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Abstract

Transitive models of set theory; the relative consistency of the axiom of choice using
the hereditarily ordinal definable sets; forcing conditions and generic filters; generic
extensions; ZFC in generic extensions; the relative consistency of the continuum
hypothesis and of the negation of the continuum hypothesis via forcing; possible
behaviours of the function 2κ; the relative consistency of the negation of the axiom of
choice.

1 Introduction

Sets are axiomatized by the Zermelo-Fraenkel axiom system ZF. Following Jech [?]
these axioms can be formulated in the first-order language with one binary relation
symbol ∈ as

− Extensionality : ∀z(z ∈ x↔ z ∈ y)→x= y

− Pairing : ∃z∀u(u∈ z↔ u=x∨ u= y)

− Union : ∃z∀u(u∈ z↔∃y(u∈ y ∧ y ∈ x))

− Power : ∃z∀u(u∈ z↔∀v(v ∈ u→u∈ x))

− Infinity : ∃z(∃x(x ∈ z ∧ ∀y¬y ∈ x) ∧∀u(u ∈ z→ ∃v(v ∈ z ∧ ∀w(w ∈ v↔ w ∈ u ∨ w =
u))))

− Separation : for every ∈-formula ϕ(u, p) postulate ∃z∀u(u∈ z↔u∈ x∧ ϕ(u, p))

− Replacement : for every ∈-formula ϕ(u, v, p) postulate

∀u, v, v ′(ϕ(u, v, p)∧ ϕ(u, v ′, p)→ v= v ′)→∃y∀v(v ∈ y↔∃u(u∈ x∧ ϕ(u, v, p)))

− Foundation: ∃uu∈ x→∃u(u∈ x∧∀v(v ∈ u→¬v ∈ x))

The axioms capture the basic intuitions of Cantorean set theory. They are strong
enough to formalise all other mathematical fields. Usually the Axiom of Choice is also
assumed

− Choice or AC: ∀u, u′((u ∈ x→∃v v ∈ u) ∧ (u ∈ x ∧ u′ ∈ x ∧ u � u′→¬∃v(v ∈ u ∧ v ∈
u′)))→∃y∀u(u∈ x→∃v(v ∈u∧ v ∈ y ∧∀v ′(v ′∈u∧ v ′∈ y→ v ′= v)))).
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ZFC is the system consisting of ZF and AC. ZF− consists of all ZF-axioms except the
powerset axiom.

We use the intuition of a standard model of set theory (V , ∈), the universe of all (mathe-
matical) sets. This is often pictured like an upwards open triangle with the understanding
that if x∈ y then x lies below y; x is in the extension of y. The ordinals are pictured by a
central line, extending to infinity.

(V ,∈)

y

x
Ord

Although this picture gives some useful intuition, we can only know about sets by deduc-
tion from the ZF-axioms. On the other hand the axioms are incomplete in that they do
not decide important properties of infinitary combinatorics. The most important examples
that we shall also prove in this course are

− the system ZF does not decide the axiom of choice AC: if ZF is a consistent theory,
then so are ZF+AC and ZF+¬AC

− the system ZFC does not decide the continuum hypothesis: if ZFC is a consistent
theory, then so are ZFC+CH and ZFC+¬CH

Here a theory is consistent , if it does not imply a contradiction like x� x.

We appeal to the following central fact from mathematical logic: a theory T is consistent
iff it possesses a model. This allows to show consistency results by constructing models of
ZF and of ZFC.

We motivate the construction methods by analogy with the construction of fields in
algebra. The complex numbers (C,+, ·, 0, 1) form a standard field for many purposes.
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C is an algebraically closed field. It contains (isomorphic copies of) many interesting
fields, like the rationals Q, or extensions of Q of finite degree (algebraic number fields), or
extensions of Q of infinite degree by transcendental numbers. These subfields witness con-
sistency results for the theory of fields:

− the field axioms do not decide the existence of 2
√

: Q is a model of ¬∃x x · x= 1+
1, whereas Q( 2

√
) is a model of ∃xx ·x=1+1;

− by successively adjoining square roots one can form a field which satisfies ∀y∃x x ·
x= y but which does not contain 23

√
. This is used to show that the doubling of the

cube cannot be performed by ruler and compass.

Let us mention a few properties of field constructions which will have analogues in con-
structions of models of set theory

− interesting fields are (or can be) embedded into the standard field C.

− the extension fields k(a) can be described within the ground field k: a is either
algebraic or transcendental over k; in the algebraic case one can treat a as a vari-
able x which is a zero a certain polynomial in k[x]: p(x) = 0; in the transcendental
case a corresponds to a variable x such that p(x) � 0 for all nontrivial p ∈ k[x]; cal-
culations in k(a) can be reduced to calculations in k.

− the ground field Q is countable. One can construct a transcendental real

a=0, a0a1a2a3	 ∈R
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by successively choosing decimals ai so that 0, a0a1	 am “forces” pn(a)� 0, i.e.,

∀b (b=0, a0a1a2a3	 ambm+1bm+1	→pn(b)� 0).

Here (pn)n<ω is some enumeration of k[x]. In view of the forcing method in set
theory we can write this as

0, a0a1a2a3	 am 
pn(ẋ)� 0

where ẋ is a symbol or name for the transcendental or generic real to be con-
structed.

For models of set theory this translates into

− consider transitive submodels (M,∈) of the standard universe (V ,∈).

− construct minimal submodels similar to the prime field Q.

− construct generic extensions N ⊇M by adjoining generic sets G, corresponding to
the transcendental numbers above: N =M [G].

