

Isabelle / Isar / HOL proof assistant

Group theory in Isabelle/Isar/HOL

Locales

Locales stellen logische Kontexte zur Verfügung.

Eine Formel C ist ein theorem in einem Kontext, falls $\bigwedge x_1, \ldots, x_n. \llbracket A_1; \ldots; A_n \rrbracket \Rightarrow C$.

Locales anzeigen

print_locales
print_locale n
print_locale! n

Locales definieren

locale (name) =
 fixes (parameters)
 assumes (assumptions)

Locales erweitern

definition (in (locale_name)) = (...)
lemma (in (locale_name)) = (...)
(...)

Locales interpretieren

interpretation (name): (locale_name)
(full_instantiation_of_locale_parameters)

Wichtige Beweismethoden

unfold unfold_locales unfolding

Sublocales

Sublocales erlauben es, die Importhierarchie zu modifizieren. Das heißt, die Deklaration des Sublocale $l_1 \subseteq l_2$ erlaubt es l_2 im Kontext von l_1 zu interpretieren. Das heißt, alle Folgerungen von l_2 werden in l_1 verfügbar gemacht.

Beispiel: total_order \subseteq partial_order

sublocale $(l_1) \subseteq (l_2)$ erzeugt ein goal, das vom Benutzer bewiesen werden muss.

Interpretationen

Das Kommando interpretation erlaubt es, Locales innerhalb von Theorien zu interpretieren.

Beispiel:

```
interpretation int: partial_order "op \leq :: int \rightarrow int \rightarrow bool"
```

interpretation (name): (locale) (structure) erzeugt ein goal, das vom Benutzer bewiesen werden muss.