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1 Introduction

Mathematics models real world phenomena like space, time, number, probability, games,
etc. It proceeds from initial assumptions to conclusions by rigorous arguments. Its
results are “universal” and “logically valid”, in that they do not depend on external or
implicit conditions which may change with time, nature or society.

It is remarkable that mathematics is also able to model itself: mathematical logic
defines rigorously what mathematical statements and rigorous arguments are. The
mathematical enquiry into the mathematical method leads to deep insights into mathe-
matics, applications to classical field of mathematics, and to new mathematical theories.
The study of mathematical language has also influenced the theory of formal and nat-
ural languages in computer science, linguistics and philosophy.

1.1 A simple proof

We want to indicate that rigorous mathematical proofs can be generated by applying
simple text manipulations to mathematical statements. Let us consider a fragment of
the elementary theory of functions which expresses that the composition of two surjec-
tive maps is surjective as well:

Let f and g be surjective, i.e., for all y there is x such that y = f(x), and
for all y there is x such that y= g(x).
Theorem. g ◦ f is surjective, i.e., for all y there is x such that y= g(f(x)).
Proof . Consider any y. Choose z such that y = g(z). Choose x such that
z = f(x). Then y = g(f(x)). Thus there is x such that y = g(f(x)). Thus
for all y there is x such that y= g(f(x)).
Qed .

These statements and arguments are expressed in an austere and systematic lan-
guage, which can be normalized further. Logical symbols like ∀ and ∃ abbreviate figures
of language like “for all” or “there exists”:

Let ∀y∃x y= f(x).
Let ∀y∃x y= g(x).
Theorem. ∀y∃x y= g(f(x)).
Proof. Consider y.
∃x y= g(x).
Let y= g(z).
∃x z= f(x).
Let z= f(x).
y= g(f(x)).
Thus ∃x y= g(f(x)).
Thus ∃x y= g(f(x)).
Thus ∀y∃x y= g(f(x)).
Qed.
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These lines can be considered as formal sequences of symbols. Certain sequences of
symbols are acceptable as mathematical formulas. There are rules for the formation of
formulas which are acceptable in a proof. These rules have a purely formal character
and they can be applied irrespectively of the “meaning” of the symbols and formulas.

1.2 Formal proofs

In the example, ∃x y = g(f(x)) is inferred from y = g(f(x)). The rule of existential
quantification: “put ∃x in front of a formula” can usually be applied. It has the character
of a left-multiplication by ∃x.

∃x , ϕ� ∃xϕ.

Logical rules satisfy certain algebraic laws like associativity. Another interesting opera-
tion is substitution: From y = g(z) and z = f(x) infer y = g(f(x)) by a “find-and-
replace”-substitution of z by f(x).

Given a sufficient collection of rules, the above sequence of formulas, involving “key-
words” like “let” and “thus” is a deduction or derivation in which every line is generated
from earlier ones by syntactical rules. Mathematical results may be provable simply by
the application of formal rules. In analogy with the formal rules of the infinitesimal cal-
culus one calls a system of rules a calculus .

1.3 Syntax and semantics

Obviously we do not just want to describe a formal derivation as a kind of domino but
we want to interpret the occuring symbols as mathematical objects. Thus we let vari-
ables x, y, 	 range over some domain like the real numbers R and let f and g stand for
functions F , G: R → R . Observe that the symbol or “name” f is not identical to the
function F , and indeed f might also be interpretated as another function F ′. To empha-
size the distinction between names and objects, we classify symbols, formulas and
derivations as syntax whereas the interpretations of symbols belong to the realm of
semantics .

By interpreting x, y, 	 and f , g, 	 in a structure like (R, F , G) we can define
straightforwardly whether a formula like ∃x g(f(x)) is satisfied in the structure. A for-
mula is logically valid if it is satisfied under all interpretations. The fundamental the-
orem of mathematical logic and the central result of this course is Gödel’s complete-
ness theorem:

Theorem. There is a calculus with finitely many rules such that a formula is derivable
in the calculus iff it is logically valid.