− G is describable in the countable ground model M by infinitely many formulas, it
will be constructed by a countable recursion along countably many requirements
which can be expressed inside M .

We shall consider the models HOD (Hereditarily Ordinal Definable sets), generic exten-
sions M [G], and symmetric submodels N of M [G]. This leads to a spectrum
HOD,M ,M [G], N	 of models of set theory like

(V ,∈)

M
G

N =M [G]

HOD
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These models satisfy different extensions of the ZF-axioms: e.g., HOD � AC, M [G] may
satisfy CH or ¬CH, and symmetric submodels may satisfy ¬AC. This leads to the desired
(relative) consistency results.

2 Transitive Models of Set Theory

Let W be a transitive class. We consider situations when W together with the ∈-relation
restricted to W is a model of axioms of set theory. So we are interested in the “model”
(W , ∈) or (W , ∈↾W ) where ∈↾W = {(u, v)|u ∈ v ∈W }. Considering W as a universe for
set theory means that the quantifiers ∀ and ∃ in ∈-formulas ϕ range over W instead over
the full universe V . For simplicity we assume that ∈-formulas are only formed by variables
v0, v1,	 , the relations = and ∈, and logical signs ¬, ∨, ∃.

Definition 1. Let W be a term and ϕ be an ∈-formula which do not have common vari-
ables. The relativisation ϕW of ϕ to W is defined recursively along the structure of ϕ:

− (vi∈ vj)W ≡ (vi∈ vj)

− (vi= vj)
W ≡ (vi= vj)

− (¬ϕ)W ≡¬(ϕW)

− (ϕ∨ ψ)W ≡ ((ϕW)∨ (ψW))

− (∃viϕ)W ≡∃vi∈W (ϕW)

If Φ is a collection of ∈-formulas set ΦW = {ϕW |ϕ ∈ Φ}. Instead of ϕW or ΦW we also
say “ϕ holds in W”, “Φ holds in W”, “W is a model of ϕ”, etc.; we also write W � ϕ and
W �Φ.

ϕW and ΦW are obtained from ϕ and Φ by bounding all quantifiers by the class W . ϕW

expresses that ϕ holds in the “model” (W , ∈). That (W , ∈), for W � ∅ behaves like a
structure for 1-st order logic is expressed by

Lemma 2. Let ϕ be a tautology in the language of set theory, i.e., ϕ is derivable in the
sequent calculus. Let W be a non-empty term. Then ϕW.

Proof. Mimick the correctness proof for the sequent calculus, proceeding by induction on
the length of derivations. �

We prove criteria for set theoretic axioms to hold in W .
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Lemma 3. Assume ZF. Let W be a transitive class, W � ∅. Then

a) (Extensionality)W will always hold.

b) (Pairing)W↔∀x∈W∀y ∈W {x, y}∈W.

c) (Union)W↔∀x∈W ⋃

x∈W.

d) (Power)W↔∀x∈WP(x)∩W ∈W.

e) (Infinity)W↔∃z ∈W (∅∈ z ∧∀u∈ z u+1∈ z).

f ) Let ψ be the instance of the Separation schema for the ∈-formula ϕ(x,wQ ). Then

ψW↔∀wQ ∈W∀a∈W {x∈ a|ϕW(x,wQ )}∈W.

g) Let ψ be the instance of the Replacement schema for the ∈-formula ϕ(x, y, wQ ).
Then ψW is equivalent to

∀wQ ∈ W (∀x, y, y ′ ∈ W (ϕW(x, y, wQ ) ∧ ϕW(x, y ′, wQ ) → y = y ′) →∀a ∈ W {y |∃x ∈
aϕW(x, y, wQ )}∩W ∈W ).

h) (Foundation)W will always hold.

i) (Choice)W↔∀x∈W (∅ � x∧∀u, u′∈ x(u� u′→ u∩ u′= ∅)→∃y ∈W∀u∈ x∃v {v}=
u∩ y).

Proof. Bounded quantications are not affected by relativisations to transitive classes:

(1) Let x∈W . Then ∀y(y ∈ x→ ϕ)↔∀y ∈W (y ∈ x→ ϕ) and ∃y(y ∈ x∧ ϕ)↔∃y ∈W (y ∈
x∧ ϕ).
Proof . Assume that ∀y ∈W (y ∈ x→ ϕ). To show ∀y(y ∈ x→ ϕ) consider some y ∈ x. By
the transitivity of W , y ∈W . By assumption, ϕ holds. qed(1)

The following equivalences make use of (1).

a)

(Extensionality)W ↔ (∀x∀y(∀z(z ∈ x↔ z ∈ y)→x= y))W

↔ ∀x∈W∀y ∈W [∀z ∈W (z ∈x↔ z ∈ y)→x= y]

↔ ∀x ∈W∀y ∈W [[∀z ∈W (z ∈ x→ z ∈ y) ∧∀z ∈W (z ∈ y→ z ∈ x)]→
x= y]

↔ ∀x ∈W∀y ∈W [[∀z(z ∈ x→ z ∈ y) ∧∀z(z ∈ y→ z ∈ x)]→ x= y], by

(1).
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The righthand side is a consequence of Extensionality in V .

b)

(Pairing)W ↔ (∀x∀y∃z∀u(u∈ z↔u= x∨u= y))W

↔ ∀x∈W∀y ∈W∃z ∈W∀u∈W (u∈ z↔u= x∨ u= y)

↔ ∀x∈W∀y ∈W∃z ∈W∀u(u∈ z↔u=x∨u= y), by (1)

