Test Exam	Dr. Philipp Schlicht
3 hours	Dr. Philipp Lücke

Set theory - Winter Semester 2014

Problem A.

- (i) (3 points) State the Replacement Scheme in the language of set theory.
- (ii) (3 points) Define the cofinality function that sends a limit ordinal α to cof(α).

Problem B. (5 points) Show that the class of regular cardinals is a proper class.

Problem C. Let κ be an infinite cardinal.

- (i) (5 points) Show that cof(κ) > ω if and only if for every *increasing* function
 f : κ → κ (i.e. α ≤ β < κ implies f(α) ≤ f(β)), there is some γ < κ with
 f[γ] ⊆ γ.
- (ii) (5 points) Prove that $cof(\kappa) > \omega$ if and only if the set

 $\{A \subseteq \kappa \mid \exists C \subseteq A \ C \text{ is closed and unbounded in } \kappa\}$

is a filter.

(iii) (5 points) Assume that $cof(\kappa) > \omega$. We call a subset A of κ stationary if it meets every closed unbounded subset of κ . Show that every stationary subset of κ has cardinality at least $cof(\kappa)$ and that there is a stationary subset of κ of cardinality $cof(\kappa)$.

Problem D. (6 points) Use the inequality $\sum_{i} \mu_{i} < \prod_{i} \lambda_{i}$ for all nonempty sets I and infinite cardinals μ_{i} and λ_{i} with $\mu_{i} < \lambda_{i}$ to prove that $cof(2^{\kappa}) > \kappa$ holds for every infinite cardinal κ .

Problem E. (6 points) Work in the theory ZF and show that Zorn's Lemma implies the Well-ordering Principle (i.e. the statement that every set can be well-ordered).

Problem F. (6 points) Show that an ordinal α is countable if and only if there is an order-preserving injection from (α, \leq) into (\mathbb{Q}, \leq) .

Problem G. (8 points) Let \mathbb{T} be an Aronszajn tree and \leq be a suitable linear ordering of \mathbb{T} . Show that there is no order-preserving injection from (ω_1, \leq) into $(\partial \mathbb{T}, \leq_{lex})$.

Problem H.

- (i) (3 points) Define the notion of a coherent C-sequence and a $\Box(\kappa)$ -sequence.
- (ii) (5 points) Show that there is a coherent C-sequence for every uncountable regular cardinal κ .