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Part I

Reconstructing structures from their
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Reconstructing structures from their clones Michael Pinsker



Reconstructing structures up to first-order . . .

Aut( )

Theorem (Ryll-Nardzewski)
Let ∆, Γ be ω-categorical structures on the same domain. Then
Aut(∆) = Aut(Γ) iff ∆, Γ are first-order interdefinable.

Aut( ) as a topological group

first-order bi-interpretable with

Theorem (Ahlbrandt + Ziegler ’86)
Let ∆, Γ be ω-categorical structures. Then
Aut(∆) ∼=T Aut(Γ) iff ∆, Γ are first-order bi-interpretable.
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Reconstruction from the abstract group

Aut( ) as an abstract group → ?

Can we reconstruct an ω-categorical structure ∆
from the algebraic group structure of Aut(∆)?

Can we reconstruct the topological structure of Aut(∆)
from its algebraic structure?

The automorphism groups of ω-categorical structures are precisely the
closed permutation groups which are oligomorphic:
their coordinatewise action on n-tuples has finitely many orbits
for all n ≥ 1.

Can we reconstruct the topological structure
of closed oligomorphic permutation groups
from their algebraic structure?
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Better reconstruction plans

Let ∆ be a structure.

Aut(∆). . . automorphism group of ∆

End(∆). . . endomorphism monoid of ∆

Pol(∆). . . polymorphism clone of ∆

End(∆) consists of all homomorphisms f : ∆→ ∆.

Pol(∆) consists of all homomorphisms f : ∆n → ∆, where 1 ≤ n < ω.

Pol(∆) is a function clone:

closed under composition
contains projections.

Observe: Pol(∆) ⊇ End(∆) ⊇ Aut(∆).
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Reconstruction up to primitive positive definitions

Pol( ) → ?

Theorem (Bodirsky + Nešetřil ’03)
Let ∆, Γ be ω-categorical structures on the same domain. Then:
Pol(∆) = Pol(Γ) iff ∆, Γ are primitive positive interdefinable.

Why primitive positive definitions?

Applications in theoretical computer science.
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Constraint Satisfaction Problems

Let ∆ be a structure with a finite relational signature τ .

Definition (Constraint Satisfaction Problem)

CSP(∆) is the computational problem to decide whether a given
primitive positive τ -sentence holds in ∆.

Example. CSP({0,1}; {(1,0,0), (0,1,0), (0,0,1)}) is the problem
called positive 1-in-3-3SAT. It is NP-complete.

Example. CSPs over homogeneous structures.

Fact: When there is a pp interpretation of ∆ in Γ, then there is a
polynomial-time reduction from CSP(∆) to CSP(Γ).
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Topological clones

Function clones carry:

topological structure (pointwise convergence)
algebraic structure (laws of composition): multi-sorted algebra

Let C,D be function clones.
ξ : C→ D is a (clone) homomorphism iff

it preserves arities;
sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Topological clones can be formalized like topological groups.

Theorem (Bodirsky + MP ’12)
Let ∆, Γ be ω-categorical structures. Then:
Pol(∆) ∼=T Pol(Γ) iff ∆, Γ are primitive positive bi-interpretable.
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Reconstruction from the abstract clone

Pol( ) as an abstract clone → ?

Can we reconstruct an ω-categorical structure ∆
from the algebraic clone structure of Pol(∆)?

Can we reconstruct the topological structure of Pol(∆)
from its algebraic structure?

The polymorphism clones of ω-categorical structures are precisely
the closed oligomorphic function clones:
they contain an oligomorphic permutation group.

Can we reconstruct the topological structure
of closed oligomorphic function clones
from their algebraic structure?
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Part II

The topology of algebras
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Clones from algebras

Let A = (A; (fi)i∈I) be an algebra, and τ its signature.

Every abstract τ -term t induces a finitary term function tA on A.

The term functions of A form a function clone Clo(A).

Many properties of A depend only on Clo(A):
e.g., subalgebras, congruence relations.

Algebraic structure of Clo(A): “Varieties”
Which equations hold in Clo(A)?

Structural conclusions about finite A from variety of A
(i.e., from abstract clone Clo(A)).
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Garrett Birkhoff’s theorem: abstract clones

For an algebra A, write HSPfin(A) for the algebras obtained by taking
Homomorphic images
Subalgebras
finite Powers.

