
LECTURE NOTES ON FORCING

PHILIPP LÜCKE AND PHILIPP SCHLICHT

Abstract. Lectures on forcing from the summer 2014 in Bonn. We assume

knowledge of iterated forcing and proper forcing.
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1. Consistency of the proper forcing axiom

We give proofs of the consistency of the proper forcing axiom PFA from a super- April 07April 07

compact cardinal and the consistency of the bounded proper forcing axiom BPFA
from a reflecting cardinal.1

1.1. Some Lemmas on forcing and names. We begin with preliminary results
on forcing names and on iterated forcing. These lemmas are used for the BPFA
iteration, and they are very useful for other applications as well. Let P,Q,R,S
always denote partial orders and Ṗ, Q̇, Ṙ, Ṡ names for partial orders. Recall that
Hκ = {x | |tc(x)| < κ}, where κ is a cardinal.

Lemma 1.1. If P is a forcing that does not collapse κ and ẋ ∈ Hκ, then p 
 ẋ ∈ Hκ

for any p ∈ P.

Proof. By induction on rk(ẋ). The lemma holds for rk(ẋ) = 0, so suppose that
it is true for all names with rank smaller r = rk(ẋ). Suppose that ẋ ∈ Hκ and
write ẋ = {(ẏi, pi) | i ∈ I} for some indexing set I woth |I| = κ. By the induction
hypothesis, 1P 
 ẏi ∈ Hκ. Since |ẋ| < κ and κ remains a cardinal, 1P 
 |ẋ| < κ.
Thus 1P 
 ẋ ∈ Hκ. �

The reversal of this result is more interesting.

Date: May 28, 2014.
1Most of this section is taken from Julian Schlöder’s Master’s thesis
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Lemma 1.2. (Goldstern) If κ is regular and P ⊆ Hκ and satisfies the κ-c.c., then
for all p ∈ P: If p 
 σ ∈ Hκ, there is σ̇ ∈ Hκ with p 
 σ = σ̇.

Proof.

Claim. For every x ∈ Hκ, there is some λ < κ and a sequence (xα | α ≤ λ),
xα ∈ Hκ such that: for all α ≤ λ : xα ⊆ {xβ | β < α} and x = xλ.

Proof. We prove this via induction on x, it is clear for x = ∅. Suppose that this
holds for all y ∈ x and take for each y ∈ x an appropriate λy < κ and one such
sequence (xyα | α ≤ λy). Let λ = supy∈x λ

y. λ < κ, since |x| < κ and κ is regular.
Let (xα)α<λ be the concatenation of all the (xyα)α≤λy and finally set xλ = x. This
works because every y ∈ x is at some point in the sequence. �

Since P satisfies the κ-c.c., it does not collapse κ. Now suppose that p ∈ P and
p 
 σ ∈ Hκ. Then we can find names λ̇, ẋα for the sequence discussed above.
There is an ordinal λ < κ such that p 
 λ̇ ≤ λ̌ and since, in V [G], we may set

xα = ∅ for all λ̇G < α < λ̌G, we can assume that λ̇ = λ̌.
We now inductively define σ̇α := {(σ̇β , q) | β < α ∧ q ≤ p ∧ q 
 σβ ∈ σα} and let

σ̇ = σ̇λ. Then by induction, all σ̇α are in Hκ.
We now show that for all α < λ, p 
 σα = σ̇α, in particular p 
 σ = σ̇. To

prove this by induction, suppose that for all β < α, p 
 σβ = σ̇β . Suppose that G
is P-generic with p ∈ G. Then

σ̇Gα =
{
σ̇Gβ | β < α ∧ ∃q ≤ p : q ∈ G ∧ q 
 σβ ∈ σα

}
(by definition)

=
{
σGβ | β < α ∧ ∃q ≤ p : q ∈ G ∧ q 
 σβ ∈ σα

}
(by induction)

= σGα

In the last equality “⊆” holds: If there is a q ≤ p, q ∈ G, q 
 σβ ∈ σα, then
σGβ ∈ σGα . In the last equaliy “⊇” holds: Suppose V [G] |= τG ∈ σGα , then τG = σGβ
for some β < α. Hence there is q ≤ p, q ∈ G that forces τ = σβ . �

The following result shows that we can compute the forcing relation for a forcing
P ∈ Hκ in Hκ.

Lemma 1.3. If κ is regular and P ∈ Hκ then for any formula ϕ(x0, ..., xn), any p ∈
P and any names σ0, ..., σn with p 
 σ0, ..., σn ∈ Hκ, there are names σ̇0, ..., σ̇n ∈ Hκ

such that

(p 
 Hκ |= ϕ(σ0, ..., σn))⇔ (Hκ |= p 
 ϕ(σ̇0, ..., σ̇n)).

Proof. We assume that n = 0 and let σ = σ0, σ̇ = σ̇0. We prove the claim by
induction on the complexity of formulas. By Lemmas 1.2 and 1.1 we may set
σ̇ = σ. The induction step for ∧ is trivial.

We begin with atomic formulas. Let ϕ(x, y) = x ∈ y, since we can write x = y
equivalently as ∀z : z ∈ x ↔ z ∈ y and Hκ satisfies Extensionality. Obviously,
p 
 ”Hκ |= ẋ ∈ ẏ” iff p 
 ẋ ∈ ẏ. So it suffices to show p 
 ẋ ∈ ẏ ⇔ Hκ |= p 
 ẋ ∈ ẏ.
We do an induction over the rank of ẏ: If rk(ẏ) = 0, ẏ is (a name for) the empty set,
so both p 
 ẋ ∈ ẏ and Hκ |= p 
 ẋ ∈ ẏ are false. Now consider rk(ẏ) > 0. Suppose
p 
 ẋ ∈ ẏ. Then Dẋ,ẏ = {r | ∃(ż, q) ∈ ẏ : r ≤ q ∧ r 
 ẋ = ż} is dense below p.
We can write Dẋ,ẏ as {r | ∃(ż, q) ∈ ẏ : r ≤ q ∧ ∀ȧ : (r 
 ȧ ∈ ẋ)↔ (r 
 ȧ ∈ ż)}. So

we can apply the inductive hypothesis and obtain DHκ
ẋ,ẏ = Dẋ,ẏ and hence Hκ |=

“Dẋ,ẏ is dense below p”. Thus Hκ |= p 
 ẋ ∈ ẏ. The backwards direction follows
since the statement is Σ2.

Suppose that ϕ = ¬ψ and that the lemma holds for ψ. For the backward
direction suppose Hκ |= p 
 ¬ψ. If p 
 ¬(Hκ |= ψ), we are done. Otherwise
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there is some q ≤ p that forces Hκ |= ψ, which by the induction hypothesis yields
Hκ |= q 
 ψ, contradicting the assumption. The forward direction is similar.

Lastly assume ϕ = ∃xψ and that the lemma holds for ψ. Then:

p 
 Hκ |= ∃xψ(x)

⇔ ∃ẋ ∈ Hκ : p 
 Hκ |= ψ(ẋ) (by Lemmas 1.2 , 1.1, the max. principle)

⇔ ∃ẋ ∈ Hκ : Hκ |= p 
 ψ(ẋ) (by induction hypothesis)

⇔ Hκ |= ∃ẋ : p 
 ψ(ẋ)

⇔ Hκ |= p 
 ∃xψ(x) (by the maximality principle).

�

Lemma 1.4. Suppose that κ > ω1 is regular. Let Pκ be a countable support itera-
tion of length κ such that all stages satisfy the κ-cc. Then Pκ satisfies the κ-cc.

Proof. Assume A = (pξ | ξ < κ) is an antichain in Pκ. We may assume its indices
have uncountable cofinality. Let F (ξ) = min{α | supp(pξ) ∩ ξ ⊆ α}. Since Pκ has
countable supports, F is regressive. By Fodor’s Lemma, e.g., [?, Theorem 8.7], there
is a stationary S ⊆ κ and γ < κ with F [S] = {γ}. Construct {αi | i ∈ S} = S′ ⊆ S,
|S′| = κ with ∀ξ < ζ ∈ S′ : supp(pξ) ⊆ ζ by recursion:

αi = min(S \ (sup
j<i

(supp(pαj ) ∪ αj))).

Note that if ξ < ζ ∈ S′, then supp(pξ) ⊆ ζ and supp(pζ) ∩ ζ ⊆ γ, therefore
supp(pξ) ∩ supp(pζ) ⊆ γ.

Since Pγ satisfies the κ-cc, there are ξ < ζ ∈ S′ and r′ ∈ Pγ such that r′ ≤ pξ �
γ, pζ � γ. Define a condition q = (q(α) | α < κ) ∈ Pκ by:

q(α) =


r′(α), α < γ,

pξ(α), α ≥ γ ∧ α ∈ supp(pξ),

pζ(α), α ≥ γ ∧ α ∈ supp(pζ),

1, otherwise.

This is well-defined, since above γ the supports of pζ and pξ are disjoint. But
then q ≤ pξ and q ≤ pζ , i.e., A is no antichain, contradicting our assumption. �

The lemma is false for κ = ω1, in fact the countable support iteration of the
forcing {p, q, 1} with p ⊥ q of length ω is not c.c.c. Moreover, it is an exercise to
check that any countable support iteration of nonatomic forcings of length ω is not
c.c.c.

Lemma 1.5. Suppose that ((Pα)α≤γ , (Q̇α)α<γ) is an iteration and α < γ. There

is a Pα-name Q̇ such that Pγ is isomorphic to a dense subset of Pα ∗ Q̇.

Proof. Let pα = p � [α, γ) for p ∈ Pγ . Let Q = {pα | p ∈ Pγ}. If G is Pα-generic

over V , let f ≤ g for f, g ∈ Q if there is some p ∈ G with p ∪ f ≤ p ∪ g. Let Q̇
denote a Pα-name for Q.

Let π : Pγ → Pα ∗ Q̇, π(p) = (p � α, pα). If p ≤ q, then p � α ≤ q � α and hence
p ≤ (p � α) ∪ qα. So p � α 
Pα pα ≤ qα and hence π(p) ≤ π(q). Suppose that
π(p) ≤ π(q). If p 6≤ q, then there is some r ≤ p which is incompatible with q. Then

r � α ≤ q � α and r � α 
Pα ∃s ∈ ĠPαs ∪ rα ≤ s ∪ qα. So there is some common
extension t ≤ (r � α), s. Then t ∪ rα ≤ t ∪ qα ≤ q. The first inequality holds since
t ≤ s. The last inequality holds since t ≤ r � α ≤ q � α. This contradicts the
assumption that r, q are incompatible.

To show that the image of π is dense, suppose that (p, ḟ) ∈ Pα ∗ Q̇. There is

some q ≤ p and some f ∈ Q with q 
 ḟ = f̌ . Then π(q ∪ f) = (q, f) ≤ (p, ḟ). �
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Note that a weaker version of the lemma, where isomorphism to a dense subset
os replaced by the statement that the Boolean completions are equal, follows from
general facts about quotient forcing.

One can show that the P-name Q̇ defined above is in fact a name for an iteration
(see Baumgartner’s paper on iterated forcing).

1.2. PFA.

Axiom 1.6 (Proper Forcing Axiom (PFA)). If (P, <) is a proper forcing notion andApril 09April 09

D, |D| = ℵ1, is a collection of predense subsets of P, then there exists a D-generic
filter on P.