↔ ∀x∈W∀y ∈W∃z ∈Wz= {x, y}
↔ ∀x∈W∀y ∈W {x, y}∈W.

c)

(Union)W ↔ (∀x∃z∀u(u∈ z↔∃y(u∈ y ∧ y ∈ x)))W
↔ ∀x∈W∃z ∈W∀u∈W (u∈ z↔∃y ∈W (u∈ y ∧ y ∈ x))
↔ ∀x∈W∃z ∈W∀u∈W (u∈ z↔∃y(u∈ y ∧ y ∈ x)), by (1)

↔ ∀x∈W∃z ∈W∀u(u∈ z↔∃y(u∈ y∧ y ∈ x)), by (1)

↔ ∀x∈W∃z ∈Wz=
⋃

x

↔ ∀x∈W
⋃

x∈W .

d)

(Power)W ↔ (∀x∃z∀u(u∈ z↔∀v(v ∈u→u∈ x)))W
↔ ∀x∈W∃z ∈W∀u∈W (u∈ z↔∀v ∈W (v ∈ u→ u∈ x))
↔ ∀x∈W∃z ∈W∀u∈W (u∈ z↔∀v(v ∈u→u∈ x)), by (1)

↔ ∀x∈W∃z ∈W∀u∈W (u∈ z↔u⊆x)
↔ ∀x∈W∃z ∈W∀u(u∈ z↔u∈W ∧u⊆x)
↔ ∀x∈W∃z ∈Wz=P(x)∩W
↔ ∀x∈WP(x)∩W ∈W .

e)

(Infinity)W ↔ (∃z(∃x(x ∈ z ∧ ∀y¬y ∈ x) ∧∀u(u ∈ z→∃v(v ∈ z ∧ ∀w(w ∈ v↔ w ∈ u ∨ w =

u)))))W

↔ ∃z ∈W (∃x ∈W (x ∈ z ∧ ∀y ∈W ¬y ∈ x) ∧∀u ∈W (u ∈ z→∃v ∈W (v ∈ z ∧
∀w ∈W (w ∈ v↔w ∈ u∨w= u))))

↔ ∃z ∈W (∃x(x ∈ z ∧ ∀y¬y ∈ x) ∧ ∀u(u ∈ z→∃v(v ∈ z ∧ ∀w(w ∈ v↔ w ∈ u ∨
w=u)))), by (1)

↔ ∃z ∈W (∅∈ z ∧∀u(u∈ z→ u+1∈ z)).
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f) Separation:

(∀wQ ∀a∃y∀x(x∈ y↔ x∈ a∧ ϕ(x,wQ )))W ↔ ∀wQ ∈W∀a∈W∃y ∈W∀x∈W ( x∈ y↔ x∈ a∧
ϕW(x,wQ ))

↔ ∀wQ ∈ W∀a ∈ W∃y ∈ W∀x( x ∈ y ↔ x ∈ a ∧
ϕW(x,wQ )), by (1)

↔ ∀wQ ∈W∀a∈W∃y ∈W y= {x∈ a|ϕW(x,wQ )}
↔ ∀wQ ∈W∀a∈W {x∈ a|ϕW(x,wQ )}∈W

g) Replacement:

ψW = (∀wQ (∀x, y, y ′(ϕ(x, y, wQ ) ∧ ϕ(x, y ′, wQ )→ y = y ′)→∀a∃z∀y(y ∈ z↔∃x(x ∈ a∧ ϕ(x,
y, wQ )))))W

↔ ∀wQ ∈W (∀x, y, y ′∈W (ϕW(x, y, wQ ) ∧ ϕW(x, y ′, wQ )→ y = y ′)→∀a ∈W∃z ∈W∀y ∈
W (y ∈ z↔∃x∈W (x∈ a∧ ϕW(x, y, wQ ))))

↔ ∀wQ ∈ W (∀x, y, y ′ ∈ W (ϕW(x, y, wQ ) ∧ ϕW(x, y ′, wQ ) → y = y ′) →∀a ∈ W∃z ∈
W∀y(y ∈ z↔ (∃x(x∈ a∧ ϕW(x, y, wQ ))∧ y ∈W ))

↔ ∀wQ ∈W (∀x, y, y ′ ∈W (ϕW(x, y, wQ ) ∧ ϕW(x, y ′, wQ )→y = y ′)→∀a ∈W∃z ∈Wz =

{y |∃x∈ a ϕW(x, y, wQ ))}∩W )

↔ ∀wQ ∈ W (∀x, y, y ′ ∈ W (ϕW(x, y, wQ ) ∧ ϕW(x, y ′, wQ )→ y = y ′)→∀a ∈ W {y |∃x ∈
aϕW(x, y, wQ ))}∩W ∈W ).

h)

(Foundation)W ↔ (∀x(∃uu∈ x→∃u(u∈ x∧∀v(v ∈ u→¬v ∈ x))))W
↔ ∀x∈W (∃u∈Wu∈ x→∃u∈W (u∈ x∧∀v ∈W (v ∈u→¬v ∈ x)))
↔ ∀x∈W (∃uu∈ x→∃u(u∈ x∧∀v(v ∈u→¬v ∈ x))), by (1).

