LECTURE NOTES 11.-13. NOVEMBER 2013

PHILIPP SCHLICHT

1. Consistency of Martin's Axiom

- **Notation 1.1.** (1) If $(P, \leq_P, 1_P)$ is a partial order (if $(B, \leq, \land, \lor, 0, 1)$) is a complete Boolean algebra), we will simply write P(B) instead.
 - (2) In an iterated forcing, let $\pi_{\beta\gamma} \colon P_{\beta} \to P_{\gamma}, \pi_{\beta\gamma}((p_{\alpha})_{\alpha < \beta}) = (q_{\alpha})_{\alpha < \gamma}, q_{\alpha} = p_{\alpha}$ for $\alpha < \beta, q_{\alpha} = 1$ for $\alpha \ge \beta$, denote the canonical complete embedding. Let $\pi^*_{\beta\gamma} \colon V^{P_{\beta}} \to V^{P_{\gamma}}$ denote the map induced by $\pi_{\beta\gamma}$.

Theorem 1.2. Suppose that M is a ground model. Suppose that $2^{<\kappa} = \kappa > \omega$ in M. There is a c.c.c. forcing $(P, \leq_P, 1_P)$ in M such that for every M-generic filter G on P, MA and $2^{\omega} = \kappa$ hold in M[G].

Proof ideas. (1) There are at most $2^{<\kappa} = \kappa$ many counterexamples to *MA*.

- (2) Build $M \subseteq M[G_0] \subseteq M[G_1] \subseteq ...M[G_\alpha]... \subseteq M[G]$ for $\alpha < \kappa$ and eliminate 1 counterexample in each step.
- (3) Ensure that $M[G_{\alpha}] \models 2^{<\kappa} = \kappa$ for all $\alpha < \kappa$.
- (4) Every forcing of size $< \kappa$ and every set of size $< \kappa$ of maximal antichains of the forcing is in $M[G_{\alpha}]$ for some $\alpha < \kappa$, since κ is regular.

Proof. We work in M. Let $h: \kappa \times \kappa \to \kappa$ denote Gödel pairing. Then $h(\alpha, \beta) = \gamma$ implies that $\alpha \leq \gamma$, for all $\alpha, \beta < \kappa$. The β^{th} forcing in $M[G_{\alpha}]$ will be used in step γ .

We define

(1) a finite support iteration $(P_{\alpha}, \leq_{P_{\alpha}}, 1_{P_{\alpha}})_{\alpha \leq \kappa}$ with

(i) P_{α} c.c.c. and

- (ii) $|P_{\alpha}| < \kappa$
- for all $\alpha \leq \kappa$ and

Date: November 13, 2013.

PHILIPP SCHLICHT

- (2) P_{γ} -names \dot{F}_{γ} for all $\gamma < \kappa$ such that $1_{P_{\gamma}} \Vdash_{P_{\gamma}} "\dot{F}_{\gamma} \colon \kappa \to V$ enumerates all partial orders $(P, \leq_P, 1_P)$ with $P = \lambda$ for some $\lambda < \kappa$ ".
- (3) P_{γ} -names \dot{Q}_{γ} for all $\gamma = h(\alpha, \beta) < \kappa$ such that $1_{P_{\gamma}} \Vdash_{P_{\gamma}}$ " if $\pi_{\alpha\gamma}(\dot{F}_{\alpha})(\beta)$ is c.c.c., then $\dot{Q}_{\gamma} = \pi_{\alpha\gamma}(\dot{F}_{\alpha})(\beta)$, otherwise $|\dot{Q}_{\gamma}| = 1$ "

Suppose that $\gamma < \kappa$ and \dot{F}_{γ} , \dot{Q}_{α} are defined for all $\alpha < \gamma$.

To define \dot{F}_{γ} , note that $1_{P_{\gamma}} \Vdash_{P_{\gamma}} 2^{<\kappa} = \kappa$, since there are only $(|P_{\gamma}|^{\omega})^{\lambda} \leq \kappa$ many nice P_{γ} -names for subsets of cardinals $\lambda < \kappa$ (as in Lemma 80, Models of Set Theory 1).

Choose \dot{F}_{γ} with (2) by the Maximality Principle (Problem 36, Models of Set Theory I).