Definition 1.7. Let P be a forcing notion. A set C ⊆ P is called centered iff each
finite set A ⊆ C is compatible. C is directed iff for all a, b ∈ C there is c ∈ C with
c ≤ a, b.

Axiom 1.8 (Bounded Fragments of PFA). Let λ be a cardinal.

(i) PFAλ is the following axiom: Let (P, <) be a proper preordered set and D,
|D| = ℵ1 be collection of predense subsets of P such that for all D ∈ D,
|D| ≤ λ. Then there exists a D-generic centered set on P.

(ii) PFA∗λ is the following axiom: Let (P, <) be a proper Boolean algebra and
D, |D| = ℵ1 be collection of predense subsets of P such that for all D ∈ D,
|D| ≤ λ. Then there exists a D-generic filter on P.

Lemma 1.9. Suppose that P is a Boolean algebra. If C ⊆ P is centered, then there
is a filter F ⊇ C.

Proof. Suppose that C ⊆ P is centered. We show that C extends to a directed set,
since directed sets extend to filters by closing upwards. We inductively construct
ω extensions of C. Let C0 = C and let Cn+1 = Cn ∪ {p · q | p, q ∈ C}.

We show by induction that for each n ∈ ω, Cn is centered. This holds for n = 0
by the assumption. Suppose that this is true for n − 1 and let A ⊆<ω Cn. For
each a ∈ A we find some pa, qa ∈ Cn−1 such that a = pa · pa. If a ∈ Cn−1 then
pa = qa = a. The set A′ = {pa, qa | a ∈ A} ⊆ Cn−1 is still finite, so there is a lower
bound r of A′. In particular, for each a ∈ A, r ≤ pa, qa, so r ≤ pa · qa = a. Thus r
is a lower bound for A.

To see that Cω =
⋃
n<ω Cn ⊇ C is directed, let p, q ∈ Cω. Then p, q ∈ Cn for

some n, i.e. p · q ∈ Cn+1 ⊆ Cω. �

In fact, for the proof of the lemma, we have only used the existence of largest
lower bounds for all p, q ∈ P.

Definition 1.10. (i) An elementary embedding j : V → M is called λ-super-
compact if M transitive, Mλ ⊆M , and λ < j(κ) for κ = crit(j).

(ii) A cardinal κ is λ-supercompact for some cardinal λ ≥ κ if and only if there is
a λ-supercompact embedding j with κ = crit(j).

(iii) A cardinal κ is called supercompact if it is λ-supercompact for all λ ≥ κ.

Supercompactness is very high in the large cardinal hierarchy. To see that su-
percompactness is expressible in the language of set theory, we need to express the
existence of a λ-supercompact embedding j with crit(j) = κ by the existence of a
normal filter on Pκ(λ) (see Jech’s book). We will omit this here, but note that the
following results can be read as results about λ-supercompact cardinals for fixed λ,
where this problem does not appear.

Lemma 1.11. A cardinal κ is measurable if and only if it is κ-supercompact (see
e.g. Jech Lemma 17.9).
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Proof. Suppose that j : V → ult(V,U) is an ultrapower with a <κ-complete ul-
trafilter on κ. If [fα] ∈ ult(V,U) for α < κ and [g] = κ, let h : κ → V , h(γ) =
(fα(γ))α<g(γ). We have α < h(γ) for almost all γ. Then h(γ)(α) = fα(γ) for
almost all γ. Hence [h] = (fα)α<κ. �

Lemma 1.12. Let M be a transitive model with Ord ⊆M , P ∈M a λ+-cc forcing
notion, G some P-generic filter on M and λ a cardinal. In V [G], if V |= Mλ ⊆M
then M [G]λ ⊆M [G].

Proof. We work in V [G]. Let c = (cα | α < λ) be a λ-sequence such that for all
α < λ, cα ∈M [G]. For each α < λ, let ċα be a P-name with ċα

G = cα. Let ȧ be a
P-name with ȧG = (ċα | α < λ). Choose a p ∈ G with p 
 ∀α < λ̌ : ȧ(α) ∈ MP in
V .

Working in V , for each α < λ, there is a maximal antichain Aα below p such
that every q ∈ Aα decides ȧ(α), i.e., for some x ∈ M , q 
 ȧ(α) = x̌. Define

σ = {( ˇ(α, x), q) | α < λ, q ∈ Aα, q 
 ȧ(α) = x̌}. Then p 
 σ = ȧ. Notice that
|σ| ≤ λ, since for each α, |Aα| ≤ λ. Thus σ ∈M .

in V [G] again, (ċα | α < λ) = ȧG = σG ∈ M [G]. We can compute c = (cα | α <
λ) = (ċα

G | α < λ) from (ċα | α < λ) and G. Hence by Replacement, c ∈M [G]. �

Lemma 1.13. Let λ be a cardinal and Mλ ⊆M for some model M with Ord ⊆M .
Then HM

λ+ ⊇ Hλ+ .

Proof. Let x ∈ Hλ+ and set a := |tc({x})| ≤ λ. Find a bijection f : |tc({x})| →
tc({x}) with f(∅) = x. Now define a relation R on a2 by αRβ ↔ f(α) ∈ f(β).
Then, (a,R) has a transitive collapse in a2 ⊆ λ. By assumption Mλ ⊆ M , i.e.,
a2, R ∈M . We can reconstruct x from a2 and R. �

Definition 1.14. Suppose that {Pα | α < λ} is a set of forcing notions. The lottery
sum of the Pα is their disjoint union P with a new 1 such that 1 > p for all p ∈ Pα,
α < λ.

Lemma 1.15. Lottery sums of proper forcings are themselves proper.

Proof. Let P be the lottery sum of (Qα | α < κ). Let G be P-generic. Since
elements of G are pairwise compatible and if p, q ∈ P, p ∈ Qα, q ∈ Qβ , α 6= β, p, q
are incompatible, G ⊆ Qα ∪ {1} for some α. A set D is clearly dense in P if and
only if D∩Qα is dense in Qα for all α < κ. Hence G is a Qα-generic filter for some
α, i.e., stationary sets are preserved between V and V [G]. �

We can now define a general scheme for the iterations which we will use.

Definition 1.16. Suppose that κ > λ > ω are cardinals. The minimal counterex-
ample iteration Pκ = PPFAλ

κ for PFAλ of length κ is the countable support iteration

of (Pα, Q̇β | α ≤ κ, β < κ), where Pα and Q̇α are defined by induction: Let Q̇α be
a hereditarily minimal Pα-name for the lottery sum of all proper counterexamples
to PFAλ of minimal hereditary size smaller than κ.

We will only consider iterations of inaccessible length κ.

Lemma 1.17. If κ is inaccessible and α < κ, then |Pα| < κ.

Proof. This is shown by induction on α. If α = 0, then Pα is a union of forcings of
hereditary size γ < κ, so Pα ⊆ Hγ+ . Therefore |Pα| ≤

∣∣Hγ+

∣∣ ≤ 2γ < κ.
If α = β+ 1, then Pβ forces that Pα is a union of forcing notions with hereditary

size γ < κ, so exactly as above, 1β 
 |Qα| ≤
∣∣Hγ+

∣∣ ≤ 2γ . Now, since |Pβ | < κ,

there is some δ > max{γ, |Pβ |}, δ < κ, i.e., 1β 
 2γ ≤ 2δ = (2δ)V , by counting nice
names for subsets of δ. Thus, since κ is inaccessible, |Pα| ≤ 2δ < κ.
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Suppose that γ < κ is a limit and that for all α < γ, |Pα| < κ. Since κ is regular,
there is some λ such that for all α < γ, λ > |Pα|. Notice that |Pγ | ≤ Πα<γ |Pα|, since
p 7→ (p � α)α<γ is injective. Thus we conclude Πα<γ |Pα| ≤ Πα<γλ = λγ < κ. �

Moreover Pκ only depends on Hκ, i.e. if M is transitive with Hκ ⊆ M , then
PMκ = Pκ, by the following lemma.

Lemma 1.18. Suppose that κ is inaccessible. Then there is forcing Q ⊆ Hκ

definable in Hκ which is isomorphic to Pκ.

Proof. The point is that if P is a forcing in Hκ, then it is proper if and only if
it is proper in Hκ. Using this, we will show that the definition of the sequence
(Pα | α < κ) is absolute between Hκ and V , where the Pα are the initial segments
of Pκ.

Let us give a recursive definition of the sequence. If γ is a limit and we have
defined Pα for α < γ, then we can define Pγ as a countable support limit.

Now let α = β + 1 and suppose that Pβ be defined. We can define ϕ(Q̇) =“Q̇ is
a hereditarily minimal Pβ-name for the lottery sum of all proper counterexamples

to PFA of minimal hereditary size”. Find such Q̇ and let Pα = Pβ ∗ Q̇. We now

need to show that ϕ(Q̇) holds in V .

We argue that it is sufficient to see that V also believes that Q̇ is a name for
a lottery sum of proper forcings. Note that Q̇ is indeed a name for a lottery
sum consisting of forcings with hereditary size smaller κ by Lemma 1.1. All other
properties except properness in ϕ are easily absolute between Hκ and V because
by Lemma 1.2 V [G] and Hκ[G] agree on the relevant witnesses.

We now deal with the properness of Q̇ in a generic extension. We have assumed
that Hκ |= ”1β 
 Q̇ is a proper lottery sum”. By Theorem 1.3, 1β 
 ”Hκ |=
Q̇ is a proper lottery sum”. As in the proof of Lemma 1.17, there is some regular

λ < κ such that 1β 
 2|Q̇| < λ̌. Since properness of Q̇ is absolute between Hλ and

Hκ, Q̇ is a name for a proper forcing. �

Theorem 1.19. If κ is λ-supercompact, then PPFA
κ , forces that PFA holds for all

proper forcings P with 2|P| ≤ λ.

Proof. We follow Baumgartner’s argument (see Jechs book), but avoid the use of
Laver functions and instead work with lottery sums. The use of lottery sums in such
iterations is an idea of Joel Hamkins and has been extensively used by Hamkins
and Apter.

Let j : V → M be a λ-supercompact embedding with crit(j) = κ, λ < j(κ),
Mλ ⊆M . e thatG is Pκ-generic over V . We work in V [G]. Let P be a proper forcing
violating PFA with 2|P| ≤ λ of minimal hereditary size. Let D = {Dα | α < ℵ1}
witness this. We show that P ∈M [G] by Lemma 1.13.

Since |Pκ| ≤ κ, by Lemma 1.12 it remains to show that Pκ ∈M . Since M [G]λ ⊆
M [G] by Lemma 1.12, Pκ ⊆ M is sufficient. Let p ∈ Pκ. Since Pκ is a countable
support iteration, there is some γ < κ such that p(α) = 1 for all α > γ. Since
j(γ) = γ, j(p)(α) = 1 for all α > γ. Moreover p(α) = (p � γ)(α) for all α ≤ γ,
hence

j(p)(α) = j(p � γ)(α) = (p � γ)(α) = p(α)

for all α ≤ γ. Thus j(p) = pa1a . . .a 1, i.e., j(p) � κ = p ∈M .

