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1 Introduction

Mathematics models real world phenomena like space, time, number, probability, games, etc. It
proceeds from initial assumptions to conclusions by rigorous arguments. Its results are “uni-
versal” and “logically valid”, in that they do not depend on external or implicit conditions which
may change with time, nature or society.

It is remarkable that mathematics is also able to model itself : mathematical logic defines rig-
orously what mathematical statements and rigorous arguments are. The mathematical enquiry
into the mathematical method leads to deep insights into mathematics, applications to classical
field of mathematics, and to new mathematical theories. The study of mathematical language
has also influenced the theory of formal and natural languages in computer science, linguistics
and philosophy.

1.1 A simple proof

We want to indicate that rigorous mathematical proofs can be generated by applying simple
text manipulations to mathematical statements. Let us consider a fragment of the elementary
theory of functions which expresses that the composition of two surjective maps is surjective as
well:

Let f and g be surjective, i.e., for all y there is x such that y = f(x), and for all y
there is x such that y= g(x).
Theorem . g ◦ f is surjective, i.e., for all y there is x such that y= g(f(x)).
Proof . Consider any y. Choose z such that y= g(z). Choose x such that z = f(x).
Then y = g(f(x)). Thus there is x such that y = g(f(x)). Thus for all y there is x
such that y= g(f(x)).
Qed .

These statements and arguments are expressed in an austere and systematic language, which
can be normalized further. Logical symbols like ∀ and ∃ abbreviate figures of language like “for
all” or “there exists”:

Let ∀y∃x y= f(x).
Let ∀y∃x y= g(x).
Theorem. ∀y∃x y= g(f(x)).
Proof. Consider y.
∃x y= g(x).
Let y= g(z).
∃x z= f(x).
Let z= f(x).
y= g(f(x)).
Thus ∃x y= g(f(x)).
Thus ∃x y= g(f(x)).
Thus ∀y∃x y= g(f(x)).
Qed.

These lines can be considered as formal sequences of symbols. Certain sequences of symbols
are acceptable as mathematical formulas. There are rules for the formation of formulas which
are acceptable in a proof. These rules have a purely formal character and they can be applied
irrespectively of the “meaning” of the symbols and formulas.
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1.2 Formal proofs

In the example, ∃x y = g(f(x)) is inferred from y = g(f(x)). The rule of existential quantifica-
tion: “put ∃x in front of a formula” can usually be applied. It has the character of a left-multi-
plication by ∃x.

∃x , ϕ ∃xϕ.

Logical rules satisfy certain algebraic laws like associativity. Another interesting operation is
substitution: From y= g(z) and z= f(x) infer y= g(f(x)) by a “find-and-replace”-substitution of
z by f(x).

Given a sufficient collection of rules, the above sequence of formulas, involving “keywords”
like “let” and “thus” is a deduction or derivation in which every line is generated from earlier
ones by syntactical rules. Mathematical results may be provable simply by the application of
formal rules. In analogy with the formal rules of the infinitesimal calculus one calls a system of
rules a calculus .

1.3 Syntax and semantics

Obviously we do not just want to describe a formal derivation as a kind of domino but we want
to interpret the occuring symbols as mathematical objects. Thus we let variables x, y, range
over some domain like the real numbers R and let f and g stand for functions F , G: R → R .
Observe that the symbol or “name” f is not identical to the function F , and indeed f might also
be interpretated as another function F ′. To emphasize the distinction between names and
objects, we classify symbols, formulas and derivations as syntax whereas the interpretations of
symbols belong to the realm of semantics .

By interpreting x, y, and f , g, in a structure like (R, F , G) we can define straightfor-
wardly whether a formula like ∃x g(f(x)) is satisfied in the structure. A formula is logically
valid if it is satisfied under all interpretations. The fundamental theorem of mathematical logic
and the central result of this course is Gödel’s completeness theorem:

Theorem. There is a calculus with finitely many rules such that a formula is derivable in the
calculus iff it is logically valid.

1.4 Set theory

In modern mathematics notions can usually be reduced to set theory: non-negative integers cor-
respond to cardinalities of finite sets, integers can be obtained via pairs of non-negative integers,
rational numbers via pairs of integers, and real numbers via subsets of the rationals, etc. Geo-
metric notions can be defined from real numbers using analytic geometry: a point is a pair of
real numbers, a line is a set of points, etc. It is remarkable that the basic set theoretical axioms
can be formulated in the logical language indicated above. So mathematics may be understood
abstractly as

Mathematics = (first-order) logic + set theory.

Note that we only propose this as a reasonable abstract viewpoint corresponding to the log-
ical analysis of mathematics. This perspective leaves out many important aspects like the appli-
cability, intuitiveness and beauty of mathematics.

1.5 Circularity

We shall use sets as symbols which can then be used to formulate the axioms of set theory. We
shall prove theorems about proofs. This kind of circularity seems to be unavoidable in compre-
hensive foundational science: linguistics has to talk about language, brain research has to be car-
ried out by brains. Circularity can lead to paradoxes like the liar’s paradox: “I am a liar”,
or “this sentence is false”. Circularity poses many problems and seems to undermine the value of
foundational theories. We suggest that the reader takes a naive standpoint in these matters:
there are sets and proofs which are just as obvious as natural numbers. Then theories are
formed which abstractly describe the naive objects.
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A closer analysis of circularity in logic leads to the famous incompleteness theorems of
Gödel’s:

Theorem. Formal theories which are strong enough to “formalize themselves” are not complete,
i.e., there are statements such that neither it nor its negation can be proved in that theory.
Moreover such theories cannot prove their own consistency.

