1 GLS}.
Then set
Pt =PU{-Vzp— —wcv%wu’ccp €L’}

®T contains witnesses for all universal formulas of S.

(1) ®+ C L5 is consistent.

Proof: Assume instead that ®T is inconsistent. Choose a finite sequence Vxopo, ..., Von_10n_1 €
LS of pairwise distinct universal formulas such that

CVaop0 Yoy —1pn-1
a"'aﬁvxn—ltpn—léﬁ@n—l TR }

O U {~Vaopg — —pg—rrogo
{=Vzopo — —¢o e -

is inconsistent. By the previous theorem one can inductively show that for all i <n the set

CVIO@U

CYZ; _1pni—1
a"'aﬁvxn—l(pn—léi‘(pn—l - = }

dU{-Vx —
{=Vzopo— —¢o o P

is consistent. Contradiction. ged(1)
We iterate the +-operation through the integers. Define recursively

0 = @
S0 =9
Sn-i—l — (Sn)—i—
q)nJrl — (q)n)Jr
sv = s
neN
o = | o
neN

S“ is an extension of S by constant symbols. For n € N, ®" is consistent by induction. ®% is
consistent by the lemma on unions of consistent sets.
(2) & contains witnesses.
Proof. Let VxpeL®”. Let n € N such that Va@cL®". Then —Vryp — ﬂpc\’% epntlC o,
qed(2)
(3) Let L® be countable. Then L°” and ®* are countable.
Proof. Since L° is countable, there can only be countably many symbols in the alphabet of
S0 =S. The alphabet of S! is obtained by adding the countable set {cy |1 € L°}; the alphabet
of S! is countable as the union of two countable sets. The set of words over a countable
alphabet is countable, hence LS and ®! crL® ' are countable.

Inductive application of this argument show that for any n € N, the sets L°" and ®" are
countable. Since countable unions of countable sets are countable, LS = Unen L%" and also
d¥ C L5 are countable. O
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To get HENKIN sets we have to ensure derivation completeness.

Theorem 67. Let S be a language and let ® C LS be consistent. Then there is a consistent
&* C LS, &* D ® which is derwation complete.

Proof. Define the partial order (P, C) by
P={¥CL%|¥D® and V¥ is consistent}.

P+ () since ® € P. P is inductively ordered by a previous lemma: if F C P is linearly ordered by
inclusion, i.e., for all ¥, '€ F holds ¥ C ¥’ or ¥/ C ¥ then

U VeP.

veF

Hence (P, C) satisfies the conditions of ZORN’s lemma. Let ®* be a maximal element of (P, C).
By the definition of P, ®* C L®, ®* D & , and ®* is consistent. Derivation completeness follows
from the following claim.

(1) For all € L® holds ¢ € ®* or —p € d*.

Proof. ®* is consistent. By a previous lemma, ®*U{p} or ®*U {—p} are consistent.

Case 1. ®*U{p} is consistent. By the C-maximality of &* ®*U{p} =" and ¢ € *.

Case 2. ®*U{—p} is consistent. By the C-maximality of ®*, ®*U{-¢}=®* and ~pc ®*. O

The proof uses ZORN’s lemma. In case L° is countable one can work without ZORN’s lemma.

Proof. (For countable L°) Let L® = {¢,|n € N} be an enumeration of L°. Define a sequence
(®,,|n € N) by recursion on n such that

i. C P, CP,q C L5

ii. ®,, is consistent.
For n=0 set &= ®. Assume that ®,, is defined according to i. and ii.
Case 1. ®,,U{p,} is consistent. Then set ®,,41 =P, U{p,}.
Case 2. ®,U{p,} is inconsistent. Then ®,, U {—¢,} is consistent by a previous lemma, and we
define ®,, 11 =2, U{-¢,}.

Let

o* = U ®,, .

neN
Then ®* is a consistent superset of ®. By construction, ¢ € ®* or ~p € ®*, for all ¢ € L°. Hence
®* is derivation complete. O

According to Theorem |66 a given consistent set ® can be extended to ®¥ C L5 containing
witnesses. By Theorem 67 ®“ can be extended to a derivation complete ®* C L. Since the
latter step does not extend the language, ®* contains witnesses and is thus a HENKIN set:

Theorem 68. Let S be a language and let ® C LS be consistent. Then there is a language S*
and ®* C L5 such that

a) 8*2 5 is an extension of S by constant symbols;

b) ®* D P is a HENKIN set;

¢) if L® is countable then so are LS and ®*.

15 The completeness theorem

We can now combine our technical preparations to show the fundamental theorems of first-order
logic.

Combining Theorems 68 and |63, we obtain a general and a countable model existence the-
orem:
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Theorem 69. (HENKIN model existence theorem) Let ® C LS. Then ® is consistent iff ® is
satisfiable.

Theorem 70. (Downward LOWENHEIM-SKOLEM theorem) Let & C L% be a countable consis-
tent set of formulas. Then ® possesses a model M = (A, 8) E @, A= (A, ...) with a countable
underlying set A.

The word “downward” emphasises the existence of models of “small” cardinality. We shall
soon also consider an upward LOWENHEIM-SKOLEM theorem. By Lemma 57, Theorem 69 the
model existence theorems imply the main theorem.

Theorem 71. (GODEL completeness theorem) The sequent calculus is complete, i.e., E=F.
Finally the equality of F and F and the compactness theorem 49 for - imply

Theorem 72. (Compactness theorem) Let ® C L° and o € ®. Then
a) ®E ¢ iff there is a finite subset ®gC @ such that PoF ¢ .
b) ® is satisfiable iff every finite subset ®oC @ is satisfiable.

The GODEL completeness theorem is the fundamental theorem of mathematical logic. It con-
nects syntax and semantics of formal languages in an optimal way. Before we continue the
mathematical study of its consequences we make some general remarks about the wider impact
of the theorem:

— The completeness theorem gives an wultimate correctness criterion for mathematical
proofs. A proof is correct if it can (in principle) be reformulated as a formal derivation.
Although mathematicians prefer semi-formal or informal arguments, this criterion could
be applied in case of doubt.