Claim (i). In M [G], P violates PFA, is of minimal hereditary size with that prop-
erty and P ∈ Hj(κ).

Proof. We first claim that |tc(P)| = |P|. Otherwise, take a bijection f : P→ α = |P|
and define a relation <α on α by β <α γ iff f−1(β) <P f

−1(γ). (α,<α) is a forcing
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notion equivalent to P but of smaller hereditary size tc(α) = α, contradicting the
assumption.

We now show that P is proper in M [G]. Let µ = (|P|)+
. Since we now know

|tc(P)| = |P| < µ, P ∈ Hµ. Choose a club C ⊆ [Hµ]ω witnessing that P is proper in
V [G]. Note that

|C| ≤ |Hµ| ≤ 2<µ ≤ 2|P| ≤ λ
and therefore by Lemma 1.13, C ∈ M [G] and hence C witnesses that P is proper
in M [G].

Also, V [G] and M [G] have the same ℵ1, since Pκ is proper (as a countable

support iteration of proper forcing notions). Hence, |D|M [G]
= ℵM [G]

1 . For all
α < ω1, Dα ⊆ P ∈ M [G], |Dα| ≤ |P| ≤ λ, i.e., Dα ∈ M [G]. Thus, since ℵ1 < λ,
D ∈M [G].

Furthermore, |TC(P)| < λ < j(κ), so P ∈ Hj(κ). Finally, if there were a heredi-
tary smaller counterexample in M [G], it would be in V [G] and be a counterexample
to PFA there, because M [G] is sufficiently closed to contain filters witnessing the
contrary and clubs witnessing properness. Hence this would contradict the heredi-
tarily minimality of P. �

In M , the forcing j(Pκ) is, by elementarity, a countable support iteration of
length j(κ) > λ and Pκ is an initial segment of j(Pκ), since crit(j) = κ (i.e.
j � Hκ = id while Pα ∈ Hκ for all α < κ). By Lemma 1.5, j(Pκ) is forcing equivalent

to an iteration (Pκ ∗ Ṗ) ∗ Q̇ where ṖG is the lottery sum of all counterexamples to
PFA in M [G] of minimal hereditary size smaller j(κ).

Let H be P-generic over V [G]. Note that there is a ṖG-generic H̃ over M [G]

with M [G ∗H] = M [G ∗ H̃]. Let I be Q̇G∗H̃ -generic over V [G ∗ H̃].

We now work in V [(G ∗ H̃) ∗ I]. Consider:

j∗ : V [G]→M [(G ∗ H̃) ∗ I],

j∗(σG) = j(σ)(G∗H̃)∗I .

Claim (ii). j∗ is well-defined and elementary and extends j.

Proof. To show that j∗ is well-defined, let σ, τ be Pκ-names with σG = τG. Then
there is p ∈ G such that p 
 σ = τ , i.e., j(p) 
 j(σ) = j(τ). j(p) is an element of

(G ∗ H̃) ∗ I: p = (pα | α < κ) with countable support, so there is some β < κ with
pγ = 1 for all γ ≥ β. V [G] |= ∀γ < β : p(γ) = (p � β)(γ), so

∀γ < j(β) : j(p)(γ) = (j(p � β))(γ).

Since j � Hκ = id, Pγ ∈ Hκ and j(β) = β, j(p)(γ) = p(γ) below β and 1

otherwise. Therefore j(p) = pa1a . . .a 1 ∈ (G ∗ H̃) ∗ I.
To show that j∗ is elementary, let ϕ = ϕ(x) be a formula, σ a Pκ-name and

suppose V [G] |= ϕ(σG). Then there is some p ∈ G with p 
 ϕ(σ), i.e., j(p) 

ϕ(j(σ)). As above j(p) ∈ (G ∗ H̃) ∗ I.

Moreover j∗ extends j, since j∗(x) = j∗(x̌G) = j(x̌)G = x̌G = x for x ∈ V . �

Suppose that D is a family of size ℵ1 of dense subsets of P in V [G]. As in (i),
D is a family of size ℵ1 of dense subsets of P in M [G]. We show that there is a

(j∗(P), j∗(D))-generic filter in M [(G ∗ H̃) ∗ I]. Notice that j∗ � P ∈ M [G], since

|P| < λ. H ⊆ P and therefore by Replacement j∗[H] ∈M [(G ∗ H̃) ∗ I].
Since j∗(ω1) = ω1, j∗(D) = {j∗(D) | D ∈ D}. Since H is P-generic in V [G], it

intersects every D ∈ D. Thus for every D ∈ D there is some xD ∈ H such that
V [G] |= xD ∈ D, so by elementarity, M [(G ∗H) ∗ I] |= j∗(xD) ∈ j∗(D).
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Therefore the filter on j∗(P) generated by j∗[H] in M [(G∗H̃)∗I] intersects every
D ∈ j∗(D). Hence, by elementarity, there is a filter on P in V [G] which intersects
every D ∈ D. �

The classical result follows immediately.

Corollary 1.20. If κ is a supercompact cardinal, then Pκ forces PFA, hence PFA
is consistent relative to the existence of a supercompact cardinal.

1.3. BPFA.

Definition 1.21. BPFA is defined as the axiom PFAω1
, i.e. it states that for anyApril 14April 14

proper preordered set (P, <) and D, |D| = ℵ1 a collection of predense subsets of P
such that for all D ∈ D, |D| ≤ λ, there exists a D-generic centered set on P.

There is a third (and possibly stronger) version of BPFA, besides PFAω1
and

PFA∗ω1
, which asks for the existence of a filter in a partial order. We don’t know

whether the three versions can be separated.

Definition 1.22. A cardinal κ is reflecting if and only if it is regular and for any
formula ϕ and any a ∈ Hκ, if there is a cardinal δ > κ with Hδ |= ϕ(a), then there
is some cardinal γ < κ with a ∈ Hγ and Hγ |= ϕ(a).

Remark 1.23. By adding any cardinal α < κ as a parameter to ϕ, we can make the
γ provided by the reflecting property as large as we require.

Definition 1.24. A cardinal κ is a Mahlo cardinal if the set of inaccessible cardinals
µ < κ is stationary in κ.

Lemma 1.25. Suppose that there is a Mahlo cardinal. Then there is a model of
ZFC with a reflecting cardinal.

Proof. We claim that for κ is inaccessible, the set {α < κ | Vα ≺ Vκ} is club in
κ. To show unboundedness, let α < κ be arbitrary and define a sequence (αn)n∈ω
by induction. Let α0 = α. Let αn+1 ≥ αn such that for all formulas ϕ and all
ȳ ∈ Vαn , if Vκ |= ∃xϕ(x, ȳ), then there is x̄ ∈ Vαn+1 such that Vκ |= ϕ(x̄, ȳ). Since
κ is inaccessible, |Vαn | < κ, hence there are less than κ many such x̄, so αn+1 < κ.

Let γ = supn<ω αn ≥ α. Then Vγ ≺ Vκ by the Tarski-Vaught criterion. Closure
is trivial, since if Vγn ≺ Vκ, n < ω, then again by Tarski-Vaught,

⋃
n<ω Vγn ≺ Vκ.

Now let µ be Mahlo. In Vµ, there is a club C ⊆ µ such that Vα ≺ Vµ for all
α ∈ C. Let κ ∈ C be inaccessible. Then Vµ models that κ is reflecting: If a ∈ Hκ,
δ ∈ Vµ and Vµ |= ”Hδ |= ϕ(a)”, then Vµ |= ∃δ : ”Vδ |= ϕ(a)”. By elementarity, so
does κ. �

Reflecting cardinals are indeed large.

Lemma 1.26. If κ is a reflecting cardinal, then κ is inaccessible.

Proof. Suppose that there is some δ < κ with 2δ ≥ κ. Then δ ∈ Hκ and we may
reflect “2δ exists”. So, there is some γ < κ such that Hγ |= “2δ exists”. But
2δ /∈ Hγ , contradicting the assumption. �

Lemma 1.27. A regular cardinal κ > ω is reflecting if and only if it is Σ2-correct,
i.e. Vκ ≺Σ2 V .

Proof. Suppose that κ reflecting, a ∈ Hκ, and ϕ is a Σ2 formula with ϕ(a). Then
there is a cardinal γ < κ with a ∈ Hγ and Hγ � ϕ(a). We have Hγ ≺Σ1 V by
Löwenheim-Skolem. Since ϕ is Σ2, this implies Vκ � ϕ(a).

The other direction holds since the statement ”Hδ � ϕ(a)” is Σ2. �

The next result shows that reflecting cardinals are indestructible by small forcing.
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Lemma 1.28. Let P ∈ Hκ. If κ is reflecting, then 1P 
 ”κ is reflecting”.

Proof. Let P ∈ Hκ. Let ϕ be a formula with

1P 
 ”ȧ ∈ Hκ ∧ ∃δ > κ : Hδ |= ϕ(ȧ)”.

We may assume that ȧ ∈ Hκ by Lemma 1.2. By Theorem 1.3 Hδ |= 1P 
 ϕ(ȧ).
Since κ is reflecting, there is γ < κ such that P, ȧ ∈ Hγ and Hγ |= 1P 
 ϕ(ȧ). So
by Lemma 1.3, 1P 
 Hγ |= ϕ(ȧ).

Since P ∈ Hγ , κ remains a regular cardinal. Thus κ is reflecting in any P-generic
extension. �

Lemma 1.29. If δ is a limit ordinal, P is a countable support forcing iteration of
length δ, G is P-generic, γ < cof(δ)V [G], cof(δ)V [G] ≥ ω1, and X ∈ P(γ)V [G], then
there is an ordinal α < δ such that X ∈ V [Gα], where Gα = {p � α | p ∈ G}.

Proof. Let Ẋ be a P-name for X. For each α < γ we choose a pα ∈ G which decides
α̌ ∈ Ẋ. Since the supports are countable and γ < cf(δ), η := sup(

⋃
α<γ supp(pα)) <

δ. Now X = {α < η | ∃p ∈ Gη : pa1a . . .a 1 
 α̌ ∈ Ẋ} ∈ V [Gη]. �

The lemma is false if we weaken the assumption γ < cf(δ)V [G] to γ < cf(δ)V ;
this can be seen by collapsing ω1 in the first step.

We can now define the notion of special counterexamples. Note that a special
counterexample no longer contains an actual (potentially large) notion of forcing.
For convenience, we include minimality in the definition.

Definition 1.30. Let λ > ω be a cardinal. We call a triple (D,D∗,≤∗) a special
counterexample to PFAλ if there is a proper forcing Q such that

i. (Q,≤) is a hereditarily minimal counterexample to PFAλ,
ii.
⋃
D ⊆ D∗ ⊆ Q,

iii. |D∗| ≤ λ, |D| ≤ ℵ1,
iv. all A ∈ D are predense in Q,
v. if A ⊆<ω D∗ is compatible w.r.t. Q, there is a ∈ D∗, a ≤ A,
vi. ≤∗=≤� D∗, and

vii. there is no generic centered set G ⊆ Q with G ∩A 6= ∅ for all A ∈ D.

Since the order ≤∗ is clear from the context in all cases, we implicitly include
≤∗ in D∗ and consider special counterexamples as tuples (D,D∗).

