Problems	Dr. Philipp Schlicht
Series 4	Dr. Philipp Lücke

Problem 14 (6 points). The Axiom of Dependent Choices DC is the following statement:

Suppose that R is a (binary) relation on a set a with dom(R) = a. Then for every $x \in a$, there is a sequence $(x_n)_{n \in \omega}$ such that $x_0 = x$, $x_n \in a$, and $x_n R x_{n+1}$ for all n.

Prove the following statements in ZF.

- (1) The Axiom of Choice AC implies DC.
- (2) Suppose that DC holds and <₀ is a (binary) relation on a set b. Then (b, <₀) is wellfounded if and only if there is no sequence (x_n)_{n∈ω} with x_{n+1} <₀ x_n for all n.

Problem 15 (12 points). Suppose that κ is an infinite cardinal. Determine the cardinality of the following sets.

- (1) The set ${}^{<\omega}\kappa = \bigcup_{n \in \omega} {}^n\kappa$ of tuples in κ .
- (2) The set of finite subsets of κ .
- (3) The set of rational numbers.
- (4) The set of functions $f: \kappa \to \kappa$.
- (5) The set of bijections $f: \kappa \to \kappa$.
- (6) The set of strictly monotone functions $f: \kappa \to \kappa$.

Problem 16 (6 points). Prove the following statements for all ordinals α and all limit ordinals β .

- (1) $\operatorname{cof}(\aleph_{\beta}) = \operatorname{cof}(\beta).$
- (2) $\operatorname{cof}(\alpha +_{Ord} \beta) = \operatorname{cof}(\beta).$
- (3) $\operatorname{cof}(\alpha \cdot_{Ord} \beta = \operatorname{cof}(\beta) \text{ if } \alpha \ge 1.$

Problem 17 (6 points). An infinite cardinal κ is *regular* if $cof(\kappa) = \kappa$ and *singular* if $cof(\kappa) < \kappa$. Prove the following statements.

- (1) If $\kappa > \omega$ is regular, then every continuous strictly monotone function $f \colon \kappa \to \kappa$ has a fixed point.
- (2) The \aleph -function has a fixed point.
- (3) If κ is a regular fixed point of the \aleph -function, then there is a singular fixed point $\mu < \kappa$ of the \aleph -function.

Due Wednesday, November 05, before the lecture.