Set theory -	Winter	Semester	2014	

Problems	Dr. Philipp Schlicht
Series 3	Dr. Philipp Lücke

Problem 10 (3 points). Prove in ZF^- that $a \times b = \{(x, y) \mid x \in a \land y \in b\}$ is a set, for all sets a, b.

Problem 11 (3 points). Prove the following transfinite induction principle: Let $\varphi(x) = \varphi(x, v_0, ..., v_{n-1})$ be an \in -formula and $\bar{x} = (x_0, ..., x_{n-1}) \in V$. Assume

- (a) $\varphi(0, \bar{x})$ (the initial case),
- (b) $\forall \alpha \in Ord \ (\varphi(\alpha, \bar{x}) \to \varphi(\alpha + 1, \bar{x}))$ (the successor step),
- (c) $\forall \lambda \in Lim \ (\forall \alpha < \lambda \ \varphi(\alpha, \bar{x}) \to \varphi(\lambda, \bar{x}))$ (the limit step).

Then $\forall \alpha \in Ord \ \varphi(\alpha, \bar{x}).$

Problem 12 (10 points). Prove the following statements.

- (1) If $x \subseteq Card$ is a set, then $sup(x) = \bigcup x$ is a cardinal.
- (2) Every infinite cardinal is a limit ordinal.
- (3) Card is a proper class.
- (4) For every infinite cardinal κ , there is an ordinal α with $\kappa = \aleph_{\alpha}$.

Problem 13 (6 points). Prove that cardinal arithmetic is equal to ordinal arithmetic on ω , i.e. for all $m, n \in \omega$

- (1) $m + n = m +_{ord} n$,
- (2) $m \cdot n = m \cdot_{ord} n$.

Due Wednesday, October 29, before the lecture, in the mailboxes 6 and 7 for your tutorial, on the ground floor of the math department, Endenicher Allee 60.