It is no surprise that these results, besides their initial mathematical meaning had a tremen-
dous impact on the theory of knowledge outside mathematics, e.g., in philosophy, psychology,
linguistics.

2 Set theoretic preliminaries

To model the mathematical method, we have to formalize mathematical language and general
structures by mathematical objects. The most basic mathematical objects seem to be sets . We
briefly present some facts from set theory which are used in the sequel.

In line with our introductory remarks on circularity we initially treat set theory naively , i.e.,
we view sets and set theoretic operations as concrete mental constructs. We shall later introduce
a powerful axiom system for sets. From an axiomatic standpoint most of our arguments can be
carried out under weak set theoretical hypotheses. In particular it will not be necessary to use
sets of high cardinality.

The theory of finite sets is based on the empty set ∅= {} and operations like

x {x}; x, y {x, y}; x, y x∪ y; x, y x∩ y;x, y x \ y .

The operation x, y {{x}, {x, y}} defines the ordered pair of x and y. Its crucial property is
that

{{x}, {x, y}}= {{x′}, {x′, y ′}} if and only if x= x′ and y= y ′.

The ordered pair {{x}, {x, y}} is denoted by (x, y). Ordered pairs allow to formalize (binary)
relations and functions:

− a relation is a set R of ordered pairs;

− a function is a relation f such that for all x, y, y ′ holds: if (x, y) ∈ f and (x, y ′) ∈ f then
y= y ′. Then f(x) denotes the unique y such that (x, y)∈ f .

We assume standard notions and notations from relation theory, see also Definition 2 below. For
binary relations R we can use the infix notation aRb instead of (a, b)∈R .

If a function maps the elements of a set a into a set b we write

f : a→ b.

In case we do not want to specify the target set b, we can also write f : a→ V where V is under-
stood to be the universe of all sets. We assume the usual notions of function theory like injec-
tive, surjective, bijective, etc.

It is natural to formalize the integer n by some set with n elements. We shall later see that
the following formalization can be carried out uniformly in set theory:

0 = ∅

1 = {0}

2 = {0, 1}

n+1 = {0, 1, , n} = {0, 1, , n− 1}∪ {n} =n∪ {n}

N=ω = {0, 1, }

These integers satisfy the usual laws of complete induction and recursion.

Set theoretic preliminaries 3



A finite sequence is a function w: n→ V for some integer n ∈N which is the length of w. We
write wi instead of w(i), and the sequence w may also be denoted by w0 wn−1 . Note that the
empty set ∅ is the unique finite sequence of length 0.

For finite sequences w = w0 wm−1 and w ′ = w0
′ wn−1

′ let wˆw ′ = w0 wm−1w0
′ wn−1

′ be
the concatenation of w and w ′. wˆw ′:m+n→V can be defined by

wˆw ′(i) =

{

w(i), if i <m ;
w ′(i−m), if i!m.

We also write ww ′ for wˆw ′. This operation is a monoid satisfying some cancellation rules:

Proposition 1. Let w,w ′, w ′′ be finite sequences. Then

a) (wˆw ′)ˆw ′′=wˆ(w ′ ˆw ′′).

b) ∅ˆw=wˆ∅=w .

c) wˆw ′=wˆw ′′→w ′=w ′′.

d) w ′ ˆw=w ′′ ˆw→w ′=w ′′.

Proof. We only check the associative law a). Let n, n′, n′′ ∈ N such that w = w0 wn−1 , w ′ =
w0

′ wn′−1
′ , w ′′=w0

′′ wn′′−1
′′ . Then

(wˆw ′)ˆw ′′ = (w0 wn−1w0
′ wn′−1

′ )ˆw0
′′ wn′′−1

′′

= w0 wn−1w0
′ wn′−1

′ w0
′′ wn′′−1

′′

= w0 wn−1ˆ(w0
′ wn′−1

′ w0
′′ wn′′−1

′′ )

= w0 wn−1ˆ(w0
′ wn′−1

′ ˆw0
′′ wn′′−1

′′ )

= wˆ(w ′ ˆw ′′).

The trouble with this argument is the intuitive but vague use of the ellipses “ ”. In mathemat-
ical logic we have to ultimately eliminate such vaguenesses. So we show that for all i < n+ n′ +
n′′

((wˆw ′)ˆw ′′)(i)= (wˆ(w ′ ˆw ′′))(i).

Case 1 : i <n . Then

((wˆw ′)ˆw ′′)(i) = (wˆw ′)(i)

= w(i)

= (wˆ(w ′ ˆw ′′))(i).

Case 2 : n" i < n+n′. Then

((wˆw ′)ˆw ′′)(i) = (wˆw ′)(i)

= w ′(i−n)

= (w ′ˆw ′′)(i−n)

= (wˆ(w ′ ˆw ′′))(i).

Case 3 : n+n′" i < n+n′+n′′. Then

((wˆw ′)ˆw ′′)(i) = w ′′(i− (n+n′))

= w ′ˆw ′′(i− (n+n′)+n′) =w ′ˆw ′′(i−n)

= (wˆ(w ′ ˆw ′′))(i−n+n)

= (wˆ(w ′ ˆw ′′))(i).