Let us write Γλ(D,D∗) if (D,D∗) is a special counterexample to PFAλ. We will
write Γλ(D,D∗,Q) if Γλ(D,D∗) and Q witnesses this.

The following lemma shows why this is the crucial notion for the treatment of
bounded fragments of PFA.

Lemma 1.31. Let λ > ω, (D,D∗,≤∗) be a special counterexample to PFAλ and
let P and Q be forcing notions satisfying ii.-vi. in the definition of special coun-
terexamples. Let G be a filter on P. Then G ∩D∗ is centered in Q.

Proof. We show that g = D∗ ∩ G is centered with respect to ≤∗ in the partial
order D∗. Then g is also centered with respect to Q by the definition of special
counterexamples. Let A ⊆ g be finite. Because G is a filter, there is r ∈ G that is a
lower bound for A. Note that it is not clear that r ∈ D∗. But by v., there is some
such lower bound in D∗. �

On the other hand, we need to know that we can always find a special coun-
terexample if we have a counterexample Q.

Lemma 1.32. Let λ > ω. If Q is a counterexample to PFAλ, then there are D,D∗

satisfying ii.-vii. in the definition of special counterexamples to PFAλ. In particu-
lar, if Q is some hereditarily minimal counterexample to PFAλ, then Γλ(D,D∗,Q).
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Proof. Let Q be a counterexample to PFAλ and let D be a set of predense sets of
Q witnessing this. For each compatible A ⊆<ω Q, choose rA ∈ Q such that ra ≤ A.

Let D0 =
⋃
D. If Dn is defined, let Dn+1 = {rA | A ⊆<ω Dn compatible}. Set

D∗ =
⋃
n∈ωDn. This process adds at most λ conditions each step, so |D∗| ≤ λ.

Also, if A ⊆<ω D∗ is compatible w.r.t. Q, there is some n ∈ ω with A ⊆<ω Dn, so
rA ∈ D∗. �

Furthermore, reflecting cardinals provide small witnesses to special counterex-
amples to BPFA. Combined with the previous result this will be the crucial step in
our main argument.

Lemma 1.33. Let κ be reflecting. If there is a special counterexample D,D∗ to
BPFA, D,D∗ ∈ Hκ , then there is a forcing Q witnessing this in Hκ.

Proof. Suppose there are D,D∗ ∈ Hκ with Γℵ1(D,D∗). There is a cardinal δ such
that

Hδ |= ”Γℵ1(D,D∗), ∃λ : ∃Q ∈ Hλ : Γℵ1(D,D∗,Q), 2λ exists”.

Since κ is reflecting, there is γ < κ such that

Hγ |= ”Γℵ1(D,D∗), ∃λ : ∃Q ∈ Hλ : Γℵ1(D,D∗,Q), 2λ exists”.

Choose such Q and λ, i.e., Hγ |= ”Q ∈ Hλ, 2λ exists, Γℵ1(D,D∗,Q)”, and Q
is really proper, since properness of Q is absolute between Hγ and V . All other
properties of “special counterexample to BPFA” are obviously absolute. �

Now we can show the main result in this section.

Theorem 1.34. If κ is reflecting, then the minimal counterexample iteration for
BPFA, PBPFA

κ , forces BPFA.

Proof. Suppose not. Let p be some condition that forces Γℵ1 6= ∅. Let G be
P-generic over V , p ∈ G and live in V [G]. Take witnesses (viz., a special counterex-

ample to BPFA) D,D∗ for Γℵ1 . Note that ωV1 = ω
V [G]
1 since Pκ is proper. Also Pκ

does not collapse κ.
Since D,D∗ are of size at most ω1, we can code them by subsets of ω1. By Lemma

1.29, there is some α < κ with D,D∗ ∈ V [Gα], where Gα = {q � α | q ∈ G}. Since
Gα is Pα-generic and Pα ∈ Hκ by the construction of Pκ, by Lemma 1.28, κ is
reflecting in V [Gα]. Now work in V [Gα].

Because Pκ is a countable support iteration, there is some q ∈ HV
κ ⊆ Hκ such

that p = qa1κ. The statement ∃λ : qa1λ 
Pλ Γℵ1(Ď, Ď∗) holds (take λ = κ)
and its parameters are in Hκ. So, since κ is reflecting, there are γ < δ < κ with
Hδ |= qa1γ 
Pγ Γℵ1(Ď, Ď∗), and since this is Σ2, qa1γ 
Pγ Γℵ1(Ď, Ď∗) is true.

The forcing Pγ has hereditary size smaller κ, thus qa1γ also forces that κ is
reflecting, thus it forces that there is a witness Q to Γℵ1(D,D∗) with hereditary
size smaller κ by Lemma 1.33. We may assume Q has minimal hereditary size; then
there is some r ≤ qa1κ = p choosing that Q from the lottery sum in the γ-th step.

Hence forcing with r adjoins a Q-generic filter h, so h ∈ V [G] for each generic
G with r ∈ G. Then h intersects each A ∈ D and is a filter on D∗. Thus by the
construction of D∗, h∩D∗ extends to a centered set on any witness to Γℵ1(D,D∗).
Hence r forces ¬Γℵ1(D,D∗) contradicting the assumption that p 
 Γℵ1(D,D∗). �

2. Solovay’s model

Theorem 2.1. (Solovay) Suppose that κ is inaccessible. Suppose that G is Col(ω, κ)-April 16, 22, 29, 30April 16, 22, 29, 30

generic over V and M = HOD(ωOrd)V [G]. Then in M , every set A ⊆ R is
Lebesgue measurable.
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3. Singularizing cardinals

May 6May 6

In order to construct models with interesting cardinal arithmetic, the question
arises how to make an uncountable regular cardinal κ singular without collapsing
any cardinals < κ. The first interesting problem is to singularize ω2 with cofinality
ω without collapsing ω1. This is achieved by Namba forcing. As we will see with the
use of the covering lemma for K (without proof), there is no analogue for κ > ω2 to
Namba forcing, unless we work with measurable cardinals. If κ is measurable, then
we can singularize κ with cofinality ω without collapsing any cardinals below κ.
We will later see an application of Prikry forcing to force the failure of the singular
cardinal hypothesis.

3.1. Namba forcing. Namba forcing is an analogue of Sacks forcing for trees of
width ω2. Namba forcing is to Col(ω, ω2) as Sacks forcing to Cohen forcing, in each
case functions are replaced with trees.

Definition 3.1. (perfect trees) Suppose that κ is a cardinal.

(i) T ⊆ <ωκ is a tree if T is closed under initial segments.
(ii) Let tT :=

⋃
{s ∈ T | ∀t ∈ T (s ⊆ t ∨ t ⊆ s)} denote the trunk of T .

(iii) If s ∈ T , let T/s := {t ∈ T | s ⊆ t ∨ t ⊆ s}.
(iv) T is κ-perfect if every s ∈ T ha κ many extensions t ⊇ s in T .

Definition 3.2. (Cantor-Bendixson derivative) Suppose that T ⊆ <ωω2 is a tree.

(i) Let T ′ := {s ∈ T | s has ≥ ω2 many extensions t ⊇ s in T}.
(ii) Let T0 = T , Tα+1 = T ′α, Tλ =

⋃
α<λ Tα for limits λ < ω3.

(iii) Let ϑT := min{α < ω3 | Tα = Tα+1}.
(iv) Let rT (s) := min{α < ω3 | s /∈ Tα} when this exists.

Definition 3.3. (Namba forcing) Let N denote the set of ω2-perfect trees T ⊆
<ωω2. Let S ≤ T if S ⊆ T .

Lemma 3.4. Suppose that G is N-generic over V . LetfG :=
⋃
T∈G tT . Then

fG : ω → ωV2 is cofinal.

Proof. Let Dα := {T ∈ N | sup(range(tT )) ≥ α} for α < ω2. Then Dα is dense for
every α < ω2, since every T ∈ N is ω2-perfect. �

Theorem 3.5. Suppose that CH holds and that G is N-generic over V . Then

ωV1 = ω
V [G]
1 and cof(ωV2 )V [G] = ω.

Proof. Suppose that T 
 ḟ : ω → 2. We construct (Ts)s∈<ωω2
such that

(i) T∅ = T ,
(ii) if s ⊆ t, then Tt ⊆ Ts,

(iii) if |s| = n, then Ts decides ḟ � n,
(iv) for each n, (tTs)s∈ωn2 are pairwise incomparable.

Suppose that Ts is defined for s ∈ ωn2 . Let t ⊇ s and I ⊆ ω2, |I| = ω2 with tai ∈ Ts
for all i ∈ I. Let Tsai ≤ T/(tai) decide ḟ(n).

Let (ḟ � n)S := s if S 
 (ḟ � n) = š, and otherwise undefined, for S ∈ N.

If ~i ∈ 2n, let T (~i) :=
⋃
{Ts | s ∈ <ωω2, (ḟ � n)Ts =~i}.

If x ∈ ω2, let T (x) :=
⋂
n∈ω T (x � n).

Claim 3.6. T (~i) 
 (ḟ � n) =~i for all ~i ∈ 2n.

Proof. Suppose that S ≤ T (~i). There is S′ ≤ S such that S′ decides (ḟ � n) and

tS′ ⊇ tTs for some s ∈ ωn2 with (ḟ � n)Ts = ~i. Then S′ ⊆ Ts. So S′ 
 (ḟ � n) =
~i. �



12 PHILIPP LÜCKE AND PHILIPP SCHLICHT

Claim 3.7. There is some x ∈ ω2 such that T (x) has an ω2-perfect subtree.

Proof. Suppose not. Then for all x ∈ ω2, rT (x) : T (x)→ ω3 is a function with

(i) rT (x)(t) ≤ rT (x)(s) if s ⊆ t.
(ii) for every s ∈ T (x), there are ≤ ω1 many t ⊇ s with rT (x)(s) = rT (x)(t).

We construct s0 ⊆ s1 ⊆ ..., sn ∈ ωn2 . Suppose that sn is defined. Since 2ω = ω1,
there is some α < ω2 such that rT (x)(tT

s
a
n α

) < rT (x)(tTsn ), for all x ∈ ω2 with

tT
s
a
n α
, tTsn ) ∈ T (x). Let sn+1 = sanα.

Let x(n) = i if Tsn+1 
 ḟ(n) = i.

Subclaim 3.8. tTsn+1
∈ T (x) for all n ∈ ω.

Proof. We have Tsn+1
⊆ T (x � n), since (ḟ � n)Tsn+1 = x � n. So for m ≥ n,

tTsn ⊆ tTsm ∈ T (x � m). �

Then rT (x)(tTs0 ) > rT (x)(tTs1 ) > rT (x)(tTs2 ) > ... is a strictly decreasing se-
quence of ordinals. �

Hence T (x) ≤ T decides ḟ(n) for all n. Hence N does not add new reals, so

ωV1 = ω
V [G]
1 . �

Problem 3.9. Show that Namba forcing is not proper.

Definition 3.10. An inner model is a transitive model M of ZFC with Ord ⊆M .

Fact 3.11. (Dodd-Jensen) There is a formula ϕK(x) such that K = {x | ϕK(x) is
an inner model and

(i) K � GCH.
(ii) KK = K.

(iii) KV [G] = KV for any generic extension V [G] of V , i.s. for all x ∈ V [G],
V [G] � ϕK(x) if and only if x ∈ V ∧ V � ϕK(x).