← ∀x(∃uu∈ x→∃u(u∈ x∧∀v(v ∈ u→¬v ∈ x)))
↔ Foundation in V .

i) Choice:

ACW ↔ (∀x(∀u, u′((u ∈ x→ ∃v v ∈ u) ∧ (u ∈ x ∧ u′ ∈ x ∧ u � u′ → ¬∃v(v ∈ u ∧ v ∈
u′)))→∃y∀u(u∈ x→∃v(v ∈ u∧ v ∈ y∧∀v ′(v ′∈u∧ v ′∈ y→ v ′= v))))))W

↔ ∀x ∈W (∀u, u′ ∈W ((u ∈ x→ ∃v ∈Wv ∈ u) ∧ (u ∈ x ∧ u′ ∈ x ∧ u � u′→ ¬∃v ∈
W (v ∈ u∧ v ∈ u′)))→∃y ∈W∀u∈W (u∈ x→∃v ∈W (v ∈ u∧ v ∈ y ∧∀v ′∈W (v ′∈
u∧ v ′∈ y→ v ′= v)))))

↔ ∀x ∈W (∀u, u′((u ∈ x→ ∃v v ∈ u) ∧ (u ∈ x ∧ u′ ∈ x ∧ u � u′→ ¬∃v(v ∈ u ∧ v ∈
u′)))→∃y ∈W∀u(u ∈ x→∃v(v ∈ u ∧ v ∈ y ∧ ∀v ′(v ′ ∈ u ∧ v ′ ∈ y→ v ′ = v))))), by

several applications of (1),
↔ ∀x∈W (∅ � x∧∀u, u′∈ x(u� u′→ u∩ u′= ∅)→∃y ∈W∀u∈ x∃v {v}=u∩ y)

�
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By the Lemma there are many models of fragments of ZFC in the von Neumann hier-
archy (Vα)α∈Ord .

Theorem 4. Assume ZF. Then

a) Vα�Extensionality, Union, Separation, and Foundation;

b) if α is a limit ordinal then Vα�Pairing and Powerset;

c) if α>ω then Vα� Infinity;

d) if AC holds then Vα�AC;

e) if AC holds and if α is a regular limit ordinal and ∀λ < α 2λ < α , then
Vα�Replacement;

f ) Vω� all axioms of ZFC except Infinity;

g) if AC holds and α is strongly inaccessible, i.e. α is a regular limit ordinal >ω and
∀λ<α 2λ<α then Vα�ZFC.

Proof. e) First prove by induction on ξ ∈ [ω, α) that ∀a∈Vξ card(a)<α . For the replace-

ment criterion let wQ ∈ Vα and assume that ∀x, y, y ′∈ Vα(ϕVα(x, y, wQ )∧ ϕVα(x, y ′, wQ )→y=
y ′). Let a∈Vα . Then

z= {y |∃x∈ aϕVα(x, y, wQ ))}∩Vα

is a subset of Vα =
⋃

β<α
Vβ with card(z) 6 card(a) < α. By the regularity of α , z us a

subset of Vβ for some β <α . Hence z ∈Vα . �

Models of the form Vα can be used to show relative consistencies .

Theorem 5. Let ZF be consistent. Then the theory consisting of all ZFC-axioms except
Infinity together with the negation of Infinity is consistent.

Proof. Assume that the latter theory is inconsistent , i.e. that it implies a contradiction
like ∃xx 
 x. ZF implies that the former theory holds in Vω . So its implications hold in
Vω . Hence ZF implies (∃xx
 x)Vω=∃x∈Vω x
 x. Thus ZF is inconsistent. �

The following lead Abraham Fraenkel to the introduction of the Replacement schema.

Theorem 6. Let Z be the system of Zermelo set theory, consisting of the axioms of
Extensionality, Pairing, Union, Power, Separation, Infinity, and Foundation. Then Z does
not imply Replacement.
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Proof. (Sketch) Vω+ω is a model of Z but Vω+ω does not satisfy Replacement: define the
map F :ω→Vω+ω , F (n)= Vω+n . F is definable in Vω+ω by the ∈-formula

ϕ(x, y, ω, Vω) = ∃f(f is a function ∧ dom(f) ∈ ω ∧ x ∈ dom(f) ∧ f(0) = Vω ∧ ∀n(n + 1 ∈
dom(f)→∀u(u∈ f(n+1)↔u⊆ f(n))).

ϕ formalises the definition of F by recursion on ω. Then F [ω] = {Vω+n|n<ω} � Vω+ω , and
so Vω+ω does not satisfy replacement for the formula ϕ. �

Exercise 1. Define Hκ = {x|card(TC({x})) < κ}. Examine which ZFC-axiom hold in Hκ for various
κ.

3 Absoluteness and Reflection

In the study of models of set theory one considers various models (W , ∈) and is interested
in the truth values of formulas in the various structures. It is important that truth values
many many basic formulas are invariant or absolute.

Definition 7. Let W ,W ′ be terms and let ϕ(x0,	 , xn−1) be an ∈-formula which does not
have common variables with W or W ′. ϕ is W-W ′-absolute if

∀x0,	 , xn−1∈W ∩W ′ (ϕW↔ ϕW
′

).

If W ′=V we call ϕ W-absolute.

In the next section we shall give syntactic criteria for absoluteness

Theorem 8. (Levy reflection theorem) Assume ZF. Let (Wα)α∈Ord be a continuous hier-
archy, i.e.

α< β→Wα⊆Wβ , and if λ is a limit ordinal then Wλ=
⋃

α<λ

Wα .

Let W =
⋃

α∈Ord
Wα be the limit of the hierarchy. Let ϕ0(xQ ), 	 , ϕn−1(xQ ) be a finite list of

∈-formulas. Let θ0 ∈ Ord. Then there exists a limit ordinal θ > θ0 such that ϕ0(xQ ), 	 ,
ϕn−1(xQ ) are Wθ-W-absolute.