#

A set x is finite, if there is an integer n ∈ N and a surjective function f : n → x. The smallest
such n is called the cardinality of the finite set x and denoted by n = card(x). The usual cardi-
nality properties for finite sets follow from properties of finite sequences.
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A set x is denumerable or countable if there is a surjective function f : N → x. If the set is
not finite, it is countably infinite. Its cardinality is ω, written as ω = card(x). Under sufficient
set theoretical assumptions, the union

⋃

n∈ω

xn

where each xn is countable is again countable.
If a set x is not countable, it is uncountable. Within set theory one can develop an efficient

notion of cardinality for uncountable sets.
The theory of infinite sets usually requires the axiom of choice which is equivalent to Zorn’s

lemma.

Definition 2. Let A be a set and " be a binary relation. Define

a) (A,") is transitive if for all a, b, c∈A

a" b and b" c implies a" c.

b) (A,") is reflexive if for all a∈A holds a" a .

c) (A,") is a partial order if (A,") is transitive and reflexive and A ∅ .

So let (A,") is be a partial order.

a) z ∈A is a maximal element of A if there is no a∈A with z" a and z a .

b) If X ⊆A then u is an upper bound for X if for all x∈X holds x" u .

c) I ⊆A is linear if for all a, b∈ I

a" b or b" a.

d) (A,") is inductive if every linear subset of A has an upper bound.

Zorn’s lemma states

Theorem 3. Every inductive partial order has a maximal element.

3 Symbols and words

Intuitively and also in our theory a word is a finite sequence of symbols. A symbol has some
basic information about its role within words. E.g., the symbol " is usually used to stand for a
binary relation. So we let symbols include such type information. We provide us with a suffi-
cient collection of symbols.

Definition 4. The basic symbols of first-order logic are

a) ≡ for equality,

b) ¬,→,⊥ for the logical operations of negation, implication and the truth value false,

c) ∀ for universal quantification,

d) ( and ) for auxiliary bracketing.

e) variables vn for n∈N.

Let Var= {vn|n∈N} be the set of variables and let S0 be the set of basic symbols.
An n-ary relation symbol, for n ∈ N, is (a set) of the form R = (x, 0, n); here 0 indicates

that the values of a relation will be truth values. 0-ary relation symbols are also called proposi-
tional constant symbols. An n-ary function symbol, for n ∈N, is (a set) of the form f = (x, 1,
n) where 1 indicates that the values of a function will be elements of a structure. 0-ary function
symbols are also called constant symbols.

A symbol set or a language is a set of relation symbols and function symbols.
We assume that the basic symbols are pairwise distinct and are distinct from any relation or

function symbol. For concreteness one could for example set ≡=0, ¬=1, →=2, ⊥ = 3, (=4, ) =
5, and vn=(1, n) for n∈N.
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An n-ary relation symbol is intended to denote an n-ary relation; an n-ary function symbol
is intended to denote an n-ary function. A symbol set is sometimes called a type because it
describes the type of structures which will later interpret the symbols. We shall denote variables
by letters like x, y, z, , relation symbols by P , Q, R, , functions symbols by f , g, h, and
constant symbols by c, c0, c1, We shall also use other typographical symbols in line with stan-
dard mathematical practice. A symbol like <, e.g., usually denotes a binary relation, and we
could assume for definiteness that there is some fixed set theoretic formalization of < like <=
(999, 0, 2). Instead of the arbitrary 999 one could also take the number of < in some typograph-
ical font.

Example 5. The language of group theory is the language

SGr= {◦, e},

where ◦ is a binary (= 2-ary) function symbol and e is a constant symbol. Again one could be
definite about the coding of symbols and set SGr = {(80, 1, 2), (87, 1, 0)}, e.g., but we shall not
care much about such details. As usual in algebra, one also uses an extended language of group
theory

SGr= {◦,−1, e}

to describe groups, where −1 is a unary (= 1-ary) function symbol.

Definition 6. Let S be a language. A word over S is a finite sequence

w:n→S0∪S .

Let S∗ be the set of all words over S. The empty set ∅ is also called the empty word.

Let S be a symbol set. We want to formalize how a word like ∃x y = g(f(x)) can be pro-
duced from a word like y= g(f(x)).

Definition 7. A relation R ⊆ (S∗)n × S∗ is called a rule (over S). A calculus (over S) is a set
C of rules (over S).

We work with rules which produce words out of given words. A rule

{(arguments, production)| }

is usually written as a production rule of the form

arguments
production

or
preconditions
conclusion

.

For the existential quantification mentioned in the introduction we may for example write

ϕ

∃xϕ

where the production is the concatenation of ∃x and ϕ.

Definition 8. Let C be a calculus over S . Let R⊆ (S∗)n×S∗ be a rule of C. For X ⊆S∗ set

R[X ] = {w ∈S∗ | there are words u0, , un−1∈X such that R(u0, , un−1, w) holds }.

Then the product of C is the smallest subset of S∗ closed under the rules of C:

Prod(C)=
⋂

{X ⊆S∗ | for all rules R∈ C holds R[X]⊆X}.

The product of a calculus can also be described “from below” by:

Definition 9. Let C be a calculus over S . A sequence w(0), , w(k−1) ∈ S∗ is called a derivation
in C if for every l < k there exists a rule R∈ C, R⊆ (S∗)n×S∗ and l0, , ln−1< l such that

R(w(l0), , w(ln−1), w(l)).
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This means that every word of the derivation can be derived from earlier words of the derivation
by application of one of the rules of the calculus. We shall later define a calculus such that the
sequence of sentences

Let ∀y∃x y= f(x).
Let ∀y∃x y= g(x).
Consider y.
∃x y= g(x).
Let y= g(z).
∃x z= f(x).
Let z= f(x).
y= g(f(x)).
Thus ∃x y= g(f(x)).
Thus ∃x y= g(f(x)).
Thus ∀y∃x y= g(f(x)).
Qed.

is basically a derivation in that calculus.
Everything in the product of a calculus can be obtained by a derivation.

