Problems	Dr. Philipp Schlicht
Series 2	Dr. Philipp Lücke

Set theory -	Winter	Semester	2014
--------------	--------	----------	-------------

Problem 5 (3 points). The axiom system consisting of ZF⁻ together with the Power Set Axiom is called ZF. Show that ZF implies the Collection Scheme defined in Problem 4. (*Hint: Use the Von Neumann hierarchy.*)

Problem 6 (10 points). Prove the following statements for all ordinals α, β, γ .

- (1) $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma).$
- (2) $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma).$
- (3) $\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma).$
- (4) + and \cdot are not commutative on *Ord*.

Problem 7 (6 points).

(1) Show that the function

$$f: V \longrightarrow V; \ x \mapsto x \cup \{x\}$$

is injective.

(2) Show that + and \cdot are commutative on ω .

By Problems 6+7 and the lecture, the structure $\mathbf{N} = (\omega, 0, 1, +, \cdot)$ satisfies the axioms of Peano arithmetic. In particular, the structure \mathbf{N} has the usual properties of the natural numbers.

Problem 8 (4 points). Show that the structure $\mathbf{Q} = (\mathbb{Q}, 0, 1, +, \cdot)$ (as defined in the lecture) is a field of characteristic 0 with no proper subfield. You can assume that + and \cdot are associative, commutative and distributive.

Problem 9 (3 points). Show that for all $x \in V$, rank $(x) = \alpha$ if and only if α is least with $x \in V_{\alpha+1}$.

Due Wednesday, October 22, before the lecture, in the mailboxes 6 and 7 for your tutorial, on the ground floor of the math department, Endenicher Allee 60.