To define \dot{Q}_{γ} , suppose that $\gamma = h(\alpha, \beta)$. Choose a P_{γ} -name \dot{Q}_{γ} with (3) by the Maximality Principle. Since $1_P \Vdash_{P_{\gamma}} \dot{Q}_{\gamma}$ has domain $< \kappa$, we can choose a nice name \dot{Q}_{γ} with $|Q_{\gamma}| < \kappa$.

Now suppose that G is M-generic for P_{κ} . Let $G_{\alpha} := \pi_{\alpha\kappa}^{-1}[G]$ for $\alpha < \kappa$.

Claim 1.3. $M[G] \vDash MA_{\lambda}$ for all $\lambda < \kappa$.

Proof. We work in M[G]. (It is sufficient to prove MA_{λ} for c.c.c. partial orders with domain λ for cardinals $\lambda < \kappa$, by a previous lemma.)

Suppose that $(P, \leq_P, 1_P)$ is a c.c.c. partial order with $P = \lambda < \kappa$ and that \mathcal{D} is a set of dense subsets of P with $|\mathcal{D}| \leq \lambda$.

Then $P, \mathcal{D} \in M[G_{\alpha}]$ for some $\alpha < \kappa$ by a previous lemma. Then $P = \dot{F}_{\alpha}^{G_{\alpha}}(\beta)$ for some $\beta < \kappa$ by (2).

Let $\gamma = h(\alpha, \beta)$. Note that P is c.c.c. in $M[G_{\gamma}]$, since P is c.c.c. in M[G]. Then $P = \pi_{\alpha\gamma}(\dot{F}_{\alpha})^{G_{\gamma}}(\beta) = \dot{Q}_{\gamma}^{G_{\gamma}}$ by (3).

So there is a $M[G_{\gamma}]$ -generic filter for P in $M[G_{\gamma}]$. Since $\mathcal{D} \in M[G_{\alpha}] \subseteq M[G_{\gamma}]$, the filter is \mathcal{D} -generic.

Claim 1.4. $M[G] \models 2^{\omega} = \kappa$.

Proof. We have $2^{<\kappa} = \kappa$ in M[G], since $|P_{\kappa}| \leq \kappa$ and hence there are $\leq \kappa$ "nice names" for subsets of $\lambda < \kappa$. Moreover MA_{λ} implies that $2^{\omega} = 2^{\lambda} > \lambda$ for all $\lambda < \kappa$, so $2^{\omega} \geq \kappa$ in M[G].

 $\mathbf{2}$

2. Martin's axiom and generic Σ_1 absoluteness of H_{ω_2}

Definition 2.1. Suppose that $\kappa > \omega$ is a cardinal and that Γ is a class of partial orders.

- (i) $BFA_{\kappa}(\Gamma)$ postulates that for all $P \in \Gamma$, there is a \mathcal{D} -generic filter on P for any set \mathcal{D} of maximal antichains in P of size $\leq \kappa$ with $|\mathcal{D}| \leq \kappa$.
- (ii) If P is a partial order, let $BFA_{\kappa}(P) := BFA_{\kappa}(\{P\})$.

Remark 2.2. Suppose that $\kappa > \omega$ is a cradinal. If Γ is a class of forcings such that every element of Γ has the κ^+ -c.c., then $BFA_{\kappa}(\Gamma) \iff FA_{\kappa}(\Gamma)$.

In particular, $BFA_{\omega_1}(c.c.c.) \iff FA_{\omega_1}(c.c.c.) \iff MA_{\omega_1}.$

We will only consider BFA_{κ} for complete Boolean algebras.

- Remark 2.3. (1) Every partial order P is densely embedded into its Boolean completion B(P) (see Problem 25, Models of Set Theory 1).
 - (2) Suppose that M is a ground model. We work in M. Suppose that B is a complete Boolean algebra, φ a formula, and σ a B*-name. Let

$$\llbracket \varphi(\sigma) \rrbracket := \llbracket \varphi(\sigma) \rrbracket_{B^*} := \bigvee \{ p \in B^* \mid p \Vdash_{B^*}^M \varphi(\sigma) \}.$$

Then $\llbracket \varphi(\sigma) \rrbracket \Vdash_{B^*}^M \varphi(\sigma)$ by Problem 18(c).