Let A,B be τ -algebras. If the mapping

tA 7→ tB

is well-defined, then it is a clone homomorphism

ξ : Clo(A)→ Clo(B)

called the natural homomorphism.

Theorem (Birkhoff 1935)
Let A, B be finite.

B is in HSPfin(A)↔
the natural homomorphism from Clo(A) to Clo(B) exists.
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Topological Birkhoff’s theorem: topological clones

For finite algebras A, the topology on Clo(A) is trivial.

Call a countable algebra A oligomorphic iff Clo(A) is.

Theorem (‘Topological Birkhoff’; Bodirsky + MP ’12)

Let A, B be oligomorphic or finite.

B is in HSPfin(A)↔
the natural homomorphism from Clo(A) to Clo(B) exists
and is continuous.

Problem.

When can we drop the continuity condition?

Can we reconstruct the topological structure
of closed oligomorphic function clones
from their algebraic structure?
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Part III

Reconstruction notions
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Reconstruction notions

Let
S∞ be the symmetric group on ω
O(1) be the full transformation monoid ωω

O be the largest function clone on ω:
⋃

n≥1 ω
ωn

Definition
Let C be a closed subclone of O.

C has reconstruction iff C ∼= D implies C ∼=T D
for all closed subclones D of O;

C has automatic homeomorphicity iff every clone isomorphism
between C and a closed subclone of O is a homeomorphism;

C has automatic continuity iff every clone homomorphism from C
into O is continuous.

Similarly for closed subgroups of S∞ and closed submonoids of O(1).

Reconstructing structures from their clones Michael Pinsker



Reconstruction notions

Let
S∞ be the symmetric group on ω

O(1) be the full transformation monoid ωω

O be the largest function clone on ω:
⋃

n≥1 ω
ωn

Definition
Let C be a closed subclone of O.

C has reconstruction iff C ∼= D implies C ∼=T D
for all closed subclones D of O;

C has automatic homeomorphicity iff every clone isomorphism
between C and a closed subclone of O is a homeomorphism;

C has automatic continuity iff every clone homomorphism from C
into O is continuous.

Similarly for closed subgroups of S∞ and closed submonoids of O(1).

Reconstructing structures from their clones Michael Pinsker



Reconstruction notions

Let
S∞ be the symmetric group on ω
O(1) be the full transformation monoid ωω

O be the largest function clone on ω:
⋃

n≥1 ω
ωn

Definition
Let C be a closed subclone of O.

C has reconstruction iff C ∼= D implies C ∼=T D
for all closed subclones D of O;

C has automatic homeomorphicity iff every clone isomorphism
between C and a closed subclone of O is a homeomorphism;

C has automatic continuity iff every clone homomorphism from C
into O is continuous.

Similarly for closed subgroups of S∞ and closed submonoids of O(1).

Reconstructing structures from their clones Michael Pinsker



Reconstruction notions

Let
S∞ be the symmetric group on ω
O(1) be the full transformation monoid ωω

O be the largest function clone on ω:
⋃

n≥1 ω
ωn

Definition
Let C be a closed subclone of O.

C has reconstruction iff C ∼= D implies C ∼=T D
for all closed subclones D of O;

C has automatic homeomorphicity iff every clone isomorphism
between C and a closed subclone of O is a homeomorphism;

C has automatic continuity iff every clone homomorphism from C
into O is continuous.

Similarly for closed subgroups of S∞ and closed submonoids of O(1).

Reconstructing structures from their clones Michael Pinsker



Reconstruction notions

Let
S∞ be the symmetric group on ω
O(1) be the full transformation monoid ωω

O be the largest function clone on ω:
⋃

n≥1 ω
ωn

Definition
Let C be a closed subclone of O.

C has reconstruction iff C ∼= D implies C ∼=T D
for all closed subclones D of O;

C has automatic homeomorphicity iff every clone isomorphism
between C and a closed subclone of O is a homeomorphism;

C has automatic continuity iff every clone homomorphism from C
into O is continuous.

Similarly for closed subgroups of S∞ and closed submonoids of O(1).

Reconstructing structures from their clones Michael Pinsker



Reconstruction notions

Let
S∞ be the symmetric group on ω
O(1) be the full transformation monoid ωω

O be the largest function clone on ω:
⋃

n≥1 ω
ωn

Definition
Let C be a closed subclone of O.

C has reconstruction iff C ∼= D implies C ∼=T D
for all closed subclones D of O;

C has automatic homeomorphicity iff every clone isomorphism
between C and a closed subclone of O is a homeomorphism;

C has automatic continuity iff every clone homomorphism from C
into O is continuous.