—  Checking the correctness of a formal proof in the above sequent calculus is a syntactic
task that can be carried out by computer. We shall later consider a prototypical proof
checker Naproche which uses a formal language which is a subset of natural english.

— By systematically running through all possible formal proofs, automatic theorem proving
is in principle possible. In this generality, however, algorithms immediately run into very
high algorithmic complexities and become practically infeasable.

— Practical automatic theorem proving has become possible in restricted situations, either
by looking at particular kinds of axioms and associated intended domains, or by
restricting the syntactical complexity of axioms and theorems.

— Automatic theorem proving is an important component of artificial intelligence (AI)
where a system has to obtain logical consequences from conditions formulated in first-
order logic. Although there are many difficulties with artificial intelligence this approach
is still being followed with some success.

— Another special case of automatic theorem proving is given by logic programming where
programs consist of logical statements of some restricted complexity and a run of a pro-
gram is a systematic search for a solution of the given statements. The original and still
most prominent logic programming language is Prolog which is still widely used in lin-
guistics and Al

— There are other areas which can be described formally and where syntax/semantics con-
stellations similar to first-order logic may occur. In the theory of algorithms there is the
syntax of programming languages versus the (mathematical) meaning of a program. Since
programs crucially involve time alternative logics with time have to be introduced. Now
in all such generalizations, the GODEL completeness theorem serves as a pattern onto
which to model the syntax/semantics relation.

— The success of the formal method in mathematics makes mathematics a leading formal
science. Several other sciences also strive to present and justify results formally, like com-
puter science and parts of philosophy.
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— The completeness theorem must not be confused with the famous GODEL incompleteness
theorems: they say that certain axiom systems like PEANO arithmetic are incomplete in
the sense that they do not imply some formulas which hold in the standard model of the
axiom system.

16 Cardinalities of models

Definition 73. An S-structure 2 is finite, infinite, countable, or uncountable, resp., iff the
underlying set |2l| is finite, infinite, countable, or uncountable, resp..

Theorem 74. Assume that ® C L° has arbitrarily large finite models. Then ® has an infinite
model.

Proof. For n € N define the sentence
@ZnZE’UQ,...,’Un_l /\ ;=5
i<j<n

where the big conjunction is defined by

N\ Wi =01 Ao AL a A AP I A A1
i<j<n
For any model 9
ME ¢, iff A has at least n elements.
Now set
' =dU{p>n |neN}.

(1) ®’ has a model.
Proof. By the compactness theorem 72b it suffices to show that every finite &y C ® has a model.
Let ®&¢ C ® be finite. Take ng € N such that

Do CPU{p>n |n<npl.

By assumption ® has a model with at least ng elements. Thus ® U {¢>, |n < ng} and @ have a
model. ged(1)
Let 91E ®’. Then 901 is an infinite model of ®. O

Theorem 75. (Upward LOWENHEIM-SKOLEM theorem) Let ® C L have an infinite S-model
and let X be an arbitrary set. Then ® has a model into which X can be embedded injectively.

Proof. Let 2t be an infinite model of ®. Choose a sequence (¢, | € X) of pairwise distinct con-
stant symbols which do not occur in S, e.g., setting ¢, = ((z, 5),1,0). Let S’=SU{c; |z € X}
be the extension of S by the new constant symbols. Set

@/:@U{—\szcy |:L',y€X,:L'7éy}.
(1) @' has a model.
Proof. 1t suffices to show that every finite ®y C ®’ has a model. Let ®; C ®’ be finite. Take a
finite set Xy C X such that

Qo CPU{co=cy |z, yeXo,x#+y}.
Since |9] is infinite we can choose an injective sequence (a;|x € Xj) of elements of || such

that = # y implies a, # a, . For z € X \ X choose a, € |9M| arbitrarily. Then in the extended
model

M =MU{(cz,az)|r € XIEQU{mcr=cy |z, ye X0,z £y} 2 PDp.
ged(1)
By (1), choose a model 9 E ®’. Then the map
i X — ||, 2 M (cy)

is injective. The reduction M =M’ [ {V} U S is as required. O
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We define notions which allow to examine the axiomatizability of classes of structures.

Definition 76. Let S be a language and IC be a class of S-structures.
a) K ist elementary or finitely axiomatizable if there is an S-sentence ¢ with K =Mod®p.

b) R is A-elementary or axiomatizable, if there is a set ® of S-sentences with K =Mod ®.
We state simple properties of the Mod-operator:

Theorem 77. Let S be a language. Then
a) For ® C W C L5 holds Mod®® DMod ¥,
b) For &, W C L§ holds Mod®(® U ¥) =ModS® N ModS¥.
¢) For ®C L5 holds Mod®® = ﬂgaeb Mod®yp .
d) For o, ..., on_1€ L§ holds Mod®{o,..., on_1} =ModS (0o A ... A on_1).
e) For ¢ € L§ holds Mod®(—¢) = Mod®()\Mod® ().

c) explains the denotation A-elementary, since Mod®® is the intersection (“Durchschnitt”) of all
single Mod®y .

Theorem 78. Let S be a language and IC, L be classes of S-structures with
L =Mod0\ K.
Then if K and L are axiomatizable, they are finitely axiomatizable.

Proof. Take axiom systems ®x and @, such that K= Mod®® s and £=Mod®®;. Assume that
R is not finitely axiomatizable.
(1) Let &9 C @ be finite. Then &oU Py, is satisfiable.
Proof: Mod®®y O Mod®®y . Since & is not finitely axiomatizable, Mod®y # Mod®®x . Then
Mod®®yN £+ (. Take a model 2 € £, A€ Mod ®;. Then AF doUPL. ged(1)
(2) ®x U Dy is satisfiable.
Proof: By the compactness theorem 72 it suffices to show that every finite ¥ C & U @, is satsi-
fiable. By (1), (¥N®k)U Py is satisfiable. Thus ¥ C (TN Px) U Py, is satisfiable. ged(2)

By (2), Mod®®x N Mod®®,, # (). But the classes & and £ are complements, contradiction.
Thus R is finitely axiomatizable. O

Theorem 79. Let S be a language.
a) The class of all finite S-structures is not axiomatizable.
b) The class of all infinite S-structures is axiomatizable but not finitely aziomatizable.

c) Let ® C L5 such that Mod®® contains infinite structures. Then Mod®® contains struc-
tures of arbitrarily high cardinalities, i.e., for any set X there is a model M FE @ and an
injective map from X into M.

