Problems	Dr. Philipp Schlicht
Series 5	Dr. Philipp Lücke

Problem 18 (5 points). Prove that $\kappa^{\operatorname{cof}(\kappa)} > \kappa$ for all infinite cardinals κ , without using König's Theorem (Lemma 2.3.4 (3) in the lecture).

(Hint: As in the proof of Cantor's Theorem (Lemma 2.1.3 (3) in the lecture), suppose that you have a list of length κ of functions $f: cof(\kappa) \to \kappa$. Construct a function $g: cof(\kappa) \to \kappa$ which is not on the list.)

Problem 19 (3 points). Suppose that κ is an infinite cardinal. Show that the following sets have the same size.

- (1) $\operatorname{cof}(\kappa)\kappa$.
- (2) The set of cofinal functions $f: cof(\kappa) \to \kappa$.
- (3) $\prod_{i < cof(\kappa)} g(i)$, where $g: cof(\kappa) \to \kappa$ is a strictly increasing cofinal function with g(0) > 0.

Problem 20 (4 points). Suppose that (L, <) is a linear order such that $|pred_{<}(x)| < \kappa$ for all $x \in L$. Show that $|L| \leq \kappa$.

Problem 21 (9 points). Consider the *linear order topology* on an ordinal δ whose basic open sets are the intervals

$$(\alpha, \beta) := \{ \gamma < \delta \mid \alpha < \gamma < \beta \}$$

for $\alpha < \beta \leq \delta$ and

$$[0,\alpha) = \{\gamma \mid \gamma < \alpha\}$$

for $\alpha \leq \delta$. A set $x \subseteq \delta$ is open if and only there is a cardinal μ and a sequence $(U_{\alpha})_{\alpha < \mu}$ of basic open sets such that $x = \bigcup_{\alpha < \mu} U_{\alpha}$.

- (1) Show that a set $x \subseteq \delta$ is closed (i.e. its complement is open) in the linear order topology if and only if $\sup(y) \in x$ for all nonempty $y \subseteq x$ which are bounded in δ ($y \subseteq \delta$ is bounded in δ if $\sup(y) < \delta$).
- (2) Show that a strictly monotone function $f: \delta \to \delta$ is continuous in the sense of the lecture if and only if f is continuous with respect to the linear order topology.
- (3) Show that for any $\alpha < \delta$, the set α is compact with respect to the linear order topology if and only if $\alpha = 0$ or α is a successor ordinal.

Due Wednesday, November 12, before the lecture.