Similarly for closed subgroups of S∞ and closed submonoids of O(1).

Reconstructing structures from their clones Michael Pinsker



Reconstruction notions

Let
S∞ be the symmetric group on ω
O(1) be the full transformation monoid ωω

O be the largest function clone on ω:
⋃

n≥1 ω
ωn

Definition
Let C be a closed subclone of O.

C has reconstruction iff C ∼= D implies C ∼=T D
for all closed subclones D of O;

C has automatic homeomorphicity iff every clone isomorphism
between C and a closed subclone of O is a homeomorphism;

C has automatic continuity iff every clone homomorphism from C
into O is continuous.

Similarly for closed subgroups of S∞ and closed submonoids of O(1).

Reconstructing structures from their clones Michael Pinsker



Reconstruction notions

Let
S∞ be the symmetric group on ω
O(1) be the full transformation monoid ωω

O be the largest function clone on ω:
⋃

n≥1 ω
ωn

Definition
Let C be a closed subclone of O.

C has reconstruction iff C ∼= D implies C ∼=T D
for all closed subclones D of O;

C has automatic homeomorphicity iff every clone isomorphism
between C and a closed subclone of O is a homeomorphism;

C has automatic continuity iff every clone homomorphism from C
into O is continuous.

Similarly for closed subgroups of S∞ and closed submonoids of O(1).

Reconstructing structures from their clones Michael Pinsker



Reconstruction notions

Let
S∞ be the symmetric group on ω
O(1) be the full transformation monoid ωω

O be the largest function clone on ω:
⋃

n≥1 ω
ωn

Definition
Let C be a closed subclone of O.

C has reconstruction iff C ∼= D implies C ∼=T D
for all closed subclones D of O;

C has automatic homeomorphicity iff every clone isomorphism
between C and a closed subclone of O is a homeomorphism;

C has automatic continuity iff every clone homomorphism from C
into O is continuous.

Similarly for closed subgroups of S∞ and closed submonoids of O(1).

Reconstructing structures from their clones Michael Pinsker



Comparing the notions

Definition

C has reconstruction iff C ∼= D implies C ∼=T D
for all closed subclones D of O;

C has automatic homeomorphicity iff every clone isomorphism
between C and a closed subclone of O is a homeomorphism;

C has automatic continuity iff every clone homomorphism from C
into O is continuous.

Observation. Automatic homeomorphicity implies reconstruction.

Fact. For groups automatic continuity implies
automatic homeomorphicity.

Unclear for monoids and clones.
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Groups: the small index property

Definition
A structure ∆ has the small index property iff
every subgroup of Aut(∆) of countable index is open.

Equivalent to automatic continuity.

Verified for:

(N; =) (Dixon+Neumann+Thomas’86)
(Q;<) and the atomless Boolean algebra (Truss’89)
the random graph (Hodges+Hodkinson+Lascar+Shelah’93)
the random Kn-free graphs (Herwig’98)
ω-categorical ω-stable structures
(Hodges+Hodkinson+Lascar+Shelah’93)
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every subgroup of Aut(∆) of countable index is open.

Equivalent to automatic continuity.
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Groups: Rubin’s forall-exists interpretations

Method for proving automatic homeomorphicity.

the random graph
(Q;<)
all homogeneous countable graphs
various ω-categorical semilinear orders
the random partial order
the random tournament
(Rubin ’94)

the random k -hypergraphs
the Henson digraphs
(Barbina+MacPherson ’07).
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Part IV

Negative results
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Automatic continuity for monoids / clones

Not very promising:

Proposition
If ∆ is ω-categorical,
then Emb(∆) does not have automatic continuity.

Thus concentrate on

isomorphisms between closed subclones of O
(i.e., automatic homeomorphicity)
homomorphisms to special clones –
in particular to the projection clone 1

1 is the clone of projections on a set of at least two elements.

Important in constraint satisfaction:
“main reason” for NP-hardness of the CSP of a structure.
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Automatic continuity to 1

Theorem (Bodirsky + MP + Pongrácz ’13)

There exists an oligomorphic closed subclone of O with a
discontinuous homomorphism to the projection clone 1.

Inspired by example of Cherlin + Hrushovski:
ω-categorical structure without the small index property.

Involves non-principal ultrafilter: unfair in the CSP context.

Moreover, this clone also has a continuous homomorphism to 1.