1.4 Set theory

In modern mathematics notions can usually be reduced to set theory: non-negative inte-
gers correspond to cardinalities of finite sets, integers can be obtained via pairs of non-
negative integers, rational numbers via pairs of integers, and real numbers via subsets of
the rationals, etc. Geometric notions can be defined from real numbers using analytic
geometry: a point is a pair of real numbers, a line is a set of points, etc. It is remarkable
that the basic set theoretical axioms can be formulated in the logical language indicated
above. So mathematics may be understood abstractly as

Mathematics = (first-order) logic + set theory.
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Note that we only propose this as a reasonable abstract viewpoint corresponding to
the logical analysis of mathematics. This perspective leaves out many important aspects
like the applicability, intuitiveness and beauty of mathematics.

1.5 Circularity

We shall use sets as symbols which can then be used to formulate the axioms of set
theory. We shall prove theorems about proofs . This kind of circularity seems to be
unavoidable in comprehensive foundational science: linguistics has to talk about lan-
guage, brain research has to be carried out by brains. Circularity can lead to paradoxes
like the liar’s paradox: “I am a liar”, or “this sentence is false”. Circularity poses many
problems and seems to undermine the value of foundational theories. We suggest that
the reader takes a naive standpoint in these matters: there are sets and proofs which are
just as obvious as natural numbers. Then theories are formed which abstractly describe
the naive objects.

A closer analysis of circularity in logic leads to the famous incompleteness theorems
of Gödel’s:

Theorem. Formal theories which are strong enough to “formalize themselves” are not
complete, i.e., there are statements such that neither it nor its negation can be proved in
that theory. Moreover such theories cannot prove their own consistency.

It is no surprise that these results, besides their initial mathematical meaning had a
tremendous impact on the theory of knowledge outside mathematics, e.g., in philosophy,
psychology, linguistics.

2 Set theoretic preliminaries

To model the mathematical method, we have to formalize mathematical language and
general structures by mathematical objects. The most basic mathematical objects seem
to be sets . We briefly present some facts from set theory which are used in the sequel.

In line with our introductory remarks on circularity we initially treat set theory
naively , i.e., we view sets and set theoretic operations as concrete mental constructs. We
shall later introduce a powerful axiom system for sets. From an axiomatic standpoint
most of our arguments can be carried out under weak set theoretical hypotheses. In par-
ticular it will not be necessary to use sets of high cardinality.

The theory of finite sets is based on the empty set ∅= {} and operations like

x� {x}; x, y� {x, y}; x, y� x∪ y; x, y� x∩ y;x, y� x \ y .

The operation x, y� {{x}, {x, y}} defines the ordered pair of x and y. Its crucial prop-
erty is that

{{x}, {x, y}}= {{x′}, {x′, y ′}} if and only if x= x′ and y= y ′.

The ordered pair {{x}, {x, y}} is denoted by (x, y). Ordered pairs allow to formalize
(binary) relations and functions:

− a relation is a set R of ordered pairs;

− a function is a relation f such that for all x, y, y ′ holds: if (x, y)∈ f and (x, y ′)∈
f then y= y ′. Then f(x) denotes the unique y such that (x, y)∈ f .

We assume standard notions and notations from relation theory, see also Definition 2
below. For binary relations R we can use the infix notation aRb instead of (a, b)∈R .
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If a function maps the elements of a set a into a set b we write

f : a→ b.

In case we do not want to specify the target set b, we can also write f : a→ V where V is
understood to be the universe of all sets. We assume the usual notions of function
theory like injective, surjective, bijective, etc.

It is natural to formalize the integer n by some set with n elements. We shall later
see that the following formalization can be carried out uniformly in set theory:

0 = ∅

1 = {0}

2 = {0, 1}

�

n+1 = {0, 1,	 , n} = {0, 1,	 , n− 1}∪ {n} =n∪{n}

�

N=ω = {0, 1,	 }

These integers satisfy the usual laws of complete induction and recursion.
A finite sequence is a function w: n→ V for some integer n∈N which is the length of

w. We write wi instead of w(i), and the sequence w may also be denoted by w0	wn−1 .
Note that the empty set ∅ is the unique finite sequence of length 0.

For finite sequences w = w0	wm−1 and w ′ = w0
′
	wn−1

′ let wˆw ′ =
w0	wm−1w0

′
	wn−1

′ be the concatenation of w and w ′. wˆw ′:m+ n→ V can be defined
by

wˆw ′(i)=

{

w(i), if i <m ;
w ′(i−m), if i>m.