Proposition 10. Let C be a calculus over S. Then

Prod(C)= {w |there is a derivation w(0), , w(k−1)=w in C}.

Proof. The equality of sets can be proved by two inclusions.
(⊆) The set

X = {w |there is a derivation w(0), , w(k−1)=w in C}

satisfies the closure property R[X] ⊆ X for all rules R ∈ C. Since Prod(C) is the intersection of
all such sets, Prod(C)⊆X.
(⊇) Consider w ∈ X. Consider a derivation w(0), , w(k−1) = w in C. We show by induction on
l < k that w(l)∈Prod(C). Let l < k and assume that for all i < l holds w(i)∈Prod(C). Take a rule
R ∈ C, R ⊆ (A∗)n × A∗ and l0, , ln−1 < l such that R(w(l0), , w(ln−1), w(l)). Since Prod(C) is

closed under application of R we get w(l)∈Prod(C). Thus w=w(k−1)∈Prod(C). #

Exercise 1. (Natural numbers 1) Consider the symbol set S = { | }. The set S∗ = {∅, | , || , ||| , } of words
may be identified with the set N of natural numbers. Formulate a calculus C such that Prod(C)=S∗.

4 Induction and recursion on calculi

Derivations in a calculus have finite length so that one can carry out inductions and recursions
along the lengths of derivations. We formulate appropriate induction and recursion theorems
which generalize complete induction and recursion for natural numbers. Note the recursion is
linked to induction but requires stronger hypothesis.

Theorem 11. (Induction Theorem) Let C be a calculus over S and let ϕ(−) be a property which
is inherited along the rules of C :

∀R∈ C , R⊆ (S∗)k ×S∗ ∀w(1), , w(k), w ∈S∗, R(w(1), , w(k), w) (ϕ(w(1))∧ ∧ ϕ(w(k))→ ϕ(w)).

Then

∀w ∈Prod(C) ϕ(w).

Proof. By assumption, {w ∈ S∗|ϕ(w)} is closed under the rules of C. Since Prod(C) is the inter-
section of all sets which are closed under C,

Prod(C)⊆ {w ∈S∗|ϕ(w)}. #
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Definition 12. A calculus C over S is uniquely readable if for every w ∈ Prod(C) there are a
unique rule R∈ C , R⊆ (S∗)k ×S∗ and unique w(1), , w(k)∈S∗ such that

R(w(1), , w(k), w).

Theorem 13. (Recursion Theorem) Let C be a calculus over S which is uniquely readable and
let (GR|R ∈ C) be a sequence of recursion rules, i.e., for R ∈ C , R ⊆ (S∗)k × S∗ let GR: V k → V
where V is the universe of all sets. Then there is a uniquely determined function F : Prod(C)→ V

such that the following recursion equation is satisfied for all R ∈ C , R ⊆ (S∗)k × S∗ and w(1), ,

w(k), w ∈Prod(C), R(w(1), , w(k), w):

F (w)=GR(F (w(1)), , F (w(k))).

We say that F is defined by recursion along C by the recursion rules (GR|R∈ C).

Proof. We define F (w) by complete recursion on the length of the shortest derivation of w in
C. Assume that F (u) is already uniquely defined for all u ∈ Prod(C) with shorter derivation
length. Let w have shortest derivation w(0), , w(l−1). By the unique readability of C there are

R∈ C, R⊆ (S∗)k×S∗ and w(i0), , w(ik−1) with i0, , ik−1< l− 1 such that

R(w(i0), , w(ik−1), w).

Then we can uniquely define

F (w)=GR(F (w(i0)), , F (w(ik−1))). #

Remark 14. The previous Theorem states the existence of a function F as a set of ordered
pairs, but the proof argues that F can be defined (by some intuitive “procedure”). To complete
the argument one would have to use the recursion theorem from set theory which says that defi-
nitions of a certain kind correspond to certain functions in the set theoretic universe.

5 Terms and formulas

Fix a symbol set S for the remainder of this section. We generate the terms and formulas of the
corresponding language LS by calculi.

Definition 15. The term calculus (for S) consists of the following rules:

a)
x

for all variables x;

b)
c

for all constant symbols c∈S;

c)
t0 t1 tn−1

ft0 tn−1

for all n-ary function symbols f ∈S .

Let TS be the product of the term calculus. TS is the set of all S-terms.

Definition 16. The formula calculus (for S) consists of the following rules:

a)
⊥

produces falsity;

b)
t0≡ t1

for all S-terms t0, t1∈ TS produces equations;

c)
Rt0 tn−1

for all n-ary relation symbols R ∈ S and all S-terms t0, , tn−1 ∈ TS produces

relational formulas;

d)
ϕ

¬ϕ
produces negations of formulas;

e)
ϕ ψ

(ϕ→ ψ)
produces implications;

f )
ϕ

∀xϕ
for all variables x produces universalizations.
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Let LS be the product of the formula calculus. LS is the set of all S-formulas, and it is also
called the first-order language for the symbol set S. Formulas produced by rules a-c) are called
atomic formulas since they constitute the initial steps of the formula calculus.