Reconstructing structures from their clones Michael Pinsker



Automatic continuity to 1

Theorem (Bodirsky + MP + Pongrácz ’13)

There exists an oligomorphic closed subclone of O with a
discontinuous homomorphism to the projection clone 1.

Inspired by example of Cherlin + Hrushovski:
ω-categorical structure without the small index property.

Involves non-principal ultrafilter: unfair in the CSP context.

Moreover, this clone also has a continuous homomorphism to 1.

Reconstructing structures from their clones Michael Pinsker



Automatic continuity to 1

Theorem (Bodirsky + MP + Pongrácz ’13)

There exists an oligomorphic closed subclone of O with a
discontinuous homomorphism to the projection clone 1.

Inspired by example of Cherlin + Hrushovski:
ω-categorical structure without the small index property.

Involves non-principal ultrafilter: unfair in the CSP context.

Moreover, this clone also has a continuous homomorphism to 1.

Reconstructing structures from their clones Michael Pinsker



Automatic continuity to 1

Theorem (Bodirsky + MP + Pongrácz ’13)

There exists an oligomorphic closed subclone of O with a
discontinuous homomorphism to the projection clone 1.

Inspired by example of Cherlin + Hrushovski:
ω-categorical structure without the small index property.

Involves non-principal ultrafilter: unfair

in the CSP context.

Moreover, this clone also has a continuous homomorphism to 1.

Reconstructing structures from their clones Michael Pinsker



Automatic continuity to 1

Theorem (Bodirsky + MP + Pongrácz ’13)

There exists an oligomorphic closed subclone of O with a
discontinuous homomorphism to the projection clone 1.

Inspired by example of Cherlin + Hrushovski:
ω-categorical structure without the small index property.

Involves non-principal ultrafilter: unfair in the CSP context.

Moreover, this clone also has a continuous homomorphism to 1.

Reconstructing structures from their clones Michael Pinsker



Automatic continuity to 1

Theorem (Bodirsky + MP + Pongrácz ’13)

There exists an oligomorphic closed subclone of O with a
discontinuous homomorphism to the projection clone 1.

Inspired by example of Cherlin + Hrushovski:
ω-categorical structure without the small index property.

Involves non-principal ultrafilter: unfair in the CSP context.

Moreover, this clone also has a continuous homomorphism to 1.

Reconstructing structures from their clones Michael Pinsker



Automatic homeomorphicity

Theorem (Bodirsky + MP + Pongrácz ’13)

There exists an oligomorphic closed submonoid M of O(1) and
ξ : M→ M such that:

ξ is an isomorphism;
ξ fixes the invertibles of M pointwise;
ξ is not continuous.

In particular M does not have automatic homeomorphicity.

Theorem (Evans + Hewitt ’90)
There exists an oligomorphic closed subgroup G of S∞
which does not have reconstruction.
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Reconstruction

Problem
Find an oligomorphic closed subclone of O without reconstruction.

Reconstructing structures from their clones Michael Pinsker



Reconstruction

Problem
Find an oligomorphic closed subclone of O without reconstruction.

Reconstructing structures from their clones Michael Pinsker



Part V

Positive results
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Automatic continuity via Birkhoff’s theorem

Let C be a closed subclone of O.

Let ξ : C→ O be a homomorphism.

Theorem (Birkhoff ’35)

The algebra (ω; ξ[C]) is an HSP of the algebra (ω; C).

The only possibly discontinuous step is an infinite product.

Theorem (Bodirsky + MP + Pongrácz ’13)

Any closed subclone of O containing O(1) has
automatic continuity and automatic homeomorphicity.
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Automatic homeomorphicity via groups

Let C be a closed subclone of O
whose group GC of invertibles has reconstruction.

Show that the closure of GC has reconstruction;
show that the monoid C(1) of unary functions of C has
reconstruction;
then show that C has reconstruction.
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Today’s reconstruction theorem

Theorem
The polymorphism clone of the random graph
has automatic homeomorphicity.
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Open problems

Which oligomorphic closed subclones of O have automatic
homeomorphicity?

Which topological clones are closed subclones of O?

Is there an oligomorphic closed subclone of O which does not
have reconstruction?

Is there an oligomorphic closed subclone of O which has a
homomorphism to the projection clone 1, but no continuous one?

Is there a model of ZF where all homomorphisms
from oligomorphic closed subclones of O to the projection clone 1
are continuous?
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Thank you!
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