We also write ww ′ for wˆw ′. This operation is a monoid satisfying some cancellation
rules:

Proposition 1. Let w,w ′, w ′′ be finite sequences. Then

a) (wˆw ′)ˆw ′′=wˆ(w ′ ˆw ′′).

b) ∅ˆw=wˆ∅=w .

c) wˆw ′=wˆw ′′→w ′=w ′′.

d) w ′ ˆw=w ′′ ˆw→w ′=w ′′.

Proof. We only check the associative law a). Let n, n′, n′′∈N such that w=w0	wn−1 ,
w ′=w0

′
	wn′−1

′ , w ′′=w0
′′
	wn′′−1

′′ . Then

(wˆw ′)ˆw ′′ = (w0	wn−1w0
′
	wn′−1

′ )ˆw0
′′
	wn′′−1

′′

= w0	wn−1w0
′
	wn′−1

′ w0
′′
	wn′′−1

′′

= w0	wn−1ˆ(w0
′
	wn′−1

′ w0
′′
	wn′′−1

′′ )

= w0	wn−1ˆ(w0
′
	wn′−1

′ ˆw0
′′
	wn′′−1

′′ )

= wˆ(w ′ ˆw ′′).

The trouble with this argument is the intuitive but vague use of the ellipses “	 ”. In
mathematical logic we have to ultimately eliminate such vaguenesses. So we show that
for all i < n+n′+n′′

((wˆw ′)ˆw ′′)(i)= (wˆ(w ′ ˆw ′′))(i).
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Case 1 : i <n . Then

((wˆw ′)ˆw ′′)(i) = (wˆw ′)(i)

= w(i)

= (wˆ(w ′ ˆw ′′))(i).

Case 2 : n6 i <n+n′. Then

((wˆw ′)ˆw ′′)(i) = (wˆw ′)(i)

= w ′(i−n)

= (w ′ˆw ′′)(i−n)

= (wˆ(w ′ ˆw ′′))(i).

Case 3 : n+n′6 i <n+n′+n′′. Then

((wˆw ′)ˆw ′′)(i) = w ′′(i− (n+n′))

= w ′ˆw ′′(i− (n+n′)+n′) =w ′ˆw ′′(i−n)

= (wˆ(w ′ ˆw ′′))(i−n+n)

= (wˆ(w ′ ˆw ′′))(i).

�

A set x is finite, if there is an integer n ∈ N and a surjective function f : n → x. The
smallest such n is called the cardinality of the finite set x and denoted by n = card(x).
The usual cardinality properties for finite sets follow from properties of finite sequences.

A set x is denumerable or countable if there is a surjective function f :N→ x. If the
set is not finite, it is countably infinite. Its cardinality is ω, written as ω = card(x).
Under sufficient set theoretical assumptions, the union

⋃

n∈ω

xn

where each xn is countable is again countable.
If a set x is not countable, it is uncountable. Within set theory one can develop an

efficient notion of cardinality for uncountable sets.
The theory of infinite sets usually requires the axiom of choice which is equivalent to

Zorn’s lemma.

Definition 2. Let A be a set and 6 be a binary relation. Define

a) (A,6) is transitive if for all a, b, c∈A

a6 b and b6 c implies a6 c.

b) (A,6) is reflexive if for all a∈A holds a6 a .

c) (A,6) is a partial order if (A,6) is transitive and reflexive and A� ∅ .

So let (A,6) is be a partial order.

a) z ∈A is a maximal element of A if there is no a∈A with z6 a and z � a .

b) If X ⊆A then u is an upper bound for X if for all x∈X holds x6u .

c) I ⊆A is linear if for all a, b∈ I

a6 b or b6 a.

d) (A,6) is inductive if every linear subset of A has an upper bound.
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Zorn’s lemma states

Theorem 3. Every inductive partial order has a maximal element.

3 Symbols and words

Intuitively and also in our theory a word is a finite sequence of symbols. A symbol has
some basic information about its role within words. E.g., the symbol 6 is usually used
to stand for a binary relation. So we let symbols include such type information. We
provide us with a sufficient collection of symbols.