Example 17. S-terms and S-formulas formalize the naive concept of a “mathematical formula”.
The standard axioms of group theory can be written as in the extended language of group
theory as SGr′-formulas:

a) ∀v0 ∀v1 ∀v2 ◦v0 ◦ v1v2≡◦◦v0v1v2 ;

b) ∀v0 ◦v0 e≡ v0 ;

c) ∀v0 ◦v0 −1v0≡ e .

Note that in c) the −1-operator is “applied” to the variable v0 . The term calculus uses the
bracket-free polish notation which writes operators before the arguments (prefix operators). In
line with standard notations one also writes operators in infix and postfix notation, using
bracket, to formulate, e.g., associativity:

∀v0 ∀v1 ∀v2 v0 ◦ (v1 ◦ v2)≡ (v0 ◦ v1) ◦ v2 .

Since the particular choice of variables should in general be irrelevant they may be denoted by
letters x, y, z, instead. Thus the group axioms read:

a) ∀x∀y∀z x ◦ (y ◦ z)≡ (x ◦ y) ◦ z ;

b) ∀x x ◦ e≡x ;

c) ∀x x ◦ x−1≡ e .

Let ΦGr′ = {∀x∀y∀z x ◦ (y ◦ z)≡ (x ◦ y) ◦ z, ∀x x ◦ e≡ x, ∀x x ◦ x−1 ≡ e} be the axioms of group
theory in the extended language.

To work with terms and formulas, it is crucial that the term and formula calculi are uniquely
readable. We leave the proof of these facts as exercises.

Although the language introduced will be theoretically sufficient for all mathematical pur-
poses it is often convenient to further extend its expressiveness. We view some additional lan-
guage constructs as abbreviations for formulas in LS.

Definition 18. For S-formulas ϕ and ψ and a variable x write

− 0 (“true”) instead of ¬⊥ ;

− (ϕ∨ ψ) (“ϕ or ψ”) instead of (¬ϕ→ ψ) is the disjunction of ϕ, ψ ;

− (ϕ∧ ψ) (“ϕ and ψ”) instead of ¬(ϕ→¬ψ) is the conjunction of ϕ, ψ ;

− (ϕ↔ ψ) (“ϕ iff ψ”) instead of ((ϕ→ ψ)∧ (ψ→ ϕ) )is the equivalence of ϕ, ψ ;

− ∃xϕ (“for all x holds ϕ”) instead of ¬∀x¬ϕ .

For the sake of simplicity one often omits redundant brackets, in particular outer brackets. So
we usually write ϕ∨ ψ instead of (ϕ∨ ψ).

6 Structures and models

We shall interpret formulas like ∀y∃x y = g(f(x)) in adequate structures . This interaction
between language and structures is usually called semantics . Fix a symbol set S.

Definition 19. An S-structure is a function A: {∀}∪S→ V such that

a) A(∀) ∅; A(∀) is the underlying set of A and is usually denoted by A or |A|;

b) for every n-ary relation symbol R∈S, A(R) is an n-ary relation on A, i.e., a(r)⊆An;

c) for every n-ary function symbol f ∈ S, A(f) is an n-ary function on A, i.e., a(r): An →
A.
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Again we use customary or convenient notations for the components of the structure A, i.e., the
values of A . One often writes RA, fA, or cA instead of A(r), A(f), or A(c) resp. In simple cases,
one may simply list the components of the structure and write, e.g.,

A=(A,R0
A, R1

A, fA)

or “A has domain A with relations R0
A, R1

A and an operation fA ”.
One also uses the same notation for a structure and its underlying set like in

A=(A,R0
A, R1

A, fA).

This “overloading” of one notation is quite common in mathematics (and in natural language).
There are methods of “disambiguating” the ambiguities introduced by multiple usage. Another
common overloading is given by a naive identification of syntax and semantics, i.e., by writing

A=(A,R0, R1, f).

Since we are particularly interested in the interplay of syntax and semantics we shall try to
avoid this kind of overloading.

Example 20. Formalize the ordered field of reals R as follows. Define the language of ordered
fields

SoF= {<,+, ·, 0, 1}.

Then define the structure R: {∀}∪SoF→V by

R(∀) = R

R(<)=<R = {(u, v)∈R2 |u< v}

R(+)=+R = {(u, v, w)∈R3 |u+ v=w}

R(·) = ·R = {(u, v, w)∈R3 |u · v=w}

R(0)= 0R = 0∈R

R(1)= 1R = a∈R

This defines the standard structure R=(R, <R,+R, ·R, 0R, 1R).
Observe that the symbols could in principle be interpreted in completely different, counterin-

tuitive ways like

R′(∀) = N

R′(<) = {(u, v)∈N2 |u>v}

R′(+) = {(u, v, w)∈N3 |u · v=w}

R′(·) = {(u, v, w)∈N3 |u+ v=w}

R′(0) = 1

R′(1) = 0

Example 21. Define the language of Boolean algebras by

SBA= {∧,∨,−, 0, 1}

where ∧ and ∨ are binary function symbols for “and” and “or”, − is a unary function symbol
for “not”, and 0 and 1 are constant symbols. A Boolean algebra of particular importance in logic
is the algebra B of truth values . Let B = |B| = {0, 1} with 0 = B(0) and 1 = B(1). Define the
operations and = B(∧), or = B(∨), and not = B(−) by operation tables in analogy to standard
multiplication tables:

and 0 1
0 0 0
1 0 1

,
or 0 1
0 0 1
1 1 1

, and
not
0 1
1 0

.

Note that we use the non-exclusive “or” instead of the exclusive “either - or”.