Proof. a) is immediate by Theorem 74.
b) The class of infinite S-structures is axiomatized by

@Z{@}n |TL€1N}

If that class were finitely axiomatizable then the complementary class of finite S-structures
would also be (finitely) axiomatizable, contradicting a).
¢) Let {cg|z € X} be a set of “new” constant symbols. Let

Ox=0U{-c,=cylz,ye X, xz#y}.

Every finite subset of ®x is satisfiable in any infinite model of ®. By the compactness theorem,
® x is consistent and satisfiable. Let M x F ®x and let M=Mx [ SEP. Define f: X - M by

f(@) =Mx(cr).
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Then f is injective as required. O

17 Groups

Definition 80. The language of group theory is the language
SGr - {Oa 6},

where o is a binary function symbol and e is a constant symbol. The group axioms are the fol-
lowing set of sentences:

D = { VvV, Vg 0ovg vy vg = ovg 0 v1 V2, Vg 0vg e =g, YogTvg ovg vy =e}.

A group is an Sgr-structure & with & E &g, .

The group axioms may be written in a more familiar way with variables x, y, z, ..., infix
notation and further abbreviations as

— Vz,y,z (xoy)oz=xo0(yoz) (associativity)

— Vazxzoe=x (neutral element)

—  Vadyzoy=e (inverses)
Some elementary facts of group theory have short formal proofs. We show that the neutral ele-
ment of a group is its own left inverse.

Theorem 81. ®g, FVyy (vpoe=e—vg=e).

Proof.

Let VaVyVz ((zxy)*z) = (zx(y*z2)).

Let Va (zxe) =x.

Let Va 3y (zxy) =e.

Theorem. Vu ((uxe) =e—u=¢e).

Proof. Let (uxe)=e. (uxe)=wu. u= (uxe). u=e.

Thus Vu ((uxe) =e—u=e). Qed. O

Let us now consider some algebraic details.

Definition 82. A group & =(G,-, 1) is a torsion group if for all g € G there is n € N\ {0} with
g"=1. Here, g™ is defined recursively by: ¢°=1, g"t1=g- g".

Theorem 83. The class T of all torsion groups is not axiomatizable.

Proof. Assume 7 =Mod%®, where ® C L3¢, Define
U=dU{—wgo..vp=e|neN\{0}}.
{wo ) | \{0}}
n—times
Every finite subset of W is satisfiable: Consider a finite ¥ C W. Take ng € N such that
UoCPU{-wgo...up=e|l<n<ng}.
H(—/
n —times
The right-hand side can be satisfied in every torsion group which has an element of order >ng,
e.g., in the additive group of integers modulo ngy . Bei the compactness theorem [72, U is satisfi-
able. Take a model GEW. Then G is a group in which the element G(vg) satisfies all formulas
o O...0g=¢€.
n—times
Hence G(vp) has infinite order in G and G is not a torsion group, although G F ®. Contradic-
tion. 0
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This theorem demonstrates that mathematical logic also examines the limits of its methods:
torsion groups cannot be axiomatized in the language of group theory. It is however possible to
characterize torsion groups in stronger theories, where the formation of powers v{ is uniformly
available.

There are several ways to logically treat group theory. One could for example include inver-
sion as a function symbol.

Definition 84. The extended language of group theory is the language
Scrr={o,i,e},
where 1 is a unary function symbol. The extended group axioms consist of the axioms
Dy = {VugVu1 Vg 0ovg v1 v9 = ovg 0 v1 Ve, Y 0V € = vg , Yug 0vg iug =e }.
An extended group is an Sqgy/-structure & with & E g, .

Obviously every extended group can be reduced to a group in the former sense and vice
versa. There are, however, model theoretic differences, e.g., concerning substructures.

Theorem 85. A substructure of a group need not be a group. A substructure of an extended
group is an extended group.

This fact is due to the syntactic structure of the axioms considered.

18 Fields

Fields are arithmetical structures, i.e., a field allows addition and multiplication. We describe
filed in the language of arithmetic

SAr: {+a ) 0) 1}

with the usual conventions for infix notation and bracket notation. The axiom system ®pq of
field theory consists of the following axioms:

— VaVyVz(z4y)+z=z+ (y+2)
— VaVyVz(z-y) - z=z-(y-2)

- VaVyz4+y=y+ax

— VaVyz-y=y-x

— Vzx+0=x

- Vzz-l=x

— Vzdyz+y=0

— Vz(-z=0—=3Jyx-y=1)

- =0=1

— VaVyVza-(y+z2)=(z-y)+ (x-2)

A field is an Sx,-model satisfying ®pq . The axiom system ®pq is not complete. There are, e.g.,
finite and infinite fields and thus there is a natural number n such that the axioms do not decide
the sentence ¢—, which expresses that there are exactly n elements.

Substantial parts of mathematics can be carried out within field theory. Vectors of a finite-
dimensional vector space over a field IKK can be represented as finite tuples from K. The laws of
vector and matrix calculus are sentences about appropriately indexed field elements. Thus the
theory of finite-dimensional vector spaces can be carried out within field theory. Technically we
say that the theory of n-dimensional vector spaces can be interpreted within the theory of fields.
That (2o, ..., 2n—1) is the vector sum of (xg, ..., z,—1) and (yo, ..., yn—1) can be expressed by the
Sar-formula

2051'0+SC1 A... /\anlzxn71+ Yn—1-
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The linear independence of (xo,...,xn—1) and (Yo, ..., Yn—1) is formalizable by

n—1

VAVM((/\ Azi+p-yi=0)—=(A=0Ap=0)).
i=0

Analytic geometry provides means to translate geometric statements into field theory.