Definition 4. The basic symbols of first-order logic are

a) ≡ for equality,

b) ¬, →, ⊥ for the logical operations of negation, implication and the truth value
false,

c) ∀ for universal quantification,

d) ( and ) for auxiliary bracketing.

e) variables vn for n∈N.

Let Var= {vn|n∈N} be the set of variables and let S0 be the set of basic symbols.
An n-ary relation symbol, for n∈N, is (a set) of the form R= (x, 0, n); here 0 indi-

cates that the values of a relation will be truth values. 0-ary relation symbols are also
called propositional constant symbols. An n-ary function symbol, for n ∈ N, is (a set)
of the form f = (x, 1, n) where 1 indicates that the values of a function will be elements
of a structure. 0-ary function symbols are also called constant symbols.

A symbol set or a language is a set of relation symbols and function symbols.
We assume that the basic symbols are pairwise distinct and are distinct from any

relation or function symbol. For concreteness one could for example set ≡=0, ¬=1, →=
2, ⊥=3, (=4, )= 5, and vn= (1, n) for n∈N.

An n-ary relation symbol is intended to denote an n-ary relation; an n-ary function
symbol is intended to denote an n-ary function. A symbol set is sometimes called a type
because it describes the type of structures which will later interpret the symbols. We
shall denote variables by letters like x, y, z,	 , relation symbols by P , Q, R,	 , functions
symbols by f , g, h, 	 and constant symbols by c, c0, c1, 	 We shall also use other typo-
graphical symbols in line with standard mathematical practice. A symbol like <, e.g.,
usually denotes a binary relation, and we could assume for definiteness that there is
some fixed set theoretic formalization of < like <=(999, 0, 2). Instead of the arbitrary
999 one could also take the number of < in some typographical font.

Example 5. The language of group theory is the language

SGr= {◦, e},

where ◦ is a binary (= 2-ary) function symbol and e is a constant symbol. Again one
could be definite about the coding of symbols and set SGr = {(80, 1, 2), (87, 1, 0)}, e.g.,
but we shall not care much about such details. As usual in algebra, one also uses an
extended language of group theory

SGr= {◦,−1, e}

to describe groups, where −1 is a unary (= 1-ary) function symbol.
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Definition 6. Let S be a language. A word over S is a finite sequence

w:n→S0∪S .

Let S∗ be the set of all words over S. The empty set ∅ is also called the empty word.

Let S be a symbol set. We want to formalize how a word like ∃x y = g(f(x)) can be
produced from a word like y= g(f(x)).

Definition 7. A relation R ⊆ (S∗)n × S∗ is called a rule (over S). A calculus (over S)
is a set C of rules (over S).

We work with rules which produce words out of given words. A rule

{(arguments, production)|	 }

is usually written as a production rule of the form

arguments

production
or

preconditions

conclusion
.

For the existential quantification mentioned in the introduction we may for example
write

ϕ

∃xϕ

where the production is the concatenation of ∃x and ϕ.

Definition 8. Let C be a calculus over S . Let R ⊆ (S∗)n × S∗ be a rule of C. For X ⊆
S∗ set

R[X] = {w ∈S∗ | there are words u0,	 , un−1∈X such that R(u0,	 , un−1, w) holds}.

Then the product of C is the smallest subset of S∗ closed under the rules of C:

Prod(C)=
⋂

{X ⊆S∗ | for all rules R∈C holds R[X]⊆X}.

The product of a calculus can also be described “from below” by:

Definition 9. Let C be a calculus over S . A sequence w(0), 	 , w(k−1) ∈ S∗ is called a
derivation in C if for every l < k there exists a rule R ∈ C, R ⊆ (S∗)n × S∗ and l0, 	 ,

ln−1< l such that

R(w(l0),	 , w(ln−1), w(l)).

This means that every word of the derivation can be derived from earlier words of the
derivation by application of one of the rules of the calculus. We shall later define a cal-
culus such that the sequence of sentences

Let ∀y∃x y= f(x).
Let ∀y∃x y= g(x).
Consider y.
∃x y= g(x).
Let y= g(z).
∃x z= f(x).
Let z= f(x).
y= g(f(x)).
Thus ∃x y= g(f(x)).
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Thus ∃x y= g(f(x)).
Thus ∀y∃x y= g(f(x)).
Qed.

is basically a derivation in that calculus.
Everything in the product of a calculus can be obtained by a derivation.

