NORMALFORMEN

Thesenpapier

Wie algebraische Formeln können aussagenlogische Formeln auf verschiedene Arten dargestellt werden. Im Folgenden ist ein $Literal\ l$ eine aussagenlogische Variable oder ihre Negation.

Normalform	NNF	DNF	CNF
Algebraische Entsprechung	Minus nur direkt vor Variablen	Ausmultiplizierte Gleichung	Faktorisierte Gleichung
Form		$ \begin{vmatrix} D_1 \lor \ldots \lor D_n & \text{mit} \\ D_i = l_{i_1} \land \ldots \land l_{i_m} \end{vmatrix} $	
Beispiele	$\mid p, \neg p, \top$	$ (p \wedge \neg q) \vee (p \wedge r \wedge q)$	$ (r \vee \neg s \vee p) \wedge (p \vee q)$
Vorteil	Direkt sichtbar, ob Literale negiert auftreten	Erfüllbarkeit leicht zu testen	Allgemeingültigkeit leicht zu testen

Definitionale CNF Man erhält eine CNF, wenn man schrittweise die Teile der Formel durch neue Variablen ersetzt und die Definition anfügt, z.B.

$$p \vee (\underbrace{q \wedge \neg r}_{p_1}) \Leftrightarrow (p_1 \Leftrightarrow q \vee \neg r) \wedge (p \vee p_1)$$

Danach wird die Definition jeweils mit den üblichen Methoden der Transformation aufgelöst und man erhält eine CNF.

Satz. Die definitionale CNF ist zur ursprünglichen Formel erfüllbarkeitsäquivalent, d.h. $f\ddot{u}r \ x \notin \mathtt{atoms}(q) \ gilt$

psubst
$$(x \Rightarrow q) p$$
 erfüllbar $gdw. (x \Leftrightarrow q) \land p$ erfüllbar.

Normalformen-Funktionen

Befehl	Funktion
psimplify fm	Direkt auflösbare Terme auflösen.
nnf fm	NNF
nenf fm	NNF (Äquivalenz nicht eliminiert).
rawdnf fm	DNF über Transformation.
dnf fm	DNF über Mengendarstellung.
defcnf fm	Definitionale CNF.