Fact 3.12. (Dodd-Jensen covering lemma) Suppose that there is no inner model
with a measurable cardinal. For every set X ⊆ Ord, there is a set Y ⊆ Ord in K
with |X| ≤ |Y |+ ω1.

Remark 3.13. In any N-generic extension V [G] of V , there is a set X ⊆ Ord such
that there is no set Y ⊆ Ord in V with |X|V [G] = |Y |V [G].

Proof. Let X = range(fG). Then X ⊆ ωV2 is cofinal and |X|V [G] = ω. Suppose
that Y ∈ V , Y ⊇ X, |Y |V [G] = |X|V [G] = ω. Since Y ⊆ ωV2 is cofinal, there is some

α < ωV2 with |Y ∩ α|V = ωV1 = ω
V [G]
1 . So |Y |V [G] ≥ ωV [G]

1 . �

Remark 3.14. Suppose that there is no inner model with a measurable cardinal.

(i) Suppose that κ ≥ ω2 is a cardinal. There is no generic extension V [G] of V
with the same cardinals ≤ κ ant cof((κ+)V )V [G] < κ.

(ii) Suppose that κ > ω is a regular limit cardinal. There is no generic extension
V [G] of V with the same cardinals ≤ κ and cof(κ)V [G] < κ.

Proof. (i) Suppose that C ⊆ (κ+)V is cofinal, C ∈ V [G], otp(C) < κ. There is

some D ⊇ C, D ∈ KV [G] = KV ⊆ V with |D|V [G] = |C|V [G] + ω
V [G]
1 < κ by the

covering lemma. But |D|V = (κ+)V , so κ and κ+ are collapsed.
(ii) Suppose that C ⊆ κ is cofinal, C ∈ V [G], otp(C) < κ. There is some D ⊇ C,

D ∈ KV [G] = KV ⊆ V with |D|V [G] = |C|V [G] +ω
V [G]
1 < κ by the covering lemma.

But |D|V = κ, so κ is collapsed. �
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3.2. Prikry forcing. Before we define Prikry forcing, let us first review a fewMay 7May 7

results on measurable cardinals.

Definition 3.15. Suppose that κ < ω is a cardinal.

(i) An ultrafilter U on κ is < κ-complete if
⋂
α<γ Xα ∈ U for all Xα ∈ U , γ < κ.

(ii) κ is measurable if there is a < κ-complete nonprincipal ultrafilter on κ.
(iii) An ultrafilter U on κ is normal if U is nonprincipal and

i

α<κ

Xα = {β < κ | β ∈
⋂
α<β

Xα} ∈ U

for all (Xα)α<κ with Xα ∈ U for all α < κ.

Lemma 3.16. Suppose that κ > ω is regular. A nonprincipal ultrafilter U on κ is
normal if every regressive f : κ→ κ is constant on a set in U .

Proof. Suppose that f : κ→ κ is regressive. Let Xα = κ \ f−1({α}). Suppose that
Xα ∈ U for all α < κ. Then

a
α<κXα ∈ U . Let β ∈

a
α<κXα. Then β /∈ f−1({α})

for all α < β.
Let f(β) = min{α < β | β /∈ Xα} when this exists, and f(β) = 0 otherwise.

Then

f−1({α}) = (κ \Xα) \ (α+ 1)

for α ≥ 1, and

f−1({0}) = (
i

α<κ

Xα) ∪ ((κ \X0) \ 1).

Since f is constant on a set in U , this implies
a
α<κXα ∈ U . �

Lemma 3.17. If κ is measurable, then there is a normal ultrafilter on κ.

Proof. Suppose that U is a nonprincipal< κ-complete ultrafilter on κ. Let UltU (V ) =
{[f ] | f : κ → V }, [f ] = [g] if {α < κ | f(α) = g(α)} ∈ U , [f ] ∈ [g] if
{α < κ | f(α) ∈ g(α)} ∈ U .

Then j : V → UltU (V ), j(x) = [cx], cx : κ→ κ, cx(α) = x, is elementary by Los’
theorem.

Claim 3.18. UltU (V ) is wellfounded.

Proof. Suppose that [f0] 3 [f1] 3 .... Let Xn = {α < κ | fn(α) 3 fn+1(α)} ∈ U .
Let α ∈

⋂
n∈ωXn. Then f0(α) 3 f1(α) 3 .... �

Let X ∈ U ′ if X ⊆ κ and κ ∈ j(X). Then U ′ is a nonprincipal ultrafilter on κ.
If Xα ∈ U ′ for all α < κ, then κ ∈ j(Xα) for α < κ. So κ ∈ j(

a
α<κXα) and hencea

α<κXα) ∈ U ′. Therefore U ′ is a normal ultrafilter on κ, as required. �

Lemma 3.19. Suppose that U is a normal ultrafilter on κ and F : [κ]<κ → µ < κ.
Then there is a set H ∈ U such that F � [H]n is constant for all n ∈ ω.

Proof. We prove that for each n ∈ ω, there is a set H ∈ U such that F � [H]n is
constant. This is clear for n = 1.

For α < κ, let Fα : [κ \ {α}]n → µ, Fα(x) = F (x ∪ {α}). By the inductiion
hypothesis, there are Xα ∈ U for α < κ such that Fα � [Xα]n is constant with value
µα < µ.

There is some ν < µ and H ⊆ X, H ∈ U with µα = ν for all α ∈ H. Then
X :=

a
α<κXα ∈ U .

If α0 < α1 < ... < αn are in X, then {α1, ..., αn} ∈ [Xα0 ]n, so F ({α0, ..., αn}) =
Fα0

({α1, ..., αn}) = µα0
. Then F (x) = ν for all x ∈ [H]n+1. �
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Definition 3.20. (Prikry forcing) Suppose that κ is measurable and U is a normal
ultrafilter on κ. Let PU denote the set of pairs (s,A) with s ∈ [κ]<ω and A ∈ U .
Let (s,A) ≤ (t, B) if t is an initial segment of s and A∪ (s \ t) ⊆ B. But s, t ∈ [B]n

and B is homogeneous.

Lemma 3.21. PU satisfies the κ+-c.c.

Proof. Suppose that A ⊆ PU is an antichain with |A| = κ+. Then there are
(s,A), (t, B) ∈ A with s = t. Then (s,A ∩ B) ≤ (s,A), (t, B), contradicting the
assumption. �

Lemma 3.22. Suppose that G is PU -generic. Let x =
⋃
{s | ∃A (s,A) ∈ G}. Then

x ⊆ κ is cofinal and otp(x) = ω.

Proof. If α < κ, then Dα = {(s,A) ∈ PU | max(range(s)) ≥ α} is dense in PU . So
x ⊆ κ is cofinal.

Suppose that otp(x) > ω. Then there are (s,A), (t, B) ∈ G with max(s) <
max(t), s 6⊆ t. Then (s,A), (t, B) are incompatible. �

Lemma 3.23. (Prikry lemma) Suppose that (s,A) ∈ PU and ϕ is a formula. There
is some B ⊆ A, B ∈ U such that (s,B) decides ϕ.

Proof. Let δ = max(s) + 1. Let

S0 = {t ∈ [κ \ δ]<ω | ∃X ∈ U (t,X) 
 ϕ}

S1 = {t ∈ [κ \ δ]<ω | ∃X ∈ U (t,X) 
 ¬ϕ}

S2 = [κ \ δ]<ω \ (S0 ∪ S1).

By the previous lemma, [B]n ⊆ Si for some i < 2.
Suppose that (s,B) does not decide ϕ. Then there are t, u ∈ [B]<ω, X,Y ⊆ B

with (s ∪ t,X) 
 ϕ and (s ∪ u, Y ) 
 ¬ϕ. We can assume that |t| = |u| = n. This
contradicts the assumption that B is homogeneous. �

Lemma 3.24. PU does not add bounded subsets of κ.

Proof. Suppose that ḟ is a name for a function ḟ : µ → Ord with µ < κ below a
condition (s,A). There is a decreasing sequence (An)n∈ω in U with A0 ⊆ A and

such that (s,An) decides ḟ(n). Let B =
⋂
n∈ω An. Then (s,B) decides all values

of ḟ . �

Lemma 3.25. Suppose that M is a countable transitive model of ZFC, κ is mea-
surable in M , and U is a normal measure on κ in M . Then for any set X ⊆ κ of
order type ω, X =

⋃
{s | ∃A (s,A) ∈ G} for some PMU -generic filter G over M if

and only if for every A ∈ U , X \A is finite.

Proof. Suppose that G is PU -generic over M and X =
⋃
{s | ∃A (s,A) ∈ G}.

Suppose that A ∈ U . Then for every (s,B), (s,A ∩ B) forces that every α ∈ X
above max(s) is in A. So X \A is finite.

Suppose that X ⊆ κ has order type ω and that X \A is finite for all A ∈ U . We
claim that

G = {(s,A) ∈ PU | s is an initial segment of X and X \ s ⊆ A}

is PU -generic over M .
Suppose that D ⊆ PU , D ∈ M is dense open. For s ∈ [κ]<ω, let Fs : [κ]<ω → 2

with Fs(t) = 1 if and only if max(s) < min(t) and ∃X(s ∪ t,X) ∈ D. Suppose
that As ∈ U is homogeneous for Fs. If there is an Y such that (s, Y ) ∈ D, let
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Bs = As ∩ Y . Let Bs = As otherwise. Let Bα :=
⋂
{Bs | s ∈ [κ]<ω, max(s) = α}

Let

A :=
i

s∈[κ]<ω

Bs := {β < κ | β ∈
⋂

max(s)<β

Bs} =
i

α

Bα<κ ∈ U.

Since D is open dense, we have the following for all s ∈ [κ]<ω. ++

Claim 3.26. If ∃Y (s, Y ) ∈ D, then (s,A \ s) ∈ D.

X has an initial segment s such that X \ s ⊆ A.
Since D is dense, there is some t ∈ [B \ s]<ω and Y with (s ∪ t, Y ) ∈ D. Let

u ⊆ X \ s be such that |u| = |t|. Since A \ s ⊆ As is homogeneous for Fs, there is
some Z with (s ∪ u, Z) ∈ D.

Then (s ∪ u,A \ (s ∪ u)) ∈ D by Claim 3.26. Since (s ∪ u,A \ (s ∪ u)) ∈ G,
G ∩D 6= ∅. �

4. Indestructibility

May 13May 13

Large cardinals are useful in many forcing constructions, as we have seen for
instance in the iteration for PFA. It is often useful to know that large cardinal
properties are preserved under certain forcings. For example, most large cardinals
κ are preserved under forcings of size < κ. For forcings of size ≥ κ, κ could be
collapsed, so we can only consider forcings which meet additional requirements. By
a result of Laver, any supercompact cardinal κ can be made indestructible under
< κ-directed closed forcing. To prove this, we will first characterize supercompact
cardinals by the existence of normal measures on Pκ(λ). We will also need some
lemmas on how to factor an iterated forcing into an initial segment of the origi-
nal iteration and a name for an iteration, with similar properties as the original
iteration.

4.1. Supercompact cardinals and filters on Pκ(λ).

Definition 4.1. Suppose that κ ≤ λ are cardinals.