Proof. We may assume that the ∈-formulas ϕi are built using only ¬, ∧, ∃ and that all
subformulas of a formula ϕi occur in the initial part ϕ0(xQ ), 	 , ϕi−1(xQ ) of the list. By
adding redundant variables one may also assume that all formuals in the list have the
same vector xQ of free variables. Let r be the length of the vector xQ . For i < n define func-
tions Fi:W

r→Ord by

Fi(xQ )=

{

min {β |∃v ∈Wβ ψ
W(xQ )}, if ϕi=∃vψ and ∃v ∈WψW(xQ )

0, else
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By the definition of F ,

∀xQ ∈W (∃v ∈WψW(xQ )↔∃v ∈WFi(xQ ) ψ
W(xQ )). (1)

Using the Replacement schema, recursively define an ω-sequence (θm)m<ω starting with
the given θ0 by

θm+1=
⋃

{Fi(xQ )|i < n∧ xQ ∈Wθm}∪ (θm+1).

Define the limit ordinal θ=
⋃

m<ω
θm . Then for ϕi= ∃vψ from the list and xQ ∈Wθ

∃v ∈Wθ ψ
W(xQ )↔∃v ∈WFi(xQ ) ψ

W(xQ ). (2)

Now we show by induction on i < n that ϕi is Wθ-W -absolute. Let xQ ∈Wθ .

Case 1 . ϕi is atomic. Then ϕi is trivially absolute.

Case 2. ϕi = ¬ϕj with j < i . Then ϕi
Wθ(xQ ) = ¬ϕjWθ(xQ ) ↔ ¬ϕjW(xQ ) = ϕi

W(xQ ), using the
induction hypothesis.

Case 3. ϕi= ϕj ∨ ϕk with j , k < i . Then ϕi
Wθ(xQ ) = ϕj

Wθ(xQ ) ∨ ϕkWθ(xQ )↔ ϕj
W(xQ ) ∨ ϕkW(xQ ) =

ϕi
W(xQ ), using the induction hypothesis.

Case 4 . ϕi= ∃vϕj with j < i . Then, using the induction hypothesis and (1) and (2)

ϕi
Wθ(xQ ) = ∃v ∈Wθϕj

Wθ(xQ )

↔ ∃v ∈Wθϕj
W(xQ )

↔ ∃v ∈WFi(xQ ) ϕj
W(xQ )

↔ ∃v ∈Wϕj
W(xQ )

= ϕi
W(xQ ).

�

Theorem 9. If ZF is consistent then ZF is not equivalent to a finite system of axioms.

Proof. Work in ZF. Assume for a contradiction that ZF is equivalent to the list ϕ0, 	 ,

ϕn−1 of formulas without free variables. By the reflection theorem, Theorem 8, there
exists θ∈Ord such that ϕ0

Vθ,	 , ϕn−1
Vθ . Thus ZF implies

∃w(w is transitive ∧ϕ0
w∧	 ∧ ϕn−1

w ). (3)

By Foundation take an ∈-minimal such w0. Since the ϕ0, 	 , ϕn−1 imply all of ZF, they
also imply (3). Therefore

(∃w(w is transitive ∧ϕ0
w∧	 ∧ ϕn−1

w ))w0.
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This is equivalent to

∃w ∈w0((w is transitive)w0∧ (ϕ0
w)w0∧	 ∧ (ϕn−1

w )w0).

Let w1 ∈ w0 be such a w. Since w0 is transitive, w1 ⊆ w0 . Relativising to w1 and to w0 is
equivalent to relativising to w1∩w0=w1 :

(w1 is transitive)
w0∧ ϕ0

w1∧	 ∧ ϕn−1
w1 .

Let “w1 is transitive” be the formula

∀u∈w1∀v ∈ u v ∈w1 .

This is equivalent to

∀u∈w1∩w0∀v ∈ u∩w0 v ∈w1

and to

(∀u∈w1∀v ∈ u v ∈w1)
w0.

Hence

w1 is transitive∧ϕ0
w1∧	 ∧ ϕn−1

w1 .

This contradicts the ∈-minimality of w0 . �

Similarly one gets

Theorem 10. Let Φ be a collection of ∈-formulas which is a consistent extension of the
axiom system ZF. Then Φ is not finitely axiomatisable. So is ZFC is consistent it is not
finitely axiomatisable.

We can also use the reflection theorem to “justify” the assumption of transitive models of
set theory.

Theorem 11. Let ZF be consistent. Then the theory ZF+M is transitive +ZFM is con-
sistent where M is a new variable.

Proof. Assume that ZF + M is transitive+ZFM is inconsistent. Then the inconsistency
follows from finitely many formulas of that theory. Take ZF-axioms ϕ0,	 , ϕn−1 such that

ϕ0,	 , ϕn−1, ϕ0
M ,	 , ϕn−1

M ,M is transitive

12



imply the inconsistent statement x � x . Work in ZF. By Reflection, Theorem 8, there is
some Vθ such that ϕ0,	 , ϕn−1 are Vθ-absolute. Then the following hold:

ϕ0,	 , ϕn−1, ϕ0
Vθ,	 , ϕn−1

Vθ , Vθ is transitive.

But then the proof of x� x can be carried out under the assignment M � Vθ . This means
that ZF is inconsistent. �

Similarly:

Theorem 12. Let ZFC be consistent. Then the theory ZFC + M is transitive+ZFCM is
consistent where M is a new variable.