18.1 The characteristic of a field
We study some logical aspects of an important field invariant, namely its characteristic.
Definition 86. A field K = (K, +, -, 0, 1) has characteristic p, if p is the minimal integer >0
such that

14...+1=0.

—_——

p—times
If such a p exists then p is a prime number. Otherwise the characteristic of K is defined to be
0.

Fields of characteristic p can be axiomatized by

q)pdyp:q)FdU{l +...+1 EO},

p—times

and fields of characteristic 0 by
(b _— @ U 1 ) 1 0 N 0 .
Fd,0 raU{l+...+1#£0[ne N\ {0}}

n —times

The axiom system ®rq,0 is infinite.
Theorem 87. The class of fields of characteristic 0 cannot be finitely axiomatized.

Proof. Assume for a contradiction that the sentence ¢y axiomatizes the class under considera-
tion. Then

(I)Fd,o ': ©®o and {(po} ': (I)Fd,O .
By the compactness theorem there is a finite ®qC ®rq,¢0 such that
ok o and {po} F .
Without loss of generality, ®¢ is of the form
Dy=PpqU{l+...+1#0n=1,..., .
0=PraU{ #0[n no}

n—times

This set is equivalent to @k, o and also axiomatizes the class of fields of characteristic 0. Take a
prime number p > ng. Then the field K, of integers modulo p has characteristic p and K, F ®q.
But then &4 does not axiomatize the class of fields of characteristic 0. Contradiction. O

18.2 Algebraically closed fields

Definition 88. A field K is algebraically closed if every polynomial of degree >1 has a zero in
K.

A polynomial
"+ an_ 12" . Farz+ag

is determined by the sequence a,,_1, ..., ag of coeflicients. The following axiomatizes algebraically
closed fields:

Pper=PrgU{Va,_1...Yag3zz" +an_12" "t +...+a1x +ag=0|n e N\ {0}}.

Here z* denotes the term z -z .
——

i—times
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19 Dense linear orders
The structure Q = (Q, <) is an example of a dense linear order.

Definition 89. Let S5, = {<} be the language of strict orders. The system ®g, axiomatizing
strict linear orders consists of the sentences

- Vr—a<z
— VaVyVz (z<yAy<z—x<z)
— VaVy (z<yVr=yVy<z)
The system ®q), ariomatizing dense linear orders (without endpoints) consists of ®go and
— Vrxdyz<y
— Vzdyy<z
- VaVy(z<y—Tz(z<zAz2<y))

The following theorem was shown by GEORG CANTOR.

Theorem 90. Let X = (X, <X) and Y = (Y, <Y) be countable dense linear orders. Then X and
Y are isomorphic.

Proof. Let X ={z;li cw} and Y ={y,|j € w}. Define a sequence (fp|n € w) of maps fr: X, —
Y,, such that
(1) X,, € X and Y,, CY have cardinality n;
(2) fn: (Xn, <XNX2) = (Y, <¥YNY;2) is an isomorphism.
Set foZX():YO:@.
Assume that f5,, is constructed according to (1) and (2). Let
Xopn= {UO, ey u2n_1} with ug <Xy <X ... <XUQn_1
and
Yo, = {’Uo, ey ’Ugnfl} with Vo <Y’Ul <Y <Y’U2n,1 .
Take ¢ € w minimal such that z; ¢ Xo,,.
Case 1: x; <X ug. Then take j € w minimal such that Yj <Yy
Case 2: ug <~ z; <X ugp_1 . Take k < 2n — 1 such that uy <X z; <Xuk+1 . Take j € w minimal
such that vy <ij <Yvk+1.

Case 8: ugy_1 <~ x;. Take j € w minimal such that va, _1 <ij .
In all three cases set

X2n+1 = XQnU {xz}a Y2n+1 = Yv2n U {yj}a f2n+1 = f2n U {(xia y])}
Then fa,4+1 is constructed according to (1) and (2).
Now let

X2n+1 = {UO, ceny UQn} with ug <XU1 <X .. <XU2n
and

Y2n+1 = {’Uo, sy ’UQn} with vg <Y’Ul <Y <Y’Ugn .
Take j € w minimal such that y; ¢ Yon 1.
Case 1’: y; <Yug. Then take 7 € w minimal such that z; <X ug.
Case 2°: vy <ij <Yy, . Take k < 2n such that vy <ij <Yvk+1 . Take 7 € w minimal such that
wp <X g <X

<X <TUE41 -

Case 3’: vay, <ij . Take i € w minimal such that ue, <X z;.
In all three cases set

Xonto=Xont1U{zi}, Yonto=Yon11U{y;}, font2= font1U{(zi, y;)}

Then fa,42 is constructed according to (1) and (2).
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Obviously, foC fiC f2C.... Let f=U,,, fn- Then
f1(X, <) 2 (Y, <Y). O
We draw some logical consequences from this isomorphism result.
Definition 91. Let S be a language. An S-theory is a consistent set ® C L§ of sentences. A set

® C L is complete if for every p € L§
Pl gdw. F .

A complete theory ® C Lj “decides” all “questions” which can be posed in the language S. The
theories ®¢, and ®Pgq are not complete. Obviously:
Proposition 92. Let A be an S-structure. Let
Th(2) ={pe L§ [AF ¢}
be the theory of 2A. Then Th(2) is complete.

Definition 93. Let S be a language and ® C L§ . Then ® is w-categorical, if all countably
infinite structures AE ® and BFE @ are isomorphic.

Theorem 94. Let S be a countable language and let ® C L§ be a consistent w-categorical set of
sentences which has no finite models. Then ® is complete.

Proof. Let ¢ € L§. Assume ®+ ¢. Then ® ¥ -y since ® is consistent.

Conversely assume ® ¥ —p. Assume for a contradiction that ®# ¢. Then ®U{¢} und ®U{~
¢} are consistent. By the LOWENHEIM-SKOLEM theorem |69 there are countable models 2o F @ U
{¢} and Ay F & U {—¢}. Since ® has not finite models, Ay and 2; are both countably infinite.
By w-categoricity, 2y and 2(; are isomorphic. But 2pF ¢ and 2(; F ~¢. Contradiction. O

As an immediate corollary of the previous theorems we obtain:
Theorem 95. The theory P41, is complete.

