Mathematische Logik - Sommersemester 2014

Übungsaufgaben Prof. Dr. Peter Koepke Serie 2 Dr. Philipp Schlicht

Gegeben sei eine erststufige Sprache S und eine S-Struktur \mathfrak{A} . Eine $Erweiterung\ von\ \mathfrak{A}$ durch $Belegung\ von\ Variablen$ ist ein S-Modell \mathfrak{M} mit $\mathfrak{M} \upharpoonright (\{\forall\} \cup S) = \mathfrak{A}$.

Aufgabe 5 (6 Punkte). Es sei $S_{Ar} = \{+,\cdot,0,1\}$ die Sprache der Arithmetik und \mathfrak{M} eine Erweiterung der Standardstruktur der natürlichen Zahlen durch Belegung von Variablen (d.h. \mathfrak{M} ist ein S_{Ar} -Modell mit $\mathfrak{M}(\forall) = \mathbb{N}$, $\mathfrak{M}(+) = +_{\mathbb{N}}$, $\mathfrak{M}(\cdot) = \cdot_{\mathbb{N}}$, $\mathfrak{M}(0) = 0_{\mathbb{N}}$ und $\mathfrak{M}(1) = 1_{\mathbb{N}}$). Wir betrachten die folgenden Aussagen.

- (1) $,,\mathfrak{M}(v_0) > \mathfrak{M}(v_1)$ ".
- (2) $,\mathfrak{M}(v_0)$ teilt $\mathfrak{M}(v_1)$ ".
- (3) $,\mathfrak{M}(v_0), \mathfrak{M}(v_1)$ und $\mathfrak{M}(v_2)$ sind paarweise teilerfremd".
- (4) " $\mathfrak{M}(v_0)$ ist eine Primzahl".
- (5) $,\mathfrak{M}(v_0)$ ist ein Gegenbeispiel zur Goldbach-Vermutung".
- (6) "Es gibt unendlich viele Primzahlzwillinge".

Formalisieren Sie diese Aussagen durch S_{Ar} -Formeln, i.e. geben Sie S_{Ar} -Formeln $\varphi_1, \ldots, \varphi_6$ an, so dass " $\mathfrak{M}(\varphi_i) = 1$ " der Aussage (i) entspricht.

Gegeben seien S-Strukturen $\mathfrak A$ und $\mathfrak B$. Wir sagen, dass $\mathfrak A$ eine S-Substruktur von $\mathfrak B$ ist, falls die folgenden Aussagen gelten.

- (1) $\mathfrak{A}(\forall) \subseteq \mathfrak{B}(\forall)$.
- (2) $\mathfrak{A}(f) = \mathfrak{B}(f) \upharpoonright \mathfrak{A}(\forall)^n$ für jedes *n*-stellige Funktionssymbol f in S.
- (3) $\mathfrak{A}(R) = \mathfrak{B}(R) \cap \mathfrak{A}(\forall)^n$ für jedes *n*-stellige Relationssymbol *R* in *S*.

Im Folgenden sei $\mathfrak A$ eine S-Substruktur von $\mathfrak B$. Ist $\mathfrak M$ eine Erweiterung von $\mathfrak A$ durch Belegung von Variablen, so bezeichnet $\mathfrak M^{\mathfrak B}$ die Funktion $F:\{\forall\}\cup S\cup Var\longrightarrow V$ mit $F\upharpoonright (\{\forall\}\cup S)=\mathfrak B$ und $F\upharpoonright Var=\mathfrak M\upharpoonright Var$.

Aufgabe 6 (4 Punkte). Zeigen Sie, dass $\mathfrak{M}^{\mathfrak{B}}$ eine Erweiterung von \mathfrak{B} durch Belegung von Variablen ist und $\mathfrak{M}(t) = \mathfrak{M}^{\mathfrak{B}}(t)$ für jeden S-Term t gilt.

Wir sagen, dass eine S-Formel φ absolut zwischen $\mathfrak A$ und $\mathfrak B$ ist, falls $\mathfrak M(\varphi)=\mathfrak M^{\mathfrak B}(\varphi)$ für jede Erweiterung $\mathfrak M$ von $\mathfrak A$ durch Belegung von Variablen gilt.

Aufgabe 7. Beweisen Sie die folgenden Aussagen.

- (1) (3 Punkte) Die Mengen der zwischen $\mathfrak A$ und $\mathfrak B$ absoluten Formeln ist abgeschlossen unter Negation, Konjunktion und Disjunktion.
- (2) (3 Punkte) Jede quantorenfreie Formel ist absolut zwischen A und B.
- (3) (6 Punkte) Die folgenden Aussagen sind äquivalent.
 - (a) $\mathfrak A$ ist eine elementare Substruktur von $\mathfrak B$ (d.h. jede S-Formel ist absolut zwischen $\mathfrak A$ und $\mathfrak B$).
 - (b) Ist φ eine S-Formel und \mathfrak{M} eine Erweiterung von \mathfrak{A} durch Belegung von Variablen, so impliziert $\mathfrak{M}^{\mathfrak{B}}(\exists x\varphi)=1$ bereits $\mathfrak{M}(\exists x\varphi)=1$.

Abgabe: Montag, den 28. April 2014, vor der Vorlesung.