(1) Let Pκ(λ) = {A ⊆ λ | |A| < κ}.
(2) An ultrafilter on Pκ(λ) is fine if x̂ = {y ∈ Pκ(λ) | x ⊆ y} ∈ U for all

x ∈ Pκ(λ).
(3) An ultrafilter on Pκ(λ) is normal if it is fine and for every (regressive)

function f : Pκ(λ) → λ with f(x) ∈ x for almost all x, f is constant on a
set in the filter.

Lemma 4.2. Suppose that U is a normal ultrafilter on Pκ(λ) and that jU is the
ultrapower.

(1) For all X ∈ Pκ(λ), X ∈ U if and only if [id] ∈ j(X).
(2) [id] = j[λ].

Proof. If γ < λ, then γ ∈ x for almost all x ∈ Pκ(λ) and hence j(γ) ∈ [id].
Suppose that [f ] ∈ [id]. Then f(x) ∈ x for almost all x. Since U is normal, there

is some γ < λ such that [f ] = j(γ). �

Lemma 4.3. A cardinal κ is λ-supercompact for λ ≥ κ if and only if there is a
normal filter on Pκ(λ).

Proof. Suppose that U is a normal ultrafilter on Pκ(λ) and jU : V → UltU (V ) is
the ultrapower. We claim that j is λ-supercompact.

Since UltU (V ) is wellfounded, we can assume that it is transitive. Since U is
< κ-complete, j � κ = id. We have j(κ) > [id] ≥ κ.
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Let M = UltU (V ). We claim that Mλ ⊆M . Suppose that (aα)α<λ is a sequence
with aα = [fα] ∈M for all α < κ. It is sufficient to show that {aα | α < κ} ∈M .

Let f : Pκ(λ)→ V , f(x) = {fα(x) | α ∈ x}.

Claim 4.4. [f ] = {aα | α < λ}.

Proof. If α < λ, then α ∈ x for almost all x, so [fα] ∈ [f ].
If [g] ∈ [f ], then for almost all x, g(x) = fα(x) for some α ∈ x. Since U is normal,

there is some α < λ such that g(x) = fα(x) for almost all x. Hence [g] = aα. �

Now suppose that j : V → M is λ-supercompact. Let X ∈ U if X ⊆ Pκ(λ) and
j[λ] ∈ j(X).

It is straightforward that U is < κ-complete.
U is fine since for every α < λ, {x | α ∈ x} ∈ U .
To see that U is normal, suppose that f : Pκ(λ) → λ is regressive. Then

(j(f))(j[λ]) ∈ j[λ]. Hence (j(f))(j[λ]) = j(α) for some α < λ, so f(x) = α for
almost all x. �

Corollary 4.5. There is a first order formula ϕ such that ϕ(κ) holds if and only
if κ is supercompact.

Corollary 4.6. Suppose that κ ≤ λ are cardinals and κ is λ-supercompact. Then
there is a λ-supercompact embedding j : V →M with crit(j) = κ and |(2j(κ))M |V ≤
|2(λ<κ)|V .

Proof. Suppose that U is a normal ultrafilter on Pκ(λ) and jU is the ultrapower.
The elements of P (j(κ))UltU (V ) are represented by functions f : Pκ(λ) → P (κ).

There are ((2κ)λ
<κ

)V = (2(λ<κ))V many such functions. �

4.2. Indestructibility under < κ-directed closed forcing.

Definition 4.7. Suppose that κ is a cardinal. A forcing P is < κ-directed closed
if for every directed set A ⊆ P with |A| < κ, there is some p ∈ P with p ≤ q for all
q ∈ A.

Lemma 4.8. Suppose that κ > ω is regular. If P is < κ-directed closed and 
P Q̇
is < κ-directed closed, then P ∗ Q̇ is < κ-directed closed.

Proof. Suppose that D ⊆ P ∗ Q̇ is < κ-directed closed. Then E := {p ∈ P | ∃q̇ |
(p, q̇) ∈ D} is < κ-directed closed. Suppose that p0 ∈ P with p0 ≤ p for all p ∈ E.
Let F := {q̇ | ∃p | (p, q̇) ∈ D}. Then p0 forces that F is < κ-directed closed. There
is a name q̇0 such that p0 forces that q̇0 ≤ q̇ for all q̇ ∈ E. Then (p0, q̇0) ≤ (p, q̇) for
all (p, q̇) ∈ D. �

Lemma 4.9. Suppose that κ, η > ω are regular cardinals. Suppose that (Pα, Q̇β) |
α ≤ κ, β < κ) is a forcing iteration such that

(i) 
Pα Q̇α is < η-directed closed for all α < κ and
(ii) all limits are direct or inverse, and inverse limits are taken at every limit

stage with cofinality less than η.

Then Pκ is < η-directed closed.

Proof. As in the previous proof. �

Lemma 4.10. Suppose that κ is inaccessible and Pκ is a forcing iteration of length
κ such that

(i) 
Pα Q̇α ∈ Vκ for all α < κ,
(ii) a direct limit is taken at κ, and
(iii) a direct limit is taken at a stationary set of limit stages below κ.
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Then Pκ satisfies the κ-c.c.

Proof. Suppose that A = {pα | α < κ} is an antichain in Pκ of size κ. Let f : κ→ κ,
f(α) = sup(supp(pα)).

Then f is regressive on a stationary subset of κ. Then there is a stationary set
S ⊆ κ and γ < κ such that f(α) = γ for all α ∈ S.

We can assume that for all α < β in S, supp(pα) ⊆ β, by thinning out S.
Since Pγ satisfies the κ-c.c., there are α < β in S such that pα � γ and pβ � γ

are compatible. Then pα, pβ are compatible. �

May 14May 14

Definition 4.11. Suppose that P is a forcing. Let 〈〉P = 〈〉 denote the canonical
function which maps P-names σ, τ to a P-name for the pair (σ, τ).

Lemma 4.12. Suppose that (P ∗ Q̇) ∗ Ṙ is a 3-step iteration and η is a regular

cardinal. Then there is a P-name Ṡ for a 2-step iteration Q̇ ∗ R̄ such that

(i) There is an isomorphism π : (P ∗ Q̇) ∗ Ṙ→ P ∗ Ṡ.

(ii) If 1P 
 Q̇ is < η-directed closed and 1P∗Q̇ 
 Ṙ is < η-directed closed, then

1P 
 (1Q̇ 
 R̄ is < η-directed closed).

Proof. We define maps ξ, ξ̄ which convert a P∗Q̇-name into a P-name for a Q̇-name
and conversely. By induction in rk(τ) let

ξ(τ) = {(〈ξ(σ), q̇〉, p) | (σ, (p, q̇)) ∈ τ}

ξ̄(τ) = {(ξ̄(σ), (o, q̇) | (〈σ, q̇〉, p) ∈ τ}.
Let R̄ := ξ(Ṙ).

Claim 4.13. ξ̄ = ξ−1. Suppose that τ is a P-name, G×H is P ∗ Q̇-generic over V .
Then τG×H = (ξ(τ)G)H .

Proof. By induction on rk(τ), x ∈ τG×H ⇔ ∃(p, q̇) ∈ G×H (σ, (p, q̇)) ∈ τ , σG×H =
x⇔ ∃p ∈ G ∃q̇ (q̇G = q ∧ (〈ξ(σ), q̇〉, p) ∈ ξ(τ)∧ (ξ(σ)G)H = x⇔ x ∈ (ξ(τ)G)H . �

Claim 4.14. Suppose that τ is a P-name for a Q̇-name and G ∗H is P ∗ Q̇-generic
over V . Then (τG)H = ξ̄(τ)G×H .

Proof. ξ̄(τ)G∗H = (ξ(ξ̄(τ)G)H = (τG)H by the previous claim. �

Claim 4.15. If τ is a full P ∗ Q̇-name, then 
P ξ(τ) is a full Q̇-name.

Proof. Suppose that 
P (
Q̇ σ̄ ∈ ξ(τ)). Let σ = ξ̄(σ̄). Then 
P∗Q̇ σ ∈ ξ̄(ξ(τ)) = τ .

There is ν ∈ dom(τ) with 
P∗Q̇ σ = ν. Let ν̄ = ξ(ν).

Then 
P (
Q̇ ξ(σ) = ξ(ξ̄(σ̄)) = σ̄ = ξ(ν) = ν̄) by a claim above.

To see that 
P ν̄ ∈ dom(ξ(τ)), note that ν ∈ dom(τ) and ξ(τ) = {(〈ξ(σ), q̇〉, p) |
(µ, (pq̇)) ∈ τ}. For µ = ν, ξ(µ) = ξ(ν) = ν̄. This implies the claim. �

Let Ṡ denote a P-name for Q ∗ R̄. Let π : (P ∗ Q̇) ∗ Ṙ → P ∗ Ṡ, π((p, q̇), ṙ) =
(p, 〈q̇, ξ(ṙ〉).

Claim 4.16. For all a, b ∈ (P ∗ Q̇) ∗ Ṙ, a ≤ b if and only if ξ(a) ≤ ξ(b).

Proof. By induction on rk(p), rk(q). Let ((p, q̇), ṙ) ≤ ((u, v̇), ẇ) ⇔ G ∗ H P ∗ Q̇-
generic over V below (p, q̇), ṙG∗H ≤ ẇG∗H ⇔ for all P-generic G below p over V

and Q̇G-generic H below q̇G over V [G], (ξ(ṙ)G)H ≤ (ξ(ẇG)H ⇔ (ṗ, 〈q̇, ξ(ṙ)〉) ≤
(u̇, 〈v̇, ξ(ẇ)〉). �

Claim 4.17. For all a, b ∈ P ∗ Ṡ, a ≤ b if and only if ξ̄(a) ≤ ξ̄(b).
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Proof. α = ξ(ξ̄(α)) ≤ b = ξ(ξ̄(b)) if and only if ξ̄(a) ≤ ξ̄(b) by the previous
claim. �

Claim 4.18. Suppose that η is a cardainl. If 
P Q̇ is < η-directed closed and 
P∗Q̇ Ṙ
is < η-directed closed, then 
P (
Q̇ R̄ is < η-directed closed.

Proof. By a lemma above. �

�

Lemma 4.19. Suppose that (Pα, Q̇α)α≤γ+δ is an iteration of separative forcings
such that Pβ is a direct limit for β ∈ D, and an inverse limit for β ∈ I, where
γ + δ = D t I.

Suppose that γ+α ∈ D, i.e. Pγ+α is a direct limit, for every limit ordinal α ≤ δ
with cof(α) ≤ |Pγ |. Suppose that η is regular and inverse limits are taken at every
limit of cofinalty < η.

Then there is a Pγ-name for an iteration (Ṗ(γ)
α , Q̇(γ)

α )α≤δ with the following prop-
erties.

(i) for each α ≤ δ, there is an isomorphism πγ,α : Pγ+α → Pγ ∗ Ṗ(γ)
α .

(ii) 1Pγ forces that Ṗ(γ)
α is a direct limit if γ + α ∈ D, and an inverse limit if

γ + α ∈ I.
(iii) If 1Pα 
 Q̇α is < η-directed closed for all α < γ + δ, then 1Pα forces that

1Ṗ(α)
γ


 ”Q̇(α)
γ ” is < η-directed closed for all α < δ.

