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Abstract

Martin’s Axiom and applications, iterated forcing, forcing Martin’s axiom, adding var-
ious types of generic reals, proper forcing.

1 Introduction

The method of forcing allows to construct models of set theory with interesting or exotic
properties. Further results can be obtained by transfinite iterations of this technique.
More precisely, iterated forcing defines ordinary generic extensions, which can be analyzed
by an increasing well-ordered tower of intermediate models where successor models are
(simple) generic extensions of the previous models. Such an analysis is already possible for
the Cohen model for 2% = R, ., and we shall indicate some aspects in an introductory
chapter. In that model, partially generic filters exist for the simple Cohen forcing Fn(Ry, 2,
No). This motivates forcing axioms which require the existence of partially generic filters
for certain forcings. Martin’s Axiom MA is a forcing axiom for forcings satisfying the
countable antichain condition (ccc). We shall study some consequences of MA and shall
then force that axiom by iterated forcing. We shall also study the Proper Forcing Axiom
PFA for a class of forcings which are proper.

Our forcing constructions are mostly directed towards properties of the set R of real
numbers. There are several forcings which adjoin new reals to (ground) models. Different
forcings adjoin reals which may be very different with respect to growth behaviour and
other aspects. Cardinal characteristics of IR have been introduced to describe such
behaviours. They are systematised in CICHON’s diagram. Using MA and iterated forcings
several constellations of cardinals are realized in CICHON’s diagram.

2 Cohen forcing

The most basic forcing construction is the adjunction of a Cohen generic real ¢ to a count-
able transitive ground model M. The generic extension M|c] is again a countable transi-
tive model of ZFC and contains the “new” real ¢ ¢ M. In the previous semester we saw
that the adjunction of ¢ has consequences for the set theory within M|c]:

Theorem 1. In the COHEN extension M|c] the set R N M of ground model reals has
(Lebesque) measure zero.
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This implies some (relative) consistency results. We may, e.g., assume that M is a
model of the axiom of constructibility V = L, i.e., M = LM. Since the class L is absolute
between transitive models of set theory of the same ordinal height, LMY= LM = M. So:

Theorem 2. Let M be a ground model of ZFC + V = L . Then the COHEN extension
Mic] satisfies: the set

{reR|zel}

of constructible reals has measure zero.

On the other hand, inside a given model of set theory, the set R has positive measure,
i.e., does not have measure measure. So in the model L the set of constructible reals does
not have measure zero:

Theorem 3. The statement “the set of constructible reals has measure zero” is indepen-
dent of the axioms of ZFC.

Exercise 1. Show that the measure zero sets form a proper ideal on R which is closed under count-
able unions.

Exercise 2. Show that the following Cantor set of reals has cardinality 2%° and measure zero:
C={zeR|Vn<wz(2n)=z(2n+1)}.
The set of constructible reals in M|c] can be a set of size N; that has measure zero. This
poses the question whether it is (relatively) consistent that all sets of reals of size N; have
measure zero. Of course this necessitates 2% > X, . It is natural to ask the question about
Cohen’s canonical model for 2% >N, .

Consider adjoining A\ COHEN reals to a ground model M where A = R}/, Define \-fold
COHEN forcing P=(P,<,1)€ M by P=Fn(A xw,2,%;), <=2, and 1 =0. Let G be M-
generic on P. Let F'=J G: A x w— 2 and extract a sequence (cg|la < A) of Cohen reals
cpiw— 2 from F by:

Then the generic extension is generated by the sequence of Cohen reals:
M[G] = M[(cs| B <N)].