By a main theorem of algebra an algebraically closed field is determined by its characteristic
and its transcendence degree up to isomorphism. Given an appropriate theory of uncountable
cardinalities this implies that two algebraically closed fields of characteristic 0 and of the same
uncountable cardinality are isomorphic. By arguments similar to the countable case one can
show:

Theorem 96. The theory of algebraically closed fields of characteristic 0 is complete.

20 Peano arithmetic

The language of arithmetic can also be interpreted in the structure N = (N, +,+,0, 1) of integers.
We formulate a theory which attempts to describe this structure.

Definition 97. The aziom system PA C LR of PEANO arithmetic consists of the following
sentences

— Vzx+14#0

- VaVyzrx+l=y+loa=y

— Vzz+0=x

- VaVyz+(y+1)=(+y) +1

— Vzz-0=0
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— VaVyax-(y+1)=z-y+x

—  Schema of induction: for every formula ¢(xg, ..., Ty —_1,Ty) € L5AR:

V2. VEn —1(@(Z0y vy Tn—1,0) AVZR (@ —= ©(20, ..., Tn—1, T+ 1)) =V, )

Then N E PA. The first incompleteness theorem of GODEL shows that PA is not complete, i.e.,
there are arithmetic sentences which are not decided by PA although in the standard model
they have to be either true or false, and they really are true if one is working in a meta-theory
which is able to construct the model N.

21 Nonstandard analysis

Analysis was developed using infinitesimal numbers. Although infinitesimals in most cases lead
to correct results, they are nevertheless paradoxical object (arbitrarily small but not equal to 0)
which gave rise to severe foundational controversies.
The following is a caricature of the use of infinitesimals: To determine the derivation of f =
2% in a take an infinitesimal ¢ and form the difference quotient
(a+¢e)?—a?  a*+2ac+e?—a?
€ €

=2a+e.

Setting € =0, after all, we obtain
f'(a) =2a.

It is difficult to account for this recipe in terms of a single structure. It seems that there is a
structure of standard numbers like 0, 2, a, ... in which we want to know the result of the argu-
ment. For the argument, however, one seems to enrich the domain by nonstandard numbers like
€,a+¢€,... . The nonstandard numbers are then projected back into the standard numbers.

This idea was put on firm foundations by ABRAHAM ROBINSON, the inventor of nonstandard
analysis. We give a small impression of this field, emphasizing logical aspects. We extend the
structure R of standard reals to a structure R* which also contains “infinitesimals”. There is a
partial map st: R — R* which maps an infinitesimal € to 0.

So let

R:(R7<7+’.7(T|T€R>7f7g)
be the standard strictly ordered field of reals enriched by constants r for every r € R and by

unary functions f and g. Let S be an appropriate symbol set for this structure. For simplicity
we identify the symbols with their interpretation in R. Let

T=Th(R)={p€ L§|RF ¢}

be the theory of R. Let € be a new constant symbol (for an infinitesimal) and S*=SU{e}. The
set

T*=TU{0<eAe<r|lre RAO<r}

of S*-sentences expresses that ¢ lies between 0 and all positive standard reals, i.e., that ¢ is an
infinitesimal. Every finite subset T/ C T* can be satisfied by the structure

R/:(IR”<’+’.’(T|T€R)’f7g7e)

where ¢ is interpreted by a positive real number e which is smaller than the finitely many posi-
tive reals r such that r occurs in the finite set 7’. Hence T™ is consistent and satisfiable, and we
let

(IRfk7 <*, +*, .*, (7.,>k|,rl E R), '-f*7 g*, E*) ':T*
where €* interprets €. Restrict that structure to the language S to obtain

R* = (R*’ <*7 Jr*’ .*’ (T*|Tl GR)? f*7 g*) ':T'
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Embed R into R* by
>t

Since the theory T contains all first-order information about all elements of R we get that the
embedding is elementary. Via the embedding, we can identify r and r* for r € R . Moreover, the
relations and functions of R* are extension of the corresponding functions in R . We may thus
denote the components of R* just like the components of R :

R*=(R*, <,+,-, (r|reR), f, g).
After the identification we get
Proposition 98. R is a proper elementary substructure of R*: R <R*.
Proof. Since 0 <e <r for every positive r € R we have e ¢ R and R #R* O

‘We now connect the structure R* back to R:

Definition 99.
a) uw€R* is finite if there are a,b € R such that a<u<b.
b) uweR* is infinite if u is not finite.
¢) For finite u € R* define the standard part
st(u) =supr{r e R|r <u}

as a supremum in the standard numbers. Note that st: R* — R is a partial function
defined on the finite elements of R*.

d) u€R* is infinitesimal if st(u)=0.
e) u,v €R* are infinitesimally near, u~w, if u — v is infinitesimal.
Note that by the inequalities 0 <e Ae <reT™
st(e*) =supr{r e Rlr <e*} =supr{r € R|r <0} =0.

So IR* possesses an infinitesimal element #0. The two models may be represented graphically by

infinite | finite E infinite
' the nfwnad of 0
! 0 5
1 ' R*
1 /J\ 1
. o |
E Ul st l'. .’/ E
| y : R
!
0

Proposition 100.
a) If seR then st(s)=s.
b) uweR* is infinitesimal iff Vs€R (s>0— |u|<s).
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¢) If u~0 and |v|<|u| then v~0.
d) Let u~u' and v~v'. Thenu+v~u' 40’
e) Let u~u', v~v', and u,v be finite. Then u-v~u'-v’.