4 Formalisation of Formal Languages

We want to construct Gödel’s model HOD which abbreviates the class of Hereditarily
Ordinal Definable sets. HOD will be a model of the theory ZFC. The basic intuitions are:

− we want to define some “minimal” model of set theory which only contains “neces-
sary” sets.

− a model of set theory must be closed under the formation of definable sets where
definitions may contain parameters from that model.

− one might define the model as the collection of all sets definable from parameters
out of some reasonable class.

− one could take the class Ord of ordinals as the class of parameters: the class OD of
Ordinal Definable sets is the collection of all sets of the form

y= {x|ϕ(x, αQ )}

where ϕ is a formula of set theory and αQ ∈Ord.

− this may lead to a class which satisfies the axiom of choice since we can wellorder
the collection of terms {x|ϕ(x, αQ )} by wellordering the countable set of formulas
and the finite sequences of parameters.

− to get a transitive model we also need that elements x ∈ y are also ordinal defin-
able, that u ∈ x ∈ y are ordinal definable etc., i.e. that y is hereditarily ordinal
definable. That means TC({y})⊆OD.

13



So far we do not have a definition of HOD by a formula of set theory, since we are ranging
over all formulas ϕ of set theory. This makes arguing about HOD in ZF difficult.
Gödel’s crucial observation is that HOD is, after all, definable by a single ∈-formula
which roughly is as follows:

z ∈HOD↔TC({z})⊆OD

and

y ∈OD↔ there exists an ∈-formula ϕ and αQ ∈Ord such that y= {x|ϕ(x, αQ )}.

To turn the right-hand side into an ∈-formula one has to formalise the collection of all ∈-
formulas in set theory and also the truth predicate ϕ(x, αQ ) as a new formula in the vari-
ables ϕ (sic!), x, and αQ .

Consider the language of set theory formed by variables v0, v1, 	 , the relations ≡ and ∈,
and logical signs ¬, ∨, ∃. We code formulas ϕ of that language into sets ⌈ϕ⌉ by recursion
on the structure of ϕ as follows.

Definition 13. For a formula ϕ of set theory define the Gödelisation ⌈ϕ⌉ by recursion:

− ⌈vi≡ vj⌉=(0, i, j)

− ⌈vi∈ vj⌉=(1, i, j)

− ⌈¬ϕ⌉=(2, ⌈ϕ⌉, ⌈ϕ⌉)

− ⌈ϕ∨ ψ⌉= (3, ⌈ϕ⌉, ⌈ψ⌉)

− ⌈∃viϕ⌉= (4, i, ⌈ϕ⌉)

Note that ⌈ϕ⌉ ∈ Vω since Vω contains all the natural numbers and is closed unter ordered
triples.

This motivates a set theoretic formalisation of the language of set theory. First we for-
malise the operations employed in the above Gödelisation. The set of formulas is then the
the set generated by these operations.

Definition 14. For i, j ∈ω and sets x, y ∈V define

− vi≡̇vj6 (0, i, j)

− vi∈̇vj6 (1, i, j)

− ¬̇x6 (2, x, x)

− x∨̇y6 (3, x, y)

14



− ∃̇vi x6 (4, i, x)

By recursion on the wellfounded relation

yRx↔∃u, v (x=(u, y, v)∨ x= (u, v, y))

define

x∈Fml ↔ ∃i, j <ω x= vi≡̇vj
∨∃i, j <ω x= vi∈̇vj
∨∃y (y ∈Fml∧ x= ¬̇y)
∨∃y , z(y ∈Fml∧ z ∈Fml∧ x= y∨̇z)
∨∃i <ω∃y(y ∈Fml∧ x= ∃̇vi y).

Fml is the set of formalised ∈-formulas. We have: Fml⊆ Vω , and for every standard ∈-for-
mula ϕ:

⌈ϕ⌉ ∈Fml .

It is, however, possible that Fml contains nonstandard formulas which are not of the form
⌈ϕ⌉. One has to be very careful here since one is working in the vicinity of the Gödel
incompleteness theorems. One can now prove that the set Fml satisfies the syntactic prop-
erties known from predicate logic, dealing with free and bound variables, substitution, etc.

We interpret elements of Fml in structures of the form (M, E) where E is a binary rela-
tion on the set M and in particular in models of the form (M, ∈) which is a short nota-
tion for the ∈-relation restricted to M :

(M,∈)= (M, {(u, v)|u∈M ∧ v ∈M ∧u∈ v}).

Definition 15. Let Asn(M) = <ωM = {a|a: dom(a)→M, ∃n < ω dom(a)⊆ n } be the set
of assignments in M. We also denote the assignment a by a(0), 	 , a(n − 1) in case that

dom(a)=n. For a∈Asn(M), x∈M, and i <ω define the modified assigment a
x

i
by

a
x

i
(m)=

{

a(m), if m� i

x, else

Definition 16. For a structure (M, E) with M ∈ V, ϕ ∈ Fml, and a an assignment in M

define the satisfaction relation (M, E) � ϕ[a] (“ (M, E) is a model of ϕ under the assign-
ment a”) by recursion on the complexity of ϕ:

− (M,E)� vi≡̇vj(0, i, j)[a] iff a(i)= a(j)

15



− (M,E)� vi∈̇vj(1, i, j)[a] iff a(i)Ea(j)

− (M,E)� ¬̇y[a] iff not (M,E)� y[a]

− (M,E)� y∨̇z[a] iff (M,E)� y[a] or (M,E)� z[a]

− (M,E)� ∃̇vi y[a] iff there exists x∈M: (M,E)� y[a
x

i
]

If dom(a)=n we also write (M,E)� ϕ[a(0),	 , a(n− 1)].