It is natural to construe M[G] as a limit of the models M|[(cs|f < «)] when « goes
towards A: Fix a < A. Let P, =Fn(a x w,2,8g) and R, =Fn((A\ a) X w, 2, Ny), partially
ordered by reverse inclusion. The isomorphisms

P~P,xR,and P, 1= P, xQ
imply that G, =GN P, is M-generic on P, and that
Ho={qeQ[{((a,n),1)[(n,i) € ¢} € Gatr}
is M[G,)-generic on Q. Let M, = M[G,] be the a-th model in this construction. Then
Ma 1= M[Ga 1] = M[Gol[Ho] = Ma[Ha)-
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It is straightforward to check that ¢, =] H,. So the model M[G] = M, is obtained by a
sequence of models (M, | @ < \) where each successor step is a Cohen extension of the pre-
vious step. The whole construction is held together by the “long” generic set G which dic-
tates the sequence of the construction and also the behaviour at limit stages.

Consider a real x € M[G]. Identifying characteristic functions with sets we can view x
as a subset of w. In the previous course we had seen that there is a name 2 € M, 2¢ =z
of the form

t={(n,q)n<wAqe A},

where every A, is an antichain in P. Since P satisfies the countable chain condition, there
is a < A such that A, C P, for every n <w. Then

x =56 =3 = 3Gac M[G,]

In M|G] consider a set B = {z; | i <R} of reals of size ;. One can view B as a subset of
XM Like in the above argument, there is an o < X such that B € M, . By our previous
Lemma, B C R N M, has measure zero in the Cohen generic extension M|c,]. So B has
measure zero in M|[G]. The model M[G] establishes:

Theorem 4. If ZFC is consistent then ZFC + “every set of reals of size <N; has
Lebesgue measure zero” is consistent.

Together with models of the Continuum Hypothesis this shows that the state-
ment “every set of reals of size <N; has Lebesgue measure zero” is independent of the
axioms of ZFC.

One can ask for further properties of Lebesgue measure in connection with the
uncountable. Is it consistent that every union of an Nj-sequence of measure zero sets has
again measure zero?

Exercise 3.

a) Show that in the model M[G] = M|(cg | B < A)] there is an N;-sequence of measure zero sets
whose union is R..

b) Show that {cs| S <A} has measure zero in M[G].

Exercise 4. Define forcing with sets of reals of positive measure (i.e., sets which do not have measure
Zero).

We shall later construct several forcing extensions M |G| which are obtained by itera-
tions of forcing notions similar to the above example. We shall require that in the itera-
tion M, is a generic extension of M, by some forcing @, € M, = M|G,] ; the forcing is
in general only given by a name Q, € M such that Q, = Q5. To ensure that this is
always a partial order we also require that 1p, IF Q. is a partial order. Technical details
will be given later.

A principal idea is to let @, to be some canonical name for a partial order forcing a
certain property to hold, like making the set of reals constructed so far a measure zero set.
A central concern for such iterations, like for many forcings, is the preservation of cardi-
nals.
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3 Forcing axioms

The argument that the set RN M of ground model reals has measure zero in the standard
Cohen extension M[H] = M]|c| by the Cohen partial order @) rests, like most forcing argu-
ments, on density considerations. For a given € = 27", a sequence Iy, I1, I, ... of real inter-
vals such that 7 _ length(l,) <eis extracted from the Cohen real c. It remains to show
that X C Un<w I,. For x €¢ RN M a dense set D, is defined so that H N D, #+ () implies
that x € | J,_ In. To cover the real z requires a “partially generic filter” which intersects
D, . This approach is captured by the following definition:

Definition 5. Let (Q,<,1q) be a forcing, D be any set, and r a cardinal.
a) A filter H on Q is D-generic iff DNG# 0 for every D € D which is dense in Q.
b) The forcing axiom FA,(Q) postulates that there exists a D-generic filter on @ for
any D of cardinality <k .

For any countable D we obtain the existence of generic filters just like in the case of
ground models.

Theorem 6. (Rasiowa-Sikorski) FAy,(Q) holds for any partial order Q) .

