Problems	Dr. Philipp Schlicht
Series 9	Dr. Philipp Lücke

Set theory - Winter Semester 2014

Problem 34 (6 points). Suppose that κ is an uncountable cardinal.

- (1) Suppose that κ is regular and $A \subseteq \kappa$ is not stationary in κ . Show that there is a regressive function $f: A \to \kappa$ such that $\{\alpha \mid f(\alpha) \leq \gamma\}$ is bounded for all $\gamma < \kappa$.
- (2) Suppose that κ is singular. Show that there is a regressive function $f \colon \kappa \to \kappa$ such that $\{\alpha \mid f(\alpha) \leq \gamma\}$ is bounded for all $\gamma < \kappa$.

Problem 35 (8 points). Suppose that κ is a singular cardinal of uncountable cofinality and $(\kappa_{\alpha})_{\alpha < \operatorname{cof}(\kappa)}$ is a strictly increasing continuous cofinal sequence in κ . Prove the following statements.

- (1) If $\mathcal{F} \subseteq \prod_{\alpha < \operatorname{cof}(\kappa)} A_{\alpha}$ is almost disjoint and $|A_{\alpha}| \leq \kappa_{\alpha}^{++}$ for all $\alpha < \operatorname{cof}(\kappa)$, then $|\mathcal{F}| \leq \kappa^{++}$.
- (2) If $2^{\mu} \leq \mu^{++}$ for all infinite cardinals $\mu < \kappa$, then $2^{\kappa} \leq \kappa^{++}$.

(Hint: adapt the proof of Silver's Theorem from the lecture.)

Problem 36 (6 points). Fix $\alpha, \beta \in \text{Ord}$ and let ${}^{<\alpha}\beta$ denote the set of all functions $f: \bar{\alpha} \longrightarrow \beta$ with $\bar{\alpha} < \alpha$. Define \mathbb{T} to be the partial order $({}^{<\alpha}\beta, \subseteq)$.

- (1) Prove that the partial order \mathbb{T} is a tree.
- (2) Determine the following objects.
 - (a) The height $ht(\mathbb{T})$ of \mathbb{T} .
 - (b) The α -th level $\mathbb{T}(\alpha)$ of \mathbb{T} for every $\alpha \in \text{Ord.}$
 - (c) The set $\sigma \mathbb{T}$ of all branches through \mathbb{T} .
 - (d) The set $\partial \mathbb{T}$ of all maximal branches through \mathbb{T} .
 - (e) The set $[\mathbb{T}]$ of all cofinal branches through \mathbb{T} .

Due Wednesday, December 10, before the lecture.