Note that the recursion requires that M is a set since in the last clause we recurse to (M,

E)� y[a
x

i
] for x∈M and we cannot in general recurse to a proper class of preconditions.

The semantics given by the satisfaction relation satisfies the usual semantic laws known
from predicate logic. The satisfaction relation also agrees with the notion of “model” in
terms of relativisations. A straightforward induction on the complexity of formulas shows:

Lemma 17. Let ϕ(v0,	 , vn−1) an ∈-formula. Then for any set M with a∈M

∀v0,	 , vn−1∈M((M,∈)� ⌈ϕ⌉[v0,	 , vn−1] ↔ϕM).

Exercise 2. Define a wellorder <Fml of the set Fml in ordertype ω without using parameters.

Exercise 3. Show: for any ϕ ∈ Fml there is n < ω such that for any structure (M, E) and assign-
ments b, b′ in M :

if b ↾n= b′ ↾n then ((M,E)� ϕ[b]↔(M,E)� ϕ[b′]).

5 Heriditarily Ordinal Definable Sets

We can now give an (official) definition of the class HOD.

Definition 18. Define

OD= {y |∃α∈Ord∃ϕ∈Fml∃a∈Asn(α) y= {z ∈Vα|(Vα,∈)� ϕ[az
0
]}},

and

HOD= {x|TC({x})⊆OD}

We shall see that HOD is a model of ZFC.
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Lemma 19. Ord⊆OD and Ord⊆HOD.

Proof. Let ξ ∈Ord. Then

ξ = {z ∈Vξ+1|z ∈ ξ}
= {z ∈Vξ+1|(z ∈ ξ)Vξ+1}
= {z ∈Vξ+1|(Vξ+1,∈)� ⌈v0∈ v1⌉[z, ξ]}
∈ OD

If ξ ∈Ord then TC({ξ}) = ξ+1⊆OD and so ξ ∈HOD. �

Lemma 20. HOD is transitive.

Proof. Let x∈ y ∈HOD. Then TC({x})⊆TC({y})⊆OD and so x∈HOD. �

An element y = {z ∈ Vα|(Vα, ∈) � ϕ[a z0 ]} of OD is determined or named by the tripel (Vα,
ϕ, a).

Definition 21. For x∈V, ϕ∈Fml, and a∈Asn(x) define the interpretation function

I(x, ϕ, a) = {z ∈ x|(x,∈)� ϕ[az
0
]}.

We say that I(x, ϕ, a) is the interpretation of (x, ϕ, a), or that (x, ϕ, a) is a name for
I(x, ϕ, a).

Lemma 22. Let

OD∗= {(Vα, ϕ, a)|α∈Ord, ϕ∈Fml, a∈Asn(α)}

be the class of OD-names. Then OD = I[OD∗]. OD∗ has a wellorder <OD∗ of type Ord
which is definable without parameters.

Proof. Let <Fml be a wellorder of Fml in ordertype ω which is definable without parame-
ters (see Exercise 2).

Wellorder the class
⋃

α∈Ord
Asn(α) of all relevant assignment by

a<Asna
′ ↔ max (ran(a))<max (ran(a ′))

∨(max (ran(a))=max (ran(a′))∧ dom(a)<dom(a ′))

∨ (max (ran(a)) = max (ran(a′)) ∧ dom(a) = dom(a′) ∧ ∃n ∈ dom(a′)(a ↾ n =

a′ ↾n∧n∈ dom(a)∧ a(n)<a′(n)))
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Wellorder OD∗ in ordertype Ord by

(Vα, ϕ, a)<OD∗ (Vα′, ϕ′, a′) ↔ α<α ′

∨(α=α ′∧ ϕ<Fml ϕ
′)

∨(α=α ′∧ ϕ= ϕ′∧ a<Asna
′).

�

Lemma 23. OD has a wellorder <OD of type Ord which is definable without parameters.

Proof. We let <OD be the wellorder induced by <OD∗ via I:

x<ODx
′ ↔ ∃(Vα, ϕ, a) ∈ OD∗(x = I(Vα, ϕ, a) ∧ ∀(Vα′, ϕ′, a′) ∈ OD∗(x′ = I(Vα ′, ϕ′, a′)→

(Vα, ϕ, a)<OD∗ (Vα′, ϕ′, a′))).
�

Lemma 24. Let z be definable from x1,	 , xn−1 by the ∈-formula ϕ(v1,	 , vn), i.e.,

∀vn(vn= z↔ϕ(x1,	 , xn−1, vn)). (4)

Let x1,	 , xn∈OD and z ⊆HOD. Then z ∈HOD.

Proof. TC({z}) = {z} ∪ TC(z) ⊆ {z} ∪ HOD. So it suffices to prove z ∈ OD. Using the
canonical wellorder <OD from Lemma 23 every element x of OD is definable from one
ordinal δ without further parameters: x is the δ-th element in the wellorder <OD. So we
may simply assume that the parameters x1,	 , xn−1 are ordinals.

Let z, x1,	 , xn−1∈Vθ0 . By Reflection take some θ > θ0 such that ϕ is Vθ-absolute. Then

z = {u∈Vθ|u∈ z}
= {u∈Vθ|∃vn (ϕ(x1,	 , xn−1, vn)∧u∈ vn)}
= {u∈Vθ|∃vn∈Vθ (ϕ(x1,	 , xn−1, vn)

Vθ∧u∈ vn)}
= {u∈Vθ|(Vθ,∈)� ⌈∃vn (ϕ(v1,	 , vn−1, vn)∧ v0∈ vn)⌉[u, x1,	 , xn−1]}
∈ OD.