Proof. In the successor step, we need to construct πγ,α+1 : Pγ+α+1 → Pγ ∗ Ṗ(γ)
α+1.

Note that Pγ+α
∼= Pγ+α ∗ Q̇γ+α

∼= (Pγ ∗ Ṗ(γ)
α ) ∗ Q̇γ+α.

By the previous lemma, there are a Pγ-name Q̇(γ)
α for a Ṗ(γ)

α -name, a Pγ-name Ṡ
for Ṗ(γ)

α ∗ Q̇(γ)
α , and an isomorphism (Pγ ∗ Ṗ(γ)

α )∗ Q̇γ+α → Pγ ∗ Ṡ. This yields πγ,α+1.

In limit steps λ, we define Ṗ(γ)
λ as a Pγ-name for the inverse or direct limit of

(Ṗ(γ)
α )α<λ. Let πγ,λ : Pγ+λ → Pγ ∗ Ṗ(γ)

λ , πγ,λ(p) = (p � γ) ∗ pγ , where pγ is a name
for (πγ,α(p)1)α<λ.

In the inverse limit case, it follows by induction that πγ,λ is an isomorphism.
In the direct limit case, suppose that p ∈ Pγ+λ and sup(supp(p)) = δ. Then
p � γ 
Pγ sup(supp(πγ,λ(p)1)) ≤ δ. So πγ,λ is well-defined. To see that πγ,λ

is an isomorphism, suppose that (p, q̇) ∈ Pγ ∗ Ṗ(γ)
λ . Then by definition of Ṗ(γ)

λ ,
p 
Pγ sup(supp(q̇)) < λ. Since |Pγ | < cof(λ) by our assumption, there is some
δ < λ such that p 
Pγ sup(supp(q̇) ≤ δ. �

Definition 4.20. A forcing iteration has Easton support if direct limits are taken
at all regular limit cardinals and inverse limits are taken at singular limit ordinals.

Definition 4.21. (1) (Q, ϑ, κ) is a counterexample if
(i) Q is a < κ-directed closed forcing,
(ii) κ is ϑ-supercompact, and

(iii) 1 
Q “κ is not ϑ-supercompact”.
(2) (Q, ϑ, κ) is a minimal counterexample if (ϑ, η) is lexicographically least such

that (Q, ϑ, κ) is a counterexample and |tc(Q)| = η.

Definition 4.22. We define an Easton support iteration (Pα, Q̇α)α<κ and a se-
quence (ϑα, ηα)α<κ as follows. Suppose that Pγ is defined and that ϑα, ηα are
defined for all α < γ.

(i) If γ < ϑα, ηα for all α < γ, let Q̇γ denote a Pγ-name for the lottery sum of all
forcings Q with |tc(Q| < κ such that (Q, ϑ, γ) is a minimal counterexample
for some ϑ < κ. Let ϑγ = ϑ, ηγ := |tc(Q)| for such ϑ,Q.
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(ii) Let Q̇γ denote a Pγ-name for the trivial forcing {1} otherwise.

Theorem 4.23. (Laver) Suppose that κ is supercompact and that G is Pκ-generic
over V . Suppose that Q is a < κ-directed closed forcing in V [G] and that h is
Q-generic over V [G]. Then κ is supercompact in V [G ∗ h].

Proof. Suppose that in V [G], (Q, ϑ, κ) is a minimal counterexample of size η. Let

µ := max{2ϑ<κ , η}.
Suppose that j : V →M is µ-supercompact. By the factor lemma, M � j(Pκ) ∼=

Pκ ∗ Q̇κ ∗ Ṙ for some Q̇κ, Ṙ as in the factor lemma.

Claim 4.24. There is Q̇Gκ -generic filter g over V [G] which chooses Q.

Proof. SinceMµ ⊆M and |Q| ≤ µ, Q ∈M . Then P (Pκ(ϑ))V [G∗h] = P (Pκ(ϑ))M [G∗h]

for every Q-generic filter h over V [G]. So Q destroys the ϑ-supercompactness of κ
over M [G].

Moreover, since Mµ ⊆ M , for every forcing R ∈ M with |R| < |Q| and every
R-generic filter i over V [G], P (Pκ(ϑ))V [G∗i] = P (Pκ(ϑ))M [G∗i]. So Q has minimal
size.

Suppose that H is ṘG∗g-generic over V [G ∗ g]. Let j0 : V [G] → M [G ∗ g ∗ H],
j0(σG) := j(σ)G∗g∗H .

Claim 4.25. j0 is well-defined and elementary.

Proof. Suppose that σG = τG. THen p 
 σ = τ for some p ∈ G. Then
pa1j(κ) = j(p) 
 j(σ) = j(τ). Since pa1j(κ) ∈ G ∗ g ∗ H, this implies that
j0(σG) = j(σ)G∗g∗H = j(τ)G∗g∗H = j0(τG).

The elementarity is proved similarly. �

We have j � Q ∈M [G], since M [G]µ ⊆M [G] by Lemma 1.12. So j[g] ∈M [G∗g]. insert taginsert tag

Since j[g] ⊆ Q̇Gκ is directed and j(Q) is < j(κ)-directed closed in M [G ∗ g ∗ H],
there is a master condition q0 ∈ j(Q) with q0 ≤ q for all q ∈ j[g]. Suppose that q̇0

is a j(Pκ)-name with q̇G∗g∗H0 = q0.
Let j1 : V [G ∗ g]→M [G ∗ g ∗H ∗ h], j1(σG∗g) := j(σ)G∗g∗H∗h.

Claim 4.26. j1 is well-defined and elementary.

Proof. Suppose that σG∗g = τG∗g. Then (p, q̇)|V dashnσ = τ for some (p, q̇) ∈
G ∗ g. Then (pa1j(κ), q̇0) ≤ (pa1j(κ), j(q̇)) = (j(p), j(q̇)) 
 j(σ) = j(τ). Since

(pa1j(κ), q̇
j(Pκ)
0 ) ∈ G ∗ g ∗H ∗ h, this implies that j1(σG∗g) = jG∗g1 ).

The elementarity of j1 is proved similarly. �

Let U := {X ⊆ Pκ(ϑ) | X ∈ V [G ∗ g], j[ϑ] ∈ j1(X)}.

Claim 4.27. U is normal with respect to regressive functions f : Pκ(ϑ) → ϑ, f ∈
V [G ∗ g].

Proof. Analogous to the proof that the ultrafilter induces by a ϑ-supercompact
embedding is normal. �

In M [G∗g], the forcing ṘG∗g∗j(Q) is < µ-closed, by the definition of (Pα, Q̇α)α<κ
and by the factor lemma.

Since M [G∗g]µ ⊆M [G∗g] in V [G∗g] by Lemma 1.12, ṘG∗g ∗j(Q) is µ-closed in tag lemmatag lemma

V [G∗g]. Hence κ is ϑ-supercompact in V [G∗g], contradicting the assumption. �

Problem 4.28. Suppose that κ is weakly compact and consider the Easton support
iteration which forces with Add(λ, 1) at all regular cardinals λ < κ. Show that in the
generic extension and in every further extension by Add(κ, 1), κ is weakly compact.
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4.3. SCH.

Definition 4.29. (i) Suppose that κ is a singular strong limit cardinal. The
singular cardinal hypothesis (SCH) holds at κ if 2κ = κ+.

(ii) The singular cardinal hypothesis (SCH) holds if SCH holds at every singular
strong limit cardinal.

Corollary 4.30. Suppose that κ is supercompact. There is a generic extension
V [G] of V in which

(i) κ is a strong limit cardinal,
(ii) cof(κ) = ω, and

(iii) 2κ > κ+.

Proof. Suppose that g is Pκ-generic over V and h is Add(κ, κ++)-generic over V [G].
Then κ is supercopmact in V [G ∗ h].

Suppose that in V [G ∗ h], U is a normal ultrafilter on κ and i is PU -generic
over V [G ∗ h], where PU denotes Prikry forcing. Then V [g ∗ h(i] satisfies the
requirements. �

4.4. < κ-closed forcings. The following lemmas show that no measurable cardinal
is indestructible under < κ-closed forcing.

Definition 4.31. Suppose that κ > ω is regular. A thin κ-Kurepa tree is a tree
(T,≤T ) such that

(i) 0 < |Levα(T )| ≤ |α| for all α < κ and
(ii) |[T ]| > κ,

where [T ] denotes that set of branches b ∈ Tκ of length κ through T .

Lemma 4.32. Suppose that κ is measurable. Then there is no thin κ-Kurepa tree.

Proof. We can assume that T ⊆ Vκ. Suppose that j : V → M is elementary with
M transitive and crit(j) = κ. Since |Levα(T )| ≤ |α| < κ for α < κ, Levα(j(T )] =
Levα(T ) for α < κ. If b ∈ [T ], then M � b ⊆ j(b) ∈ [j(T )] and j(b)(κ) extends b.
So |Levκ(j(T ))| > κ. �

Lemma 4.33. Suppose that κ is measurable. Then there is a < κ-closed forcing
which adds a thin κ-Kurepa tree.

Proof. Let P denote the following forcing.

(1) (a) Conditions are pairs (p, f) where
(i) p = (αp,≤p) is a tree such that

(b) (i) |p| < κ,
(ii) |Levα(p)| ≤ |α| for all α < κ,
(iii) every ξ < αp has two incompatible extensions in p, unless ht(p) =

β + 1 and ξ ∈ Levβ(p),
(iv) if β < ht(p) is a limit ordinal and b is a branch in p of height β,

then b has at most one extension in Levβ(p).
(The last two conditions define a normal tree, and will make sure that
the generic κ-Kurepa tree is normal. This is not necessary for our claim).

(c) f : dom(f)→ [p] is injective with
(i) dom(f) ≤ κ+,

(ii) |dom(f)| < κ.
(2) The ordering is defined by (p, f) ≤ (q, g) if

(a) p is an end extension of q, i.e.
(i) αp ≤ αq,

(ii) ≤q=≤[ ∩(αq × αq),
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(iii) if ξ ∈ αp \ αq, then htp(ξ) ⊇ ht(q).
(b) dom(f) ⊇ dom(g) and for every α ∈ dom(g), the branch g(α) is an

initial segment of f(α).

Claim 4.34. P is < κ-closed.

Proof. Suppose that (pβ , fβ)β<γ is decreasing in P with γ < κ. Let

p := (
⋃
β<γ

αpβ ,
⋃
β<γ

≤pβ ).

Let f denote the function with domain
⋃
β<γ dom(fβ) such that f(δ) is the unique

branch b ∈ [p] of length ht(p) with fβ(δ) ⊆ f(δ) for all β with δ ∈ dom(fβ). Then
(p, f) ∈ P is a lower bound. �

Claim 4.35. P satisfies the κ+-c.c.

Proof. Straightforward with the ∆-system lemma. �

Suppose that G is P-generic over V . Let T :=
⋃
{αp | ∃f (p, f) ∈ G} = κ and

≤T :=
⋃
{≤p| ∃f (p, f) ∈ G}.

Claim 4.36. (T,≤T ) is a thin κ-Kurepa tree.