10 Section 6



The notion of structure leads to some related definitions.

Definition 22. Let A be an S-structure and A′ be an S ′-structure. Then A is a reduct of A′,
or A′ is an expansion of A, if S ⊆S ′ and A′ $ ({∀}∪S)=A .

According to this definition, the additive group (R, +, 0) of reals is a reduct of the field (R,
+, ·, 0, 1).

Definition 23. Let A, B be S-structures. Then A is a substructure of B, A ⊆ B, if B is a
pointwise extension of A, i.e.,

a) A= |A|⊆ |B|;

b) for every n-ary relation symbol R∈S holds RA=RB∩An;

c) for every n-ary function symbol f ∈S holds fA= fB $An.

Definition 24. Let A,B be S-structures and h: |A|→ |B|. Then h is a homomorphism from A

into B, h:A→B, if

a) for every n-ary relation symbol R∈S and for every a0, , an−1∈A

RA(a0, , an−1) implies RB(h(a0), , h(an−1));

b) for every n-ary function symbol f ∈S and for every a0, , an−1∈A

fB(h(a0), , h(an−1))= h(fA(a0, , an−1)).

h is an embedding of A into B, h:A B, if moreover

a) h is injective;

b) for every n-ary relation symbol R∈S and for every a0, , an−1∈A

RA(a0, , an−1) iff RB(h(a0), , h(an−1)).

If h is also bijective, it is called an isomorphism.

An S-structure interprets the symbols in S. To interpret a formula in a structure one also
has to interpret the (occuring) variables.

Definition 25. Let S be a symbol set. An S-model is a function

M: {∀}∪S ∪Var→V

such that M $ {∀}∪S is an S-structure and for all n∈N holds M(vn)∈ |M|. M(vn) is the inter-
pretation of the variable vn in M.

It will sometimes be important to modify a model M at specific variables. For pairwise dis-
tinct variables x0, , xr−1 and a0, , ar−1∈ |M| define

M
a0 ar−1

x0 xr−1
=(M \ {(x0,A(x0)), , (xr−1,A(xr−1))})∪ {(x0, a0), , (xr−1, ar−1)}.

7 The satisfaction relation

We now define the semantics of the first-order language by interpreting terms and formulas in
models.

Definition 26. Let M be an S-model. Define the interpretation M(t)∈ |M| of a term t ∈ TS by
recursion on the term calculus:

a) for t a variable, M(t) is already defined;
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b) for an n-ary function symbol and terms t0, , tn−1∈TS, let

M(ft0 .tn−1)= fA(M(t0), ,M(tn−1)).

This explains the interpretation of a term like v3
2+ v200

3 in the reals.

Definition 27. Let M be an S-model. Define the interpretation M(ϕ)∈B of a formula ϕ ∈LS,
where B= {0, 1} is the Boolean algebra of truth values, by recursion on the formula calculus:

a) M(⊥)= 0 ;

b) for terms t0, t1∈T S: M(t0≡ t1)= 1 iff M(t0)=M(t1);

c) for every n-ary relation symbol R∈S and terms t0, , t1∈TS

M(Rt0 tn−1) =1 iff RM(M(t0), ,M(tn−1));

d) M(¬ϕ)= 1 iff M(ϕ)= 0 ;

e) M(ϕ→ ψ) =1 iff M(ϕ) =1 implies M(ψ)= 1;

f ) M(∀vnϕ) =1 iff for all a∈ |M| holds M
a

vn
(ϕ)= 1.

We write M % ϕ instead of M(ϕ) = 1. We also say that M satisfies ϕ or that ϕ holds in M.
For Φ⊆LS write M%Φ iff M% ϕ for every ϕ∈Φ.

Definition 28. Let S be a language and Φ ⊆ LS. Φ is universally valid if Φ holds in every S-
model. Φ is satisfiable if there is an S-model M such that M%Φ.

The language extensions by the symbols ∨, ∧,↔, ∃ is consistent with the expected meanings
of the additional symbols:

Exercise 2. Prove:

a) M!(ϕ∨ ψ) iff M!ϕ or M! ψ;

b) M! (ϕ∨ ψ) iff M! ϕ and M! ψ;

c) M!(ϕ↔ ψ) iff M!ϕ is equivalent to M! ψ;

d) M! ∃vnϕ iff there exists a∈ |M| such that M
a

vn

! ϕ.

With the notion of % we can now formally define what it means for a structure to be a group or
for a function to be differentiable. Before considering examples we make some auxiliary defini-
tions and simplifications.

It is intuitively obvious that the interpretation of a term only depends on the occuring vari-
ables, and that satisfaction for a formula only depends on its free, non-bound variables.

Definition 29. For t∈T S define var(t)⊆ {vn|n∈N} by recursion on the term calculus:

− var(x)= {x};

− var(c) = ∅;

− var(ft0 tn−1)=
⋃

i<n
var(ti).

Definition 30. Für ϕ ∈LS define the set of free variables free(ϕ)⊆ {vn|n ∈N} by recursion on
the formula calculus:

− free(t0≡ t1)= var(t0)∪ var(t1);

− free(Rt0 tn−1)= var( t0)∪ ∪ var(tn−1);

− free(¬ϕ)= free(ϕ);

− free(ϕ→ ψ)= free(ϕ)∪ free(ψ).

− free(∀xϕ)= free(ϕ) \ {x}.