Lemma 2.4. Suppose that B is a complete Boolean algebra and $\kappa > \omega$ is a cardinal. Then $BFA_{\kappa}(B^*)$ implies that $1_B \Vdash_{B^*} \check{\kappa}$ is a cardinal.

Proof. Suppose that $\mu < \kappa$ and $p \Vdash_B \dot{f} : \check{\kappa} \to \check{\mu}$ is injective. Let

$$A_{\alpha} = \{ \llbracket \dot{f}(\check{\alpha}) = \check{\beta} \rrbracket \in B^* \mid \beta < \mu \}.$$

Then each A_{β} is a maximal antichain. Suppose that G is a filter on B with $G \cap A_{\beta} \neq \emptyset$ for all $\beta < \kappa$. Let $f \colon \kappa \to \mu$, $f(\alpha) = \beta$ if $[\![\dot{f}(\check{\alpha}) = \check{\beta}]\!] \in G$. Then f is injective, contradiction.

We will now use $BFA_{\kappa}(B(P)^*)$ to reconstruct the first order theory of a structure with domain κ .

Suppose that M is a ground model. We work in M. Suppose that P is a partial order, $\kappa > \omega$ is a cardinal, $(\dot{R}_{\alpha})_{\alpha < \kappa}$ is a sequence of P-names for relations on κ , and \dot{M} is a P-name for the structure $(\kappa, \dot{R}_{\alpha})_{\alpha < \kappa}$.

Definition 2.5. Suppose that in M, G^* is a filter on P. Let

(1)
$$\dot{R}_{\alpha}[G^*] = \{s \in \kappa^{<\omega} \mid \exists p \in G^* \ p \Vdash_P (\dot{M} \models \dot{R}_{\alpha}(\check{s}))\}.$$

(2) $\dot{M}[G^*] = (\kappa, \dot{R}_{\alpha}[G^*])_{\alpha < \kappa}.$

Lemma 2.6. We work in M. There is a set \mathcal{D}^* of maximal antichains in B(P)of size $\leq \kappa$ with $|\mathcal{D}^*| \leq \kappa$ such that for every \mathcal{D}^* -generic filter G^* on B(P), every formula $\varphi(x_0, ..., x_n)$, and $\alpha_0, ..., \alpha_n < \kappa$

$$\dot{M}[G^*] \vDash \ulcorner \varphi \urcorner (\alpha_0, ..., \alpha_n) \iff \exists p \in G^* \ p \Vdash_P (\dot{M} \vDash \ulcorner \varphi \urcorner (\check{\alpha}_0, ..., \check{\alpha}_n))$$

Proof. For $\alpha_0, ..., \alpha_n < \kappa$ and $\lceil \varphi \rceil(x_0, ..., x_n)$ let

$$A_{\ulcorner\varphi\urcorner,\alpha_0,...,\alpha_n} = \{ \llbracket M \vDash \ulcorner\neg\varphi\urcorner (\check{\alpha}_0,...,\check{\alpha}_n) \rrbracket, \llbracket M \vDash \ulcorner\varphi\urcorner (\check{\alpha}_0,...,\check{\alpha}_n] \}$$

For $\lceil \psi(x, x_0, ..., x_n) \rceil$ and $\alpha_0, ..., \alpha_n < \kappa$ let

$$A_{\exists,\ulcorner\psi\urcorner,\alpha_0,...,\alpha_n} = \{ \llbracket \dot{M} \models \ulcorner \neg \exists x \psi \urcorner (x, \check{\alpha}_0, ..., \check{\alpha}_n) \rrbracket \} \cup \{ \llbracket \dot{M} \models \ulcorner \psi \urcorner (\check{\alpha}, \check{\alpha}_0, ..., \check{\alpha}_n] \rrbracket \mid \alpha < \kappa \}$$

Let $\mathcal{D}^* = \{ A_{\ulcorner \varphi \urcorner, \alpha_0, ..., \alpha_n}, A_{\exists, \ulcorner \psi \urcorner, \alpha_0, ..., \alpha_n} \mid \ulcorner \varphi \urcorner a \text{ formula}, \alpha_0, ..., \alpha_n < \kappa \}.$

We prove the claim by induction on (codes for) formulas $\lceil \varphi \rceil$.

For atomic formulas, this holds by the definition of $M[G^*]$.