Proof t(s

a) st(s) =supr{reR|r<s}=s.
) Let st(u)

(2 Let s€R, s> 0. Assume for a contradiction that —s >wu. Then
st(u) <st(—s)=—s<0,

contradiction. Assume for a contradiction that v >s. Then

st(u) =st(s)=s>0,

contradiction. Thus —s <u<s, ie., |u|<s.
¢) follows immediately from b).
d) Let s€R, s>0. By assumption, |u — u’| <§ and v —v'| < % Then

[(u+0) = (@' + o) = |(u—u) + (0 =0 <Ju—u/|+ o —v| <5+ 5=
By b), ut+v~u'+v'

e) Choose a € R such that |ul, [v],[u/], [v'| <a. Let s €R, s >0. By assumption, |u —u/| <5~ and

lv—v'| < 5. Then
lu-v—u-v| = |Ju-v—u-v'+u-v' —u V|
< |Juv—u-v|+|u-v —u v
= [ul-Jo=v'|+u—u']-|v
< a~i+a~i*s
= 2a 2a

By b), u-v~u'-v'.

O

To demonstrate the potential of the standard-nonstandard setup we give a nonstandard char-

acterization of when the function g: R — IR is the derivative f’ of the function f.

Theorem 101. g= f' iff the following criterion holds:

Wz € RVE € R\ {0} (£~0—>g($)~—f(x+€§)_f(§))_

Proof. To deal with difference quotients we use the common absolute value notation

b—c

P <e.

a —

This abbreviates the formula

(d>0——-de<da—b+cANda—b+c<de)AN(d<O0—de<da—b+cAda—b+c<—de)

where we assume d 0.

Assume g= f'. Let x € R, 6 € R*\ {0}, and § ~ 0. To check whether g(z) ~ L2+ = FO) 1oy

neR, n>0. Since g(x) = f'(z) there exists § €R, § > 0 such that ¢

<n).

REVE 40 (6] < 6 ‘g(m) s 2 J0)

This S-sentence is an element of the theory T', and therefore it also holds in R*:

<n).

REV6' 40 (|6'] < 6— ‘g(:c) _fet 52,’ ()

The process of going from R to R* like this or vice versa is called transfer; it is one of the most

important techniques of nonstandard analysis. We can set 6’ = ¢ and get

’g(x) St «sg - f(«s)’

<.
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Since this holds for every positive n € R we have
rT+§)—
sy L@ O=F(©)

. 3
as required.
Conversely assume that g# f’. Take z € R such that g(z) # f’(z). Then there is n€ R, n >
0 such that

n_ ’
1Ri=v5>035',5'7é0|5'|<5‘g(x)—f(“é) (LR

6/

We transfer this property to R*:

n_ /
IR*#V5>OEI($’,5’7':O|5’|<5’g(:c)f(z+5) T s,

5/

Take some positive infinitesimal 6 € R*, 6 > 0 and apply the last property: there exists £ € R*\
{0}, |¢] < ¢ such that
r+E&)—
o) L2 9= 100

¢ -

Since |£| < we have that £~0. Hence

This shows that the criterion is false in case g# f’. a

The nonstandard criterion for the derivation can be applied in proving the usual laws of the
differential calculus. As an example we show the product rule.

Theorem 102. Let f, g: R — R be differentiable functions. Then the product f - g is differen-
tiable and

(f-9)=f-9+f 9.

Proof. The criterion of the previous theorem is satisfied by f’, f and g’, g respectively. We now
show the criterion for f'-g+ f-¢g’ and f-g. Let x € R and £ € R*\ {0}, {~0. Calculate in R*:

(S 9+ =(f-g)x) _ fla+8 g+~ f(z) g(z)

¢ ¢
fle+&) -glx+8)—f@) - gla+ &+ f(x)-gx+E) — f(x)-g(x)

3
_ f(:v+£2—f(w) .g($+§)+f($),g(w+£2—g(w)_
By assumption, w ~ f'(z) and w ~ g'(x). The latter near-equality also

implies g(z + &) ~ g(x). Since ~ commutes with arithmetic operations,
-0 _ JaE=16) g4 o) Lot D=0
~ fl@)-g(@)+ f(z)- g'(x)

as required. O

The treatment of differentiation has demonstrated that the nonstandard theory allows dif-
ferent argumentations from the standard theory. The relation ~ of nearness allows to to dis-
pense with some explicit calculations of inequalities. Of course the basic laws of the ~-relation
were proved using explicit estimates. The use of infinitesimals also seems to eliminate some
quantifiers: some familiar properties of the form Vedd... can be replaced by properties of the
form V¢~0... .

On the other side, one has to be caefully distinguish whether one is working in the standard
model or the nonstandard extension. Particular combinations of standard and nonstandard vari-
ables are often crucial. A function f:R — R is continuous iff

Ve e RVz' e R*(z~a'— f(x)~ f(z)).
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The similar looking property
Ve e RV’ e R*(x~z' — f(x)~ f(z'))

where both variables range over R* is much more restrictive and describes some class
of “strongly continuous” functions.

22 ZERMELO-FRAENKEL set theory

All mathematical notions can be defined set-theoretically. The notion of set is adequately for-
malized in a first-order axiom system introduced by ZERMELO, FRAENKEL and others. Together
with the GODEL completeness theorem for first-order logic this constitutes a “formalistic” answer
to the question “what is mathematics”: mathematics consists of formal proofs from the axioms of
ZERMELO-FRAENKEL set theory.

We shall first give the axioms of ZERMELO-FRAENKEL set theory, but we shall then develop
the theory of finite sets in which every set is assumed to be finite. This theory is axiomatized
by a variant FS of ZERMELO-FRAENKEL set theory in which the axiom of infinity is negated.
We shall see that F'S has the same “strength” as first-order Peano arithmetic PA.

Full ZERMELO-FRAENKEL set theory as a foundation of mathematics and as an independent
mathematical theory will be developed in the set theory course.

Definition 103. Let € be a binary infix relation symbol; read x € y as “r is an element of y”.
The language of set theory is the language {€}. The formulas in L€} are called set theoretical
formulas or €-formulas. We write L€ instead of L1},

The “naive” notion of set is intuitively understood and was used extensively in previous
chapters. The following axioms describe properties of naive sets. Note that the axiom system is
an infinite collection - or set - of axioms. It seems unavoidable that we have to go back to some
previously given set notions to be able to define the collection of set theoretical axioms - another
example of circularity in foundational theories.

