Problems	Dr. Philipp Schlicht
Series 8	Dr. Philipp Lücke

Set theory - Winter Semester 2014

- **Problem 31** (8 points). (1) Prove that $S \cap C$ is stationary in ω_1 for all clubs C in ω_1 and all stationary subsets S of ω_1 .
 - (2) Suppose that S is a stationary subset of ω_1 . Prove that the set S_{ω} of all $\gamma \in S$ with the following property is stationary:

For all $\alpha < \gamma$, there is a closed subset C of S with $\min(C) \ge \alpha$, type $(C) = \omega + 1$, and $\sup(C) = \gamma$.

(3) Suppose that S is a stationary subset of ω_1 . Prove for all ordinals $\beta < \omega_1$ by induction that the set S_β of all $\gamma \in S$ with the following property is stationary:

For all $\alpha < \gamma$, there is a closed subset C of S with $\min(C) \ge \alpha$, type $(C) = \beta + 1$, and $\sup(C) = \gamma$.

(*Hint: consider the club* $\bigcap_{\bar{\beta} < \beta} \lim(S_{\bar{\beta}})$, where $\lim(A)$ denotes the set of limit points $\alpha < \omega_1$ of $A \subseteq \omega_1$, and use (1), (2).)

Problem 32 (6 points). Consider a train which stops successively at every $\alpha < \omega_1$. At each stop, the following happens.

- (1) First, if the train is not empty, one passenger leaves the train (we don't know which one).
- (2) Second, ω many passengers get on the train.

Show that at time ω_1 , the train is empty. (*Hint: Use Fodor's Lemma.*)

Problem 33 (4 points). Suppose that κ is an infinite regular cardinal. Suppose that $f_{\alpha}: \kappa \to \kappa$ for each $\alpha < \kappa$, and f_{α}, f_{β} are almost disjoint for all $\alpha < \beta < \kappa$. Show that there is a function $f: \kappa \to \kappa$ such that f, f_{α} are almost disjoint for all $\alpha < \kappa$.

Due Wednesday, December 03, before the lecture.