For conjunctions, if $\dot{M}[G^*] \models \ulcorner \varphi \urcorner (\alpha_0, ..., \alpha_n) \land \ulcorner \psi \urcorner (\beta_0, ..., \beta_k)$, then $\exists p, q \in G^* p \Vdash_P (\dot{M} \models \ulcorner \varphi \urcorner (\alpha_0, ..., \alpha_n), q \Vdash_P (\dot{M} \models \ulcorner \psi \urcorner (\beta_0, ..., \beta_k))$. Let $r \leq p, q$ in G^* . Then $r \Vdash_P (\dot{M} \models \ulcorner \varphi \urcorner (\alpha_0, ..., \alpha_n) \land \ulcorner \psi \urcorner (\beta_0, ..., \beta_k))$.

If $p \in G^*$ and $p \Vdash_P (\dot{M} \models \ulcorner \varphi \urcorner (\check{\alpha}_0, ..., \check{\alpha}_n) \land \ulcorner \psi \urcorner (\check{\beta}_0, ..., \check{\beta}_k))$, then $M[G^*] \models \ulcorner \varphi \urcorner (\alpha_0, ..., \alpha_n) \land \ulcorner \psi \urcorner (\beta_0, ..., \beta_k)$.

For negations, we have $\dot{M}[G^*] \models \neg \ulcorner \varphi \urcorner (\alpha_0, ..., \alpha_n) \iff \neg \exists p \in G^* \ p \Vdash_P (\dot{M} \models \ulcorner \varphi \urcorner (\check{\alpha}_0, ..., \check{\alpha}_n)) \iff \exists p \in G^* \ p \Vdash_P (\dot{M} \models \neg \ulcorner \varphi \urcorner (\check{\alpha}_0, ..., \check{\alpha}_n)), \text{ since } G^* \cap A_{\ulcorner \varphi \urcorner, \alpha_0, ..., \alpha_n} \neq \emptyset.$

For existential quantifiers, if $\dot{M}[G^*] \vDash \exists x \ulcorner \varphi \urcorner (x, \alpha_0, ..., \alpha_n)$, then there is some $\alpha < \kappa$ with $\dot{M}[G^*] \vDash \ulcorner \varphi \urcorner (\alpha, \alpha_0, ..., \alpha_n)$. So there is some $p \in G^*$ with $p \Vdash_P (\dot{M} \vDash \ulcorner \varphi \urcorner (\check{\alpha}, \check{\alpha}_0, ..., \check{\alpha}_n))$ and hence $p \Vdash_P (\dot{M} \vDash \exists x \ulcorner \varphi \urcorner (x, \check{\alpha}_0, ..., \check{\alpha}_n))$.

If $p \Vdash_P (\dot{M} \models \exists x \ulcorner \psi \urcorner (x, \vec{\sigma}))$ for some $p \in G^*$, then there is some $\alpha < \kappa$ with $p \Vdash_P (\dot{M} \models \ulcorner \psi \urcorner (\check{\alpha}, \check{\alpha}_0, ..., \check{\alpha}_n))$, since $G^* \cap A_{\exists, \ulcorner \psi \urcorner, \alpha_0, ..., \alpha_n} \neq \emptyset$. Then $\dot{M}[G^*] \models \ulcorner \varphi \urcorner (\alpha, \alpha_0, ..., \alpha_n)$ by the inductive hypothesis, so $\dot{M}[G^*] \models \ulcorner \exists x \varphi \urcorner (x, \alpha_0, ..., \alpha_n)$. \Box

4

Lemma 2.7. Suppose that in M, $BFA_{\kappa}(B(P)^*)$ holds and that $1_P \Vdash_P (\check{\kappa}, \dot{R}_0)$ is wellfounded. Then there is a set \mathcal{D}^* of maximal antichains in P of size $\leq \kappa$ with $|\mathcal{D}^*| \leq \kappa$ such that for every \mathcal{D}^* -generic filter G^* on P, $(\kappa, \dot{R}_0[G^*])$ is wellfounded.