Definition 104. The system ZF of the ZERMELO-FRAENKEL axioms of set theory consists of
the following axioms:
a) The axiom of extensionality (Ext):
VaVy(Vz(z€x >z €y) >z =1y)
- a set 1s determined by its elements, sets having the same elements are identical.
b) The axiom of set existence (Ex):
JaVy-yecx
- there is a set without elements, the empty set.

¢) The separation schema (Sep) postulates for every €-formula ¢(z,x1,...,Zn):
V.. Ve, VeIyVz (z e yorz€x A p(z, 21, ..., Tp))

- this is an infinite scheme of axioms, the set z consists of all elements of x which satisfy
©.
d) The pairing axiom (Pair):
VaVydzVw (w ezew=aVw=y).
- z 18 the unordered pair of x and y.
e) The union axiom (Union):

VeIyVz(z € y+» Jw(w €z Az €w))

-y is the union of all elements of x.
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f) The powerset axiom (Pow):
VedyVz(z € y+>Vw(w € z— w € x))

-y consists of all subsets of x.

g) The axiom of infinity (Inf):
Ty (yexAVzzey) AVy(yexz—z(zex AVw(w ez weyVw=y))))

- by the closure properties of x, x has to be infinite.

h) The replacement schema (Rep) postulates for every €-formula o(x,y,x1,...,%n):
V1. Ve, (VavVyVy' ((p(z, y, 21, ..., o) Ao(z, ¥/, 21, o0y n)) 2 y=y') —
YuduVy (y €ver Jz(r cun o(z, ¥, 21, ..., T2))))

- v is the image of u under the map defined by .

i) The foundation schema (Found) postulates for every €-formula ¢(x,21,...,xy):
Voy..Vo,(Fre(x, 1, ..., ) = F2(@(x, 21, o0y ) AVZ (2 €2 — —0(2), 21,4 ..., T2))))

- if  is satisfiable then there are €-minimal elements x satisfying ; such x can be called
€-minimal examples or counterexamples, depending on the situation.

By ZF — Inf we denote the above list of axiom, omitting the axiom of infinity. By FS we denote
the system ZF — Inf together with the megation —Inf of the axiom of infinity. FS stands for
finite sets.

Until further notice we shall do proofs in the theory ZF — Inf.
Most of the axioms have a form like

VZIYyWz (z € y > ).
Intuitively, y is the set of sets z which satisfy ¢. The common notation for that set is
{zle}-

This is to be seen as a term, which assigns to the other parameters in ¢ the value {z|¢}. Since
the result of such a term is not necessarily a set we call such terms class terms. It is very conve-
nient to employ class terms within &€-formulas. We view this notation as an abbreviation
for “pure” e-formulas.

Definition 105. A class term is of the form {x|p} where x is a variable and p € L. If {x|¢}
and {y|v¥} are class terms then

—  ue{z|p} stands for @% ;
—  u={x|p} stands for Yv (v Eu+> (p%)’.
—  A{z|p} =u stands for Vv(ga%(—m)eu);
= A{zle}={ylv} stands for Vv (o, < ¢7);
— A{z|p} €wu stands for v(veunv={x|p};
— A{z|p} e{y|v} stands for H’U(’w%/\’l}:{xhp},
In this notation, the separation schema becomes:
VoV, Vedyy={z|z€x A @(z,x1,...,T0) }.

We shall further extend this notation, first by giving specific names to important formulas and
class terms.

Definition 106.
a) O:={z|x+£x} is the empty set;
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b) V:={x|xr=ux} is the universe.

We work in the theory ZF for the following propositions. We shall be careful not to use the
axiom of infinity, so that our results also hold in the theory FS of finite sets.
Proposition 107.
a) DeV.
) V¢V (RUSSELL’s antinomy).

Proof. a) ) € V abbreviates the formula
Fv(v=vAv=0).
This is equivalent to Jvv =() which again is an abbreviation for
FvVw (w v w#w).

This is equivalent to JvVww ¢ v which is equivalent to the axiom of set existence. So § € V is
another way to write the axiom of set existence.
b) Assume that V € V. By the schema of separation

Jyy={z]z€V Az¢z}.
Let y={z|z€V Az¢ z}. Then

Vz(z€ycrze€V Az z).
This is equivalent to

Vz(z€yrz¢ 2).
Instantiating the universal quantifier with y yields
yeyoyty
which is a contradiction. O
We introduce further abbreviations. By a term we understand a class term or a variable, i.e.,

those terms which may occur in an extended €-formula. We also introduce bounded quantifiers
to simplify notation.

Definition 108. Let A be a term. Then Vx € A stands for Ve(x € A — @) and Jx € Ay
stands for Jx (x € AN @).
Definition 109. Let x,y, z,... be variables and X,Y ,Z,... be class terms. Define
a) XCY:=VxeXzeY, X is a subclass of Y;
b) XUY :={z|lreXVzeY} is the union of X and Y;
c) XNY :={z|lr€ XAz €Y} is the intersection of X and Y;
d) X\Y :={z|lr€ X ANx¢Y} is the difference of X and Y;
) U X:={x|3ye Xz ey} is the union of X;
) N X:={xVye Xz ey} is the intersection of X ;
)
)
)
)

gy

g) P(X)={x|x C X} is the power class of X;

h) {X}={x|x=X} is the singleton set of X;
{X,Y}={z|lr=XVae=Y} is the (unordered) pair of X and Y;
{Xoy ooty Xna}={zlz=XoV..Vae=X,,_1}.

[
J

One can prove well-known boolean properties for these operations. We only give a few examples.

Proposition 110. X CYAY CX—>X=Y.
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Proposition 111. |J {z,y}=2Uy.