Proof. |Levα(T )| < κ for α < κ, since the conditions are ordered by end extension.
Moreover, the function

⋃
{f | ∃p (p, f) ∈ G} : κ+ → [T ] is injective. �

This completes the proof of the lemma. �

Problem 4.37. (i) Decide whether the forcing to add a κ-Kurepa tree for a reg-
ular cardinal κ with κ<κ = κ is < κ-directed closed.

(ii) Is there a < κ-closed but not < κ-directed closed forcing for every κ > ω?

5. Generic ultrapowers

We will now consider some large cardinal properties of small cardinals. For
example if PFA holds, then ω2 has some properties resembling a supercompact
cardinal. In the following, we will consider generic elementary embeddings with
critical point ω1, so that ω1 resembles a measurable cardinal.

Definition 5.1. Suppose that κ > ω is regular. An ideal on κ is a set I ⊆ P (κ)
such that

(i) ∅ ∈ I,
(ii) κ /∈ I,

(iii) I is downwards closed,
(iv) I is closedd under finite unions.

An ideal I is κ-complete if I is closed under unions of size < κ.

Definition 5.2. Suppose that κ > ω is regular and I is an ideal on κ.

(i) I+ := {X ⊆ κ | X /∈ I}.
(ii) I∗ := {X ⊆ κ | κ \X ∈ I} the filter dual to I.

(iii) PI := I+, X ≤ Y if X ⊆ Y .

The separative quotient of PI is isomorphic to B∗ = B\{0B}, where B := P (κ)/I.

Lemma 5.3. An ideal I on κ is κ-complete if and only if for every partition
κ =

⊔
α<γ Xα with γ < κ, Xα ∈ I+ for some α < γ.
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Proof. If I is κ-complete, κ =
⊔
α<γ Xα, γ < κ, and Xα ∈ I for all α < γ, then

κ ∈ I.
Suppose that (Xα)α<γ is increasing with Xα ∈ I and γ < κ. Let Yβ = Xβ \⋃
α<β Xα for β < γ and Yγ = κ \

⋃
α<γ Xα. Then κ =

⊔
α<γ+1 Yα. Since Yα ∈ I

for α < γ, Yγ ∈ I+. �

Definition 5.4. Suppose that M is a transitive model of a fragment of ZFC.

(i) An M -ultrafilter is a filter U on P (κ)M such that for every X ∈ P (κ)M ,
X ∈ U or κ \X ∈ U .

(ii) An M -ultrafilter U is κ-complete if it is κ-complete with respect to sequences
(Xα)α<γ ∈M .

Lemma 5.5. Suppose that G is PI-generic over V . Then

(1) G is a V -ultrafilter on κ and I∗ ⊆ G.
(2) If I is κ-complete, the G is a κ-complete V -ultrafilter.

Proof. (1) If X ∈ P (κ)V , then {Y ∈ PI | Y ⊆ X ∨ Y ⊆ κ \X} is dense in PI . So
G is a V -ultrafilter. If X ∈ I∗, then {Y ∈ PI | Y ⊆ X} is dense in PI . So X ∈ G.

(2) Suppose that κ =
⊔
α<γ Yα with γ < κ and (Yα)α<γ ∈ V . SinceI is κ-

complete, the set {X ∈ PI | X ⊆ Yα for some α < γ} is dense in PI . So Yα ∈ G for
some α < γ. Therefore G is κ-complete. �

Definition 5.6. Suppose that κ > ω is regular and i is a κ-complete nonprincipal
ideal on κ. Suppose that G is PI -generic over V . Then UltG(V ) is called a generic
ultrapower.

Lemma 5.7. (1) The ultrapower map j : V → UltG(V ), j(x) = [cx], is elemen-
tary.

(2) Los’ theorem holds for UltG(V ), i.e. for all fi : κ→ V with fi ∈ V , UltG(V ) �
ϕ([f0], ..., [fn]) if and only if {α < κ | V � ϕ(f0(α), ..., fn(α))} ∈ G.

(3) crit(j) = κ.

Proof. (3) We have j(α) = α for all α < κ¡ since G is κ-complete. We have j(κ) 6= κ,
since [cα] < [id] < cκ for all α < κ. �

Definition 5.8. Suppose that κ > ω is regular and I is a κ-complete ideal on κ.
I is precipitous if for every PI -generic filter G, the generic ultrapower UltG(V ) is
wellfounded.

We now aim for a combinatorial definition of precipitous ideals.

Definition 5.9. Suppose that I is an ideal on κ.

(i) An I-partition of a set S ∈ I+ is a maximal family W ⊆ S with X ∩ Y ∈ I
for all X,Y ∈W , X 6= Y .

(ii) A functional F on a set S ∈ I+ is a set of function f with ordinal values
such that WF := {dom(f) | f ∈ F} is an I-partition of S and f 6= g implies
dom(f) 6= dom(g).

(iii) If F,G are functionals, let F < G if
(a) WF refines WG (WF ≤ WG), i.e. for every X ∈ WF , there is some

Y ∈WG with X ⊆ Y .
(b) If f ∈ F , g ∈ G, and dom(f) ⊆ dom(g), then f(α) < g(α) for all

α ∈ dom(f).

Lemma 5.10. Suppose that I is an ideal on κ. The following conditions are equiv-
alent.

(i) I is precipitous.
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(ii) There is no set S ∈ I+ and no strictly decreasing sequence F0 > F1 > ... of
functionals on S.

Proof. Suppose that F0 > F1 > ... and dom(Fn) = S for all n. Let ḟn be a

PI -name such that X 
 ḟn � X = f̌ for all f ∈ F , X = dom(f). For each n,
Dn := {X ≤ S | ∃f ∈ Fn, X ⊆ dom(f)} is dense open below S. If f ∈ Fn,

X ⊆ dom(f), then X 
 ḟn � X̌ = f̌ � X̌. Since Dn ∩ Dn+1 is dense open below

S and Fn+1 < Fn, S 
 [ḟn+1] < [ḟn], contradicting the assumption that I is
precipitous.

For the other direction, suppose that S 
 [ḟ0] > [ḟ1] > .... For each n, Dn :=

{X ≤ S | X decides ḟn � X} is dense open below S. Let An ⊆ Dn be a maximal

antichain in Dn. Let Fn = {f | X = dom(()f) ∈ An, X 
 ḟn � X̌ = f̌ � X̌}. By
partitioning and shrinking the sets inf WFn , we obtain F0 > F1 > .... �

Definition 5.11. I is λ-saturated if PI satisfies the λ-c.c.

Lemma 5.12. Suppose that κ > ω is regular. If I is κ+-saturates, then I is
precipitous.

Proof. Suppose that S ∈ I+ and F0 > F1 > ... is a strictly decreasing sequence
of functionals on S. Let Wn = WFn . Since PI is κ+-c.c., we can make each Wn

disjoint and obtain W ′n. We can refine W ′n to W ′′n such that W ′′0 ≥ W ′′1 ≥ ... and
Sn :=

⋃
W ′′n = (

⋃
W0) ∩ ... ∩ (

⋃
Wn). Since S \ Sn ∈ I,

⋃
n Sn 6= ∅. Suppose that

α ∈
⋃
n Sn. For each n, there is a unique Xn ∈ W ′n with α ∈ Xn. Find fn ∈ Fn

with dom(fn) = Xn. Then f0(α) > f1(α) > ..., a contradiction. �

Lemma 5.13. (1) Suppose that j : V → M is elementary. Let U = {X ⊆ κ |
κ ∈ j(X)}. Then k : UltU (V )→M , k([f ]) = (f) is elementary and j = kjU .

(2) If U is a normal ultrafilter on κ, then UltU (V ) = {j(f)(κ) | f : κ → V, f ∈
V }.

Proof. k is elementary by Los’ theorem and kjU (x) = k([cx]) = j(cx)(κ) = cj(x)(κ) =
j(x). For the second part, let j = jU . �

Let Col(ω,X) = {p : ω ×X → Ord partial| |p| < ω, ∀γ ∈ X∀n p(n, γ) < γ}.

Lemma 5.14. Suppose that U is a normal ultrafilter on κ and j = jU Let P =
Col(ω,< κ), Q = Col(ω, [κ, j(κ)), G×H P×Q-generic over V . Then

(1) j(P ∼= P×Q, we will identify j(P) and P×Q.
(2) In V [G × H], j extends to jG : V [G] → M [G × H], j(σG) = j(σ)G×H and

jG(G) = G×H.
(3) M [G × H] = {jG(f)(κ) | f ∈ V [G]} = UltUG(V [G]), where UG = {X ∈

P (κ)V [G] | κ ∈ jG(x)}.

Proof. The second part holds since j[G] ⊆ G×H. For the last part, suppose that
x = σG×H ∈M [G×H], σ = j(f)(κ) ∈ UltU (V ). Let g : κ→ V [G], g(α) = f(α)G,
g ∈ V [G]. Then j(g0(κ) = σG×H . �

Theorem 5.15. Suppose that κ is measurable and G is Col(ω,< κ)-generic over
V . Then in V [G], there is a precipitous ideal on ω1.

Proof. We work in V [G]. Let I := {X ⊆ κ |
V [G]
Q κ /∈ jG(X)}.

Let h : P (κ) → ro(Q), h(X) = JX̌ ∈ U̇GK, where U̇G is a P-name for UG. Then
h induces a homomorphism i : P (κ)/I → ro(Q) of Boolean algebras.

Claim 5.16. i : P (κ)/I → ro(Q) is a dense embedding.
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Proof. Suppose that q ∈ Q. Then q = j(F )(κ) for some F : κ → V , F ∈ V ,
F (α) ∈ Col(ω, [α, κ). We work in V [G].

Let X := {α < κ | F (α) ∈ G � [α, κ)}. If H is Q-generic over V [G], then h(X) ∈
H ⇔ X ∈ UG ⇔ κ ∈ jG(X) = {α < j(κ) | jG(F )(α) ∈ jG(G) � [α, j(κ))} ⇔ q ∈
jG(G) � [κ, j(κ)) = H. Then h(X) = q, since Q is separative. �

Since h(X) ∈ H ⇔ X ∈ UG, UG is PI -generic over V [G].
For every A ∈ PI , there is a PI -generic filter UG with A ∈ UG as above, and

UltUG(V ) = M [G×H] is wellfounded. Hence I is precipitous.
May 28May 28

Claim 5.17. In V [G], I is generated by (U∗)V .

Proof. Suppose that p 
P Ẋ ∈ İ. Let A := {α < κ | p 
P α /∈ Ẋ}. Then

p 
 Ẋ ∩A = ∅.
Suppose that A /∈ U . Let q : κ \ A → P such that q(α) ≤ q and q(α) 
 α ∈ Ẋ.

Let r := j(q)(κ). Then r 
 κ ∈ jG(Ẋ).
Suppose that G ×H is P × Q-generic over V with r ∈ G ×H, so p ∈ G. Then

κ ∈ jG(ẊG), so ẊG ∈ UG. �

This completes the proof of the theorem. �

Definition 5.18. (i) Let SSP denote the class of forcings which preserve sta-
tionary subsets of ω1.

(ii) MM := FAω1
(SSP ).

Fact 5.19. We can force MM from a supercompact cardinal.

Theorem 5.20. MM implies that the nonstationary ideal on ω1 is ω2-saturated.

Proof. Pages 688-689 in Jech’s book. �
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