Proof. We work in M. For each $\alpha < \kappa$, let \dot{r}_{α} denote a name for the rank function on $(\alpha, \dot{R}_0 \cap (\alpha \times \alpha))$, i.e.

$$1_p \Vdash_P \dot{r}_{\gamma} \colon \check{\gamma} \to Ord, \ \forall \beta < \gamma \ \dot{r}_{\gamma}(\beta) = \sup\{\dot{r}_{\gamma}(\alpha) + 1 \mid (\alpha, \beta) \in \dot{R}_0\}.$$

Since $BFA_{\kappa}(B(P)^*)$ implies that $1_P \Vdash_P \check{\kappa} \in Card$, we have $1_p \Vdash_P \dot{r}_{\alpha} : \check{\alpha} \to \check{\kappa}$. Let

$$A_{\alpha,\beta} = \{ \llbracket \dot{r}_{\alpha}(\dot{\beta}) = \check{\gamma} \rrbracket \mid \gamma < \kappa \}$$

for $\alpha, \beta < \kappa$. Let $\mathcal{D}^* = \{A_{\alpha,\beta} \mid \alpha, \beta < \kappa\}.$

Suppose that G^* is a \mathcal{D}^* -generic filter on P. Then

$$\dot{r}_{\alpha}[G^*] = \{(\beta, \gamma) \mid \beta < \alpha, \ [\![\dot{\rho}_{\alpha}(\dot{\beta}) = \check{\gamma}]\!] \in G^*\}.$$

Since $G^* \cap A_{\alpha,\beta} \neq \emptyset$ for all $\beta < \kappa$, $\dot{r}_{\alpha}[G^*]: \alpha \to \kappa$ is a well-defined function. Then $\dot{r}_{\alpha}[G^*]$ is order preserving from $(\alpha, \dot{R}_0[G^*] \cap (\alpha \times \alpha))$ to $(\kappa, <)$ for each $\alpha < \kappa$, by the last equation.

Since $cof(\kappa) > \omega$, this implies that $(\kappa, \dot{R}_0[G^*])$ is wellfounded.

Definition 2.8. (1) A formula φ is

- (i) $\Delta_0 = \Sigma_0 = \Pi_0$ if all its quantifiers are bounded.
- (ii) Π_n if it is logically equivalent to a formula of the form $\neg \psi$, where ψ is a Σ_n formula.
- (iii) Σ_{n+1} if it is logically equivalent to a formula of the form

$$\exists x_0, ..., x_m \psi(x_0, ..., x_m, y_0, ..., y_l),$$

where ψ is a Π_n formula.

- (2) Suppose that $(M, R_{\alpha}, f_{\alpha})_{\alpha < \kappa}$ and $(N, S_{\alpha}, g_{\alpha})_{\alpha < \kappa}$ are structures with $M \subseteq N$ and Ψ is a set of (coded) formulas.
 - (i) Let $(M, R_{\alpha}, f_{\alpha})_{\alpha < \kappa} \prec_{\Psi} (N, S_{\alpha}, g_{\alpha})_{\alpha < \kappa}$ if for every (coded) formula $\ulcorner \varphi(x_0, ..., x_m) \urcorner \in \Psi$ and all $y_0, ..., y_m \in M$,

$$(M, R_{\alpha}, f_{\alpha})_{\alpha < \kappa} \models \ulcorner \varphi(y_0, ..., y_m) \urcorner \Longleftrightarrow (N, S_{\alpha}, g_{\alpha})_{\alpha < \kappa} \models \ulcorner \varphi(y_0, ..., y_m) \urcorner.$$

(ii) Let $M \prec N$ if $M \prec_{\Sigma_n} N$ for all $n < \omega$.

Lemma 2.9. Suppose that $\kappa \geq \omega$ is a cardinal. There is a $\Sigma_1^{H_{\kappa^+}}$ definable surjection $h: \mathcal{P}(\kappa) \to H_{\kappa^+}$.

Proof. Let $g: \kappa \times \kappa \to \kappa$ denote Gödel pairing. Let f(x) denote $\pi(0)$, where $\pi: \kappa \to V$ is the transitive collapse of $(\kappa, g^{-1}[x])$, if this is wellfounded, and let f(x) = 0 otherwise. Then $h: \mathcal{P}(\kappa) \to H_{\kappa^+}$ is a $\Sigma_1^{H_{\kappa^+}}$ definable surjection.

Theorem 2.10 (Bagaria). Suppose that M is a ground model. Suppose that P is a partial order and that $\kappa > \omega$ is a cardinal in M. The following conditions are equivalent.