Proposition 10. Let C be a calculus over S. Then

Prod(C)= {w |there is a derivation w(0),	 , w(k−1)=w in C}.

Proof. The equality of sets can be proved by two inclusions.
(⊆) The set

X = {w |there is a derivation w(0),	 , w(k−1)=w in C}

satisfies the closure property R[X]⊆X for all rules R ∈ C. Since Prod(C) is the intersec-
tion of all such sets, Prod(C)⊆X.
(⊇) Consider w ∈X. Consider a derivation w(0),	 , w(k−1)=w in C. We show by induc-

tion on l < k that w(l) ∈ Prod(C). Let l < k and assume that for all i < l holds w(i) ∈
Prod(C). Take a rule R ∈ C, R ⊆ (A∗)n × A∗ and l0, 	 , ln−1 < l such that R(w(l0), 	 ,

w(ln−1), w(l)). Since Prod(C) is closed under application of R we get w(l) ∈ Prod(C).

Thus w=w(k−1)∈Prod(C). �

Exercise 1. (Natural numbers 1) Consider the symbol set S = { | }. The set S∗= {∅, | , || , ||| ,	 } of

words may be identified with the set N of natural numbers. Formulate a calculus C such that
Prod(C)=S∗.

4 Induction and recursion on calculi

Derivations in a calculus have finite length so that one can carry out inductions and
recursions along the lengths of derivations. We formulate appropriate induction and
recursion theorems which generalize complete induction and recursion for natural num-
bers. Note the recursion is linked to induction but requires stronger hypothesis.

Theorem 11. (Induction Theorem) Let C be a calculus over S and let ϕ(−) be a prop-
erty which is inherited along the rules of C :

∀R∈C , R⊆ (S∗)k×S∗ ∀w(1),	 , w(k), w ∈S∗, R(w(1),	 , w(k), w) (ϕ(w(1))∧	 ∧ ϕ(w(k))→

ϕ(w)).

Then

∀w ∈Prod(C) ϕ(w).

Proof. By assumption, {w ∈ S∗|ϕ(w)} is closed under the rules of C. Since Prod(C) is
the intersection of all sets which are closed under C,

Prod(C)⊆{w ∈S∗|ϕ(w)}. �

Definition 12. A calculus C over S is uniquely readable if for every w ∈ Prod(C) there

are a unique rule R∈C , R⊆ (S∗)k×S∗ and unique w(1),	 , w(k)∈S∗ such that

R(w(1),	 , w(k), w).
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Theorem 13. (Recursion Theorem) Let C be a calculus over S which is uniquely read-

able and let (GR|R ∈ C) be a sequence of recursion rules, i.e., for R ∈ C , R ⊆ (S∗)k × S∗

let GR: V
k → V where V is the universe of all sets. Then there is a uniquely determined

function F : Prod(C) → V such that the following recursion equation is satisfied for all

R∈C , R⊆ (S∗)k×S∗ and w(1),	 , w(k), w ∈Prod(C), R(w(1),	 , w(k), w):

F (w)=GR(F (w(1)),	 , F (w(k))).

We say that F is defined by recursion along C by the recursion rules (GR|R∈C).

Proof. We define F (w) by complete recursion on the length of the shortest derivation
of w in C. Assume that F (u) is already uniquely defined for all u∈Prod(C) with shorter
derivation length. Let w have shortest derivation w(0), 	 , w(l−1). By the unique read-

ability of C there are R ∈ C, R ⊆ (S∗)k × S∗ and w(i0), 	 , w(ik−1) with i0, 	 , ik−1 < l − 1
such that

R(w(i0),	 , w(ik−1), w).

Then we can uniquely define

F (w)=GR(F (w(i0)),	 , F (w(ik−1))). �

Remark 14. The previous Theorem states the existence of a function F as a set of
ordered pairs, but the proof argues that F can be defined (by some intuitive “proce-
dure”). To complete the argument one would have to use the recursion theorem from set
theory which says that definitions of a certain kind correspond to certain functions in
the set theoretic universe.
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