For Φ⊆LS define the set free(Φ) of free variables as

free(Φ)=
⋃

ϕ∈Φ

free(ϕ) .
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Example 31.

free(Ryx→∀y¬y= z) = free(Ryx)∪ free(∀y¬y= z)

= free(Ryx)∪ (free(¬y= z) \ {y})

= free(Ryx)∪ (free( y= z) \ {y})

= {y, x}∪ ({y, z} \ {y})

= {y, x}∪ {z}

= {x, y, z}.

Definition 32.

a) For n∈N let Ln
S= {ϕ∈LS | free(ϕ)⊆ {v0, , vn−1}}.

b) ϕ∈LS is an S-sentence if free(ϕ) = ∅; L0
S is the set of S-sentences.

Theorem 33. Let t be an S-term and let M and M′ be S-models with the same structure M $

{∀}∪S=M′ $ {∀}∪S and M $ var(t)=M′ $ var(t). Then M(t) =M′(t).

Theorem 34. Let t be an S-term and let M and M′ be S-models with the same structure M $

{∀}∪S=M′ $ {∀}∪S and M $ free(t)=M′ $ free(t). Then

M% ϕ iff M′% ϕ.

Proof. By induction on the formula calculus.
ϕ= t0≡ t1: Then var(t0)∪ var(t1) = free(ϕ) and

M% ϕ iff M(t0)=M(t1)

iff M′(t0)=M′(t1) by the previous Theorem,

iff M′% ϕ.

ϕ= ψ→ χ and assume the claim to be true for ψ and χ. Then

M% ϕ iff M% ψ implies M% χ

iff M′% ψ implies M′% χ by the inductive assumption,

iff M′% ϕ.

ϕ = ∀vnψ and assume the claim to be true for ψ. Then free(ψ)⊆ free(ϕ) ∪ {vn}. For all a ∈A=
|M|: M a

vn
$ free(ψ) =M′ a

vn

$ free(ψ) and so

M% ϕ iff for all a∈A holds M
a

vn
% ψ

iff for all a∈A holds M′ a

vn
% ψ by the inductive assumption,

iff M′% ϕ.

#

This allows further simplifications in notations for %:

Definition 35. Let A be an S-structure and let (a0, , an−1) be a sequence of elements of A.
Let t be an S-term with var(t)⊆ {v0, , vn−1}. Then define

tA[a0, , an−1] =M(t),

where M⊇A is an S-model with M(v0)= a0 , ,M(vn−1) = an−1.
Let ϕ be an S-formula with free(t)⊆ {v0, , vn−1}. Then define

A% ϕ[a0, , an−1] iff M% ϕ,

where M⊇A is an S-model with M(v0)= a0 , ,M(vn−1) = an−1 .
In case n=0 also write tA instead of tA[a0, , an−1] and A % ϕ instead of A % ϕ[a0, , an−1].

In this case we also say: A is a model of ϕ, A satisfies ϕ or ϕ is true in A.
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For Φ⊆L0
S a set of sentences also write

A%Φ iff for all ϕ∈Φ holds :A% ϕ.

Example 36. Groups . SGr: ={◦, e} with a binary function symbol◦ and a constant symbol e is
the language of groups theory . The group axioms are

a) ∀v0 ∀v1 ∀v2 ◦v0 ◦ v1v2≡◦◦v0v1v2 ;

b) ∀v0 ◦v0 e≡ v0 ;

c) ∀v0∃v1 ◦v0v1≡ e .

This define the axiom set

ΦGr= {∀v0 ∀v1 ∀v2 ◦v0 ◦ v1v2≡◦◦v0v1v2, ∀v0 ◦v0 e≡ v0, ∀v0∃v1 ◦v0v1≡ e}.

An S-structure G=(G, ∗, k) satisfies ΦGr iff it is a group in the ordinary sense.

Definition 37. Let S be a language and let Φ⊆L0
S be a set of S-sentences. Then

ModSΦ= {A |A is an S-structure and A%Φ}

is the model class of Φ. In case Φ= {Φ} we also write ModSϕ instead of ModSΦ. We also say
that Φ is an axiom system for ModSΦ, or that Φ axiomatizes the class ModSΦ .

Thus ModSGrΦGr is the model class of all groups. Model classes are studied in generality
within model theory which is a branch of mathematical logic. For specific Φ the model class
ModSΦ is examined in subfields of mathematics: group theory, ring theory, graph theory, etc.
Some typical questions questions are: Is ModSΦ ∅, i.e., is Φ satisfiable? Can we extend ModSΦ
by adequate morphisms between models?

8 Logical implication and propositional connectives

Definition 38. For a symbol set S and Φ ⊆ LS and ϕ ∈ LS define that Φ (logically) implies ϕ
(Φ% ϕ) iff every S-model I%Φ is also a model of ϕ.

Note that logical implication % is a relation between syntactical entities which is defined
using the semantic notion of interpretation. We show that % satisfies certain syntactical laws.
These laws correspond to the rules of a logical proof calculus.

Theorem 39. Let S be a symbol set, t∈T S, ϕ, ψ ∈LS, and Γ,Φ⊆LS. Then

a) (Monotonicity) If Γ⊆Φ and Γ% ϕ then Φ% ϕ.

b) (Assumption property) If ϕ∈Γ then Γ% ϕ.

c) (→-Introduction) If Γ∪ ϕ% ψ then Γ% ϕ→ ψ.

d) (→-Elimination) If Γ% ϕ and Γ% ϕ→ ψ then Γ% ψ.

e) (⊥-Introduction) If Γ% ϕ and Γ%¬ϕ then Γ%⊥ .

f ) (⊥-Elimination) If Γ∪ {¬ϕ}%⊥ then Γ% ϕ.

g) (≡-Introduction) Γ% t≡ t .