BFA_κ(B(P)*) holds in M, and
 H_{κ+} ≺_{Σ1} H^{M[G]}_{κ+} for all M-generic filters G on P.

Proof. Suppose that $BFA_{\kappa}(B(P)^*)$ holds in M. Suppose that

$$1_P \Vdash_P^M (H_{\kappa^+} \models \ulcorner \exists x \varphi \urcorner (x, y_0, ..., y_n)),$$

where φ is a Δ_0 formula and $y_0, ..., y_n \in H^M_{\kappa^+}$.

Suppose that $h: \mathcal{P}(\kappa)^M \to H^M_{\kappa^+}$ is a $\Sigma_1^{H^M_{\kappa^+}}$ definable surjection in M. Suppose that $x_i \in \mathcal{P}(\kappa)^M$ and $h(x_i) = y_i$ for all $i \leq n$. Then

$$1_P \Vdash_P^M (H_{\kappa^+} \models \exists x \varphi \neg (x, h(x_0), ..., h(x_n))).$$

Let \dot{N} denote a name for the transitive closure of $\{x_0, ..., x_n\}$ and a witness for the statement $\exists x \ \varphi \ (x, h(x_0), ..., h(x_n)))$ in $H^{M[\dot{G}]}_{\kappa^+}$, where \dot{G} is a name for the M-generic filter on P. Suppose that $\dot{\pi}$ is a P-name for an isomorphism $\dot{\pi}: (\dot{N}, \in$ $) \rightarrow (\check{\kappa}, \dot{E})$ such that $1_P \Vdash_P \dot{\pi}(\check{\alpha}) = 2 \cdot \check{\alpha}$ for all $\alpha < \kappa$. Let $\bar{x} := \{2 \cdot \alpha \mid \alpha \in x\}$ for $x \subseteq \kappa$.

Then $1_P \Vdash_P^M (\check{\kappa}, \dot{E})$ is wellfounded and

$$1_{B(P)^*} \Vdash^M_{B(P)^*} (\dot{N} \vDash \exists x \varphi \urcorner (x, h(\bar{\overline{x}}_0), ..., h(\bar{\overline{x}}_n)))$$

We choose a set \mathcal{D}^* of maximal antichains in $B(P)^*$ of size $\leq \kappa$ with $|\mathcal{D}^*| \leq \kappa$ by the previous lemmas. There is a \mathcal{D}^* -generic filter G^* in M, since $BFA_{\kappa}(B(P)^*)$ holds in M. Then

- (1) $\bar{\kappa}$ is an initial segment of $Ord^{(\kappa, E[G^*])}$,
- (2) $(\kappa, \dot{E}[G^*]) \models \exists x \varphi (x, h(\bar{x}_0), ..., h(\bar{x}_n))$ by Lemma 2.6, and
- (3) the structure $(\kappa, \dot{E}[G^*])$ is wellfounded, by Lemma 2.7.

Then $\exists x \varphi^{\gamma}(x, x_0, ..., x_n)$ holds in the transitive collapse $N \in M$ of $(\kappa, E[G^*])$. Since $N \prec_{\Sigma_1} H^M_{\kappa^+}$, the proof is complete.

For the other direction, suppose that in M, \mathcal{D} is a set of maximal antichains in $B(P)^*$ of size $\leq \kappa$ with $|\mathcal{D}| \leq \kappa$. Suppose that Q is an elementary substructure of the Boolean algebra B(P) with $\bigcup \mathcal{D} \subseteq Q$ and $|Q| \leq \kappa$. Suppose that $\pi: \bar{Q} \to Q$ is elementary and $\bar{Q}, \pi^{-1}(\mathcal{D}) \in H^M_{\kappa^+}$.

Suppose that G is M-generic for $B(P)^*$. Since Q is a Boolean subalgebra of $B(P)^*$, it is easy to check that $H := G \cap Q$ is a \mathcal{D} -generic filter on Q. Then $\overline{H} := \pi^{-1}[H]$ is a $\pi^{-1}[\mathcal{D}]$ -generic filter on \overline{Q} . Since the existence of such a filter is a Σ_1 statement over H_{κ^+} , there is such a filter $\overline{I} \in M$. Then the upwards closure $I = \{q \in B(P)^* \mid \exists p \in I \ \pi(p) \leq q\}$ of $\pi[I]$ is a \mathcal{D} -generic filter in M.