Proof. Let D be countable. Take an enumeration (D,|n < w) of all D € D which are
dense in ). Define an w-sequence ¢ = qo = ¢q1 = @2 > ... recursively, using the axiom of
choice:

choose ¢, such that ¢,,1<¢q, and ¢,.1€ D,, .
Then H={g€ Q|In<w ¢, < ¢} is as desired. O

Exercise 5. Show that FA,(Q) holds for any x-closed partial order @ .

The results of the previous chapter now read as follows:

Theorem 7. Let Q =Fn(w, 2,Rg) be the Cohen partial order and assume FAy,(Q). Then
every set of reals of cardinality <Ny has measure zero.

Theorem 8. Let M[G] be a generic extension of the ground model M by A-fold Cohen
forcing P=(P,<,1)=Fn(\ x w,2,Rg) where A= Then in M[G], FAy,(Q) holds.

Proof. We may assume that every D € D is a dense subset of (). Then D can be coded
as a subset of . There is o < X such that D € M|[G,]. The filter H, corresponding to
the a-th Cohen real in the construction is M|[G,]-generic on Q. Since D C M[G,], H, is
D-generic on Q). O

So for the Cohen forcing () we have a strengthening of the Rasiowa-Sikorski Lemma
from countable to cardinality <¥;. This is not possible for all forcings:

Lemma 9. Let P =Fn(Rg, Xy, Rg) be the canonical forcing for adding a surjection from ¥,
onto Ry . Then FAy,(P) is false.
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Proof. For a < N; define the set
D,={peP|acran(p)}

which is dense in P. Let D = {D, | @ < X;}. Assume for a contradiction that H is a D-
generic filter on P. Then | J H is a partial function from Xj to &y .

(1) U H is onto N;.

Proof. Let a<R;. Since H is a D-generic, H N D,# (. Take p€ HN D, . Then

aeran(p) C ran(U H)
qed.

But this is a contradiction since N; is a cardinal. O

Exercise 6. Show that FA,x(Fn(Xo, Rg, Ro)) is false.

So we cannot have an uncountable generalization of the Rasiowa-Sikorski Lemma for
forcings which collapse the cardinal X; . Since countable chain condition (ccc) forcing does
not collapse cardinals, this suggests the following axiom:

Definition 10.

a) Let k be a cardinal. Then MARTIN’s axiom MA, is the property: for every ccc par-
tial order (P,<,1p), FA.(P) holds.

b) MARTIN’s axiom MA postulates that MA,. holds for every r < 2%,
MAy, holds by Theorem 6. Thus the continuum hypothesis 2% = N, trivially implies MA.

We shall later see by an iterated forcing construction that 2% = X, and MA are relatively
consistent with ZFC.

4 Consequences of MA+—-CH

4.1 Lebesgue measure

We shall not go into the details of LEBESGUE measure, since we shall only consider mea-
sure zero sets. We recall some notions and facts from before. For s € <“2 = {¢|t: dom(t) —
2 AN dom(t) €w} define the real interval

I;={zeR|sCx}CR
with length(I) = 279°(). Note that Iy = Isu{(dom(s),0)} U Lsu{(dom(s),1)} , length(R) = Iy =
2_0 = 1, and length(lsu{(dom(s),o)}) = length(lsu{(dom(s),l)}) = é length([s) .
Definition 11. Let € > 0. Then a set X C IR has measure <e if there exists a sequence

(In|n <w) of intervals in R such that X C Un<w I, and Zn<w length(,) <e. A set X C
R has measure zero if it has measure <c for every e > 0.
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The measure zero sets form a countably complete ideal on R . It is easy to see that a
countable union of measure zero sets is again measure zero. To strengthen this theorem in
the context of MA we need some more topological and measure theoretic notions. The
(standard) topology on R is generated by the basic open sets I for s € <“2. Hence every
union (J,,_ In of basic open intervals is itself open. The basic open intervals I, are also
compact in the sense of the HEINE-BOREL theorem: every cover of I; by open sets has a
finite subcover.