Proof. f) Assume Γ ∪ {¬ϕ} %⊥ . Consider an S-model with M % Γ. Assume that M ! ϕ. Then
M % ¬ϕ . M % Γ ∪ {¬ϕ}, and by assumption, M % ⊥ . But by the definition of the satisfaction
relation, this is false. Thus M% ϕ . Thus Γ% ϕ . #

9 Substitution and quantification rules

To prove further rules for equalities and quantification, we first have to formalize substitution .
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Definition 40. For a term s ∈ TS, pairwise distinct variables x0, , xr−1 and terms t0, ,
tr−1∈TS define the (simultaneous) substitution

s
t0 .tr−1

x0 xr−1
of t0, , tr−1 for x0, , xr−1 by recursion:

a) x
t0 .tr−1

x0 xr−1

=
{

x, if x x0, , x xr−1

ti , if x= xi

for all variables x;

b) c
t0 .tr−1

x0 xr−1

= c for all constant symbols c;

c) (fs0 sn−1)
t0 .tr−1

x0 xr−1

= fs0
t0 .tr−1

x0 xr−1

sn−1
t0 .tr−1

x0 xr−1

for all n-ary function symbols f.

Note that the simultaneous substitution

s
t0 .tr−1

x0 xr−1

is in general different from a succesive substitution

s
t0
x0

t1
x1

tr−1

xr−1

which depends on the order of substitution. E.g., x
yx

xy
= y, x

y

x

x

y
= y

x

y
= x and x

x

y

y

x
= x

y

x
= y.

Definition 41. For a formula ϕ ∈ LS, pairwise distinct variables x0, , xr−1 and terms t0, ,
tr−1∈TS define the (simultaneous) substitution

ϕ
t0 .tr−1

x0 xr−1

of t0, , tr−1 for x0, , xr−1 by recursion:

a) (s0≡ s1)
t0 .tr−1

x0 xr−1

=s0
t0 .tr−1

x0 xr−1

≡ s1
t0 .tr−1

x0 xr−1

for all terms s0, s1∈ TS;

b) (Rs0 sn−1)
t0 .tr−1

x0 xr−1

=Rs0
t0 .tr−1

x0 xr−1

sn−1
t0 .tr−1

x0 xr−1

for all n-ary relation symbols R and

terms s0, , sn−1∈ TS;

c) (¬ϕ) t0 .tr−1

x0 xr−1

=¬(ϕ t0 .tr−1

x0 xr−1

);

d) (ϕ→ ψ) t0 .tr−1

x0 xr−1

=(ϕ t0 .tr−1

x0 xr−1

→ψ
t0 .tr−1

x0 xr−1

);

e) for (∀xϕ) t0 .tr−1

x0 xr−1

distinguish two cases:

− if x ∈ {x0, , xr−1}, assume that x = x0 . Choose i ∈ N minimal such that u = vi
does not occur in ∀xϕ, t0, ., tr−1 and x0, , xr−1 . Then set

(∀xϕ)
t0 .tr−1

x0 xr−1
=∀u (ϕ

t1 .tr−1u

x1 xr−1x
).

− if x {x0, , xr−1}, choose i ∈N minimal such that u= vi does not occur in ∀xϕ,
t0, ., tr−1 and x0, , xr−1 and set

(∀xϕ)
t0 .tr−1

x0 xr−1
=∀u (ϕ

t0 .tr−1u

x0 xr−1x
).

The following substitution theorem shows that syntactic substitution corresponds semantically
to a (simultaneous) modification of assignments by interpreted terms.

Theorem 42. Consider an S-model M, pairwise distinct variables x0, , xr−1 and terms t0, ,
tr−1∈TS.

a) If s∈ TS is a term,

M(s
t0 tr−1

x0 xr−1
)=M

M(t0) M(tr−1)
x0 xr−1

(s).
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b) If ϕ∈LS is a formula,

M% ϕ
t0 tr−1

x0 xr−1
iff M

M(t0) M(tr−1)
x0 xr−1

% ϕ.

Proof. By induction on the complexities of s and ϕ.
a) Case 1 : s= x.
Case 1.1 : x {x0, , xr−1}. Then

M(x
t0 tr−1

x0 xr−1
)=M(x)=M

M(t0) M(tr−1)
x0 xr−1

(x).

Case 1.2 : x= xi . Then

M(x
t0 tr−1

x0 xr−1
)=M(ti)=M

M(t0) M(tr−1)
x0 xr−1

(x).

Case 2 : s= c is a constant symbol. Then

M(c
t0 tr−1

x0 xr−1
) =M(c) =M

M(t0) M(tr−1)
x0 xr−1

(c).

Case 3 : s = fs0 sn−1 where f ∈ S is an n-ary function symbol and the terms s0, , sn−1 ∈ TS

satisfy the theorem. Then

M((fs0 sn−1)
t0 tr−1

x0 xr−1
) = M(fs0

t0 tr−1

x0 xr−1
sn−1

t0 tr−1

x0 xr−1
)

= M(f)(M(s0
t0 tr−1

x0 xr−1
), ,M(sn−1

t0 tr−1

x0 xr−1
))

= M(f)(M
M(t0) M(tr−1)

x0 xr−1
(s0), ,M

M(t0) M(tr−1)
x0 xr−1

(sn−1))

= M
M(t0) .M(tr−1)

x0 xr−1
(fs0 sn−1).

#
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