Proof. We show the equality by two inclusions:
(Q). Let uel {z,y}. v(we{z,y}Auev). Letve{zr,y}Aucv. (v=xVv=y)Aucw.
Case 1. v=x2. Thenu€z. ucxVuecy. HenceucxUy.
Case 2. v=y. Thenuecy. ucxVuecy. HenceuecxUy.
Conversely let ucxUy. uexVuey.
Case 1. u€x. Then x € {z,y} Auecz. w(we{r,y}Auecv)and uel {z,y}.
Case 2. u€y. Then x € {z,y} Auecz. wwe{z,y}Aucv)and uel {z,y}. O

Since we also have to formalize numbers in set theory, we define:

Definition 112. Let x be a variable. Define
a) 0=0 for the number zero;
b) x+1=xU{x} for the successor of = .
d) 2=1+1 for the number two.

)

¢) 1=0+1 for the number one;
)
) 3=2+1 for the number three.

e
Note that

=90
= {0}

= {0’ 1}
= {0,1,2}

W NN = O

Informally, we intend to formalize the natural number n as
n={0,1,....,n—1}.
Although we have not yet introduced sufficient arithmetical operations, we can state
some ‘number-theoretic” properties:
Proposition 113.
a) Veax+1+£0;
b) 0#1;
c) VeVyz+1=y+1—-ax=y.
Proof. a) Consider a set . Then x€x+1 and 2 ¢ 0. Hence x+1+#0.
¢) Assume that ©+ 1=y +1 but that ©#y. Then
verxU{z}=yU{y}

and since z # y we have x € y . Similarly we obtain y € . We show that the existence of an €-
cycle like

TEYET

contracts the foundation schema.
By the foundation schema

Jzze{x,y} =3z (ze{x, y} AV (2 €2—=2"¢ {z,y})).
Take z € {z, y} such that
V2! (2 €z—z2'¢{z,y}).

Case 1. z=z. Then y€x and y € {z, y}, contradicting the choice of z.
Case 1. z=y. Then x € y and x € {z, y}, contradicting the choice of z. O
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We can now reformulate the ZF axioms using class term notation. It is customary with
axioms to leave out outer universal quantifiers.

a) Extensionality: t CyAyCrx—xz=y.
b) Set existence: D€ V.

c¢) Separation schema: for all terms A
TNAeV.

) Pairing: {z,y} V.
) Union: |J z€V.
) Powerset: P(z) e V.
g) Infinity: 3z (0€z AVuez u+1€x).
) Replacement: see later.
)

Foundation: for all terms A with free variables xg,..., n_1

A+P—FreAznA=0.

23 Relations and functions
Ordered pairs are the basis for the theory of relations.
Definition 114. (x,y)={{z},{z,y}} is the ordered pair of z and y.
Proposition 115. (z,y)€V.
(z,y)=("y) mw=yrz'=y"
Definition 116. Let A, B, R be terms. Define
a) Ax B={z|3a€ AJbe Bz=(a,b)} is the cartesian product of A and B.

b) R is a (binary) relation if RCV x V.
¢) If R is a binary relation write a Rb instead of (a,b) € R.

We can now introduce the usual notions for relations:

Definition 117.
a) dom(R)={x|Jy(z,y) € R} is the domain of R.
b) ran(R)={y|3z (z,y) € R} is the range of R.
¢) R1TA={z|z€ RAJxTFy((z,y) =2z Az € A)} is the restriction of R to A.
d) R[A]|={y|3xz€ Az Ry} is the image of A under R.
e)
)

R
R 1={z1323y (x RyAz=(y,x))} is the inverse of R.
R~

! YB]={z|3y € Bz Ry} is the preimage of B under R.

One can prove the usual properties for these notions in ZF. One can now formalize the types of
relations, like equivalence relations, partial and linear orders, etc. We shall only consider notions
which are relevant for our short introduction to set theory.

Definition 118. Let F', A, B be terms. Then
a) Fis a function if VaVy,y' (e FyAhxFy'— y=1').

b) F: A— B if Fis a functionAdom(F) = A Aran(F') C B. The sequence notions (F(z)|z €
A) or (F(x))gzea are common alternative ways to write F: A—V.
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¢) F(x)={v|3y (e FyAVy' (x Fy' > y=1vy') = Ty (e FyAv € y)} is the value of F at x.

Note that if F: A — B and & € A then « FF(x). If there is no unique y such that « Fy then
F(x) =V which we may read as F(z) is “undefined”.
Using functional notations we may now write the replacement schema as

for all terms F: F is a function — Flz] €V.

24 Ordinal numbers

We have suggested to formalize the natural number n as
n={0,1,....,n—1}.
We note some properties of this informal presentation which will be the basis for the “official”
formalization of numbers in set theory:
1. "Numbers” are ordered by the &-relation:
m<n iff men.
E.g., 3€5 but not 5€3.
2. "Numbers” are “complete” with respect to smaller “numbers”
i<j<m—iem.
This can be written
i1€EjEM—TEM,
a property termed transitivity.
Definition 119.
a) A is transitive, Trans(A), iff Vye AVe eyz € A.
b) x is an ordinal (number), Ord(z), if Trans(z)AVy €z Trans(y).
¢) Let Ord={z|Ord(x)} be the class of all ordinal numbers.
We shall see that this defines a notion of “number” which extends the integers and which is in
particular adequate for enumerating infinite sets. We work in the theory ZF.
Theorem 120.
a) 0€0rd.
b) VeeOrdx+1€0rd.
Proof. a) Trans(()) since formulas of the form Vy € (... are tautologously true. Similarly Vy €
() Trans(y).
b) Assume x € Ord.
(1) Trans(x +1).
Proof. Let uevezxz+1l=xU{x}.
Case 1. vex. Then u€x Cx+1, since x is transitive.
Case 2. v=x. Thenuecz Cx+1. ged(1)
(2) Vy € x4+ 1 Trans(y).
Proof. Let yeax+1=aU{x}.

Case 1. y € x. Then Trans(y) since x is an ordinal.
Case 2. y=x. Then Trans(y) since z is an ordinal. O

By the previous result, 0, 1, 2, ... € Ord. The class Ord shares many properties with its ele-
ments:

Theorem 121. Ord is transitive and every element of Ord is transitive. Hence Ord(Ord).

Proof. This follows immediately from the definition of Ord. 0