�

The two previous Lemmas justify the notion “ordinal definable”: if z ∈ OD it is definable
as the δ-th element in <OD for some ordinal δ. Conversely, if z is definable from ordinal
parameters the preceding proof shows that z ∈OD.

Theorem 25. ZFHOD.
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Proof. Using the criteria of Theorem 3 we check certain closure properties of HOD.

a) Extensionality holds in HOD, since HOD is transitive.

b) Let x, y ∈HOD. Then {x, y} is definable from x, y, and {x, y} ⊆HOD. By Lemma 24,
{x, y} ∈HOD, i.e. HOD is closed with respect to unordered pairs. This implies Pairing in
HOD.

c) Let x ∈ HOD. Then
⋃

x is definable from x, and
⋃

x ⊆ TC({x}) ⊆ HOD. So
⋃

x ∈
HOD, and so Union holds in HOD.

d) Let x ∈ HOD. Then P(x) ∩ HOD is definable from x, and P(x) ∩ HOD ⊆ HOD. So
P(x)∩HOD∈HOD and Powerset holds in HOD.

e) ω ∈HOD implies that Infinity holds in HOD.

f) Let ϕ(x, wQ ) be an ∈-formula and wQ , a ∈ HOD. Then {x ∈ a|ϕHOD(x, wQ )} is a set by

Separation in V , and it is definable from wQ , a. Moreover {x ∈ a|ϕHOD(x, wQ )} ⊆ HOD. So
{x∈ a|ϕHOD(x,wQ )}∈HOD, and Separation for the formula ϕ holds in HOD.

g) Let ϕ(x, y, wQ ) be an ∈-formula and wQ , a∈HOD. Assume that

∀x, y, y ′∈HOD(ϕHOD(x, y, wQ )∧ ϕHOD(x, y ′, wQ )→y= y ′).

Then {y |∃x ∈ aϕHOD(x, y, wQ )} ∩HOD is a set by Replacement and Separation in V . It is
definable from wQ , a. Moreover {y |∃x ∈ aϕHOD(x, y, wQ )} ∩ HOD ⊆ HOD. So {y |∃x ∈
aϕHOD(x, y, wQ )}∩HOD∈HOD, and Replacement for ϕ holds in HOD.

h) Foundation holds in HOD since HOD is an ∈-model. �

Hence HOD is an inner model of set theory , i.e. HOD is transitive, contains all ordinals,
and is a model of ZF.

Theorem 26. ACHOD.

Proof. We prove AC in HOD using Theorem 3. Consider x ∈ HOD with ∅ � x ∧ ∀u, u′ ∈
x (u� u′→ u∩u′= ∅). Define a choice set y for x by

y= {v |∃u∈ x : v is the <OD-minimal element of u}.

Obviously y intersects every element of x in exactly one element. y is definable from x ∈
HOD and y ⊆HOD. By Lemma 24, y ∈HOD, as required. �

Theorem 27. (Kurt Gödel, 1938) If ZF is consistent then ZFC is consistent. In other
words: the Axiom of Choice is relatively consistent with the system ZF.

Proof. Since ZF proves that HOD is a model for ZFC. �
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Exercise 4. Extend the formal language by atomic formulas for “x ∈ A” where A is considered a
unary predicate or relation. Define

OD(A)= {y |∃α∈Ord ∃ϕ∈Fml′ ∃β:ω→A∩Vα y= {z ∈ Vα|(Vα, A∩Vα,∈)� ϕ[β
z

0
]}}

and the corresponding generalisation HOD(A) of HOD. Prove:

a) if A is transitive then A⊆HOD(A);

b) if A is moreover definable from some parameters a0,	 , an−1∈A then ZFHOD(A).

Note that AC does in general not hold in HOD(A).

6 Absolute and Definite Notions

For terms we define:

Definition 28. Let W be a term, and t(xQ ) = {y |ϕ(y, xQ )} be a term which has no common
variables with W. Define the relativisation

tW(xQ )= {y ∈W |ϕW(y, xQ )}.

Let W ′ be another term which has no common variables with t. Then t is W-W ′-absolute
if

∀xQ ∈W ∩W ′((tW(xQ )∈W↔ tW
′

(xQ )∈W ′)∧ (tW(xQ )∈W→ tW(xQ )= tW
′

(xQ ))).

If W ′=V we call t W-absolute.

Formulas and terms may be absolute for complicated reasons. In this section we want to
study notions that are absolute between all transitive models of ZF− simply due to their
syntactical structure.

Definition 29. Let ψ(vQ ) be an ∈-formula and let t(vQ ) be a term, both in the free vari-
ables vQ . Then

a) ψ is definite iff for every transitive ZF−-model (M,∈)

∀xQ ∈M (ψM(xQ )↔ψ(xQ )).

b) t is definite iff for every transitive ZF−-model (M,∈)

∀xQ ∈M tM(xQ )∈M and ∀xQ ∈M tM(xQ )= t(xQ ).
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Note that the notion of definiteness is in its generality not definable in set theory since it
involves quantification over all transitive ZF−-models. We can, however, prove that most
simple set-theoretical notions are definite. We shall work inductively: basic notions are
definite and important set-theoretical operations lead from definite notions to definite
notions.

The following lemma shows that the operations of relativisation and substitution of a term
into a formula commute.

Lemma 30. Let ϕ(x, yQ ) be a formula, t(zQ ) be a term, and M be a class. Assume that
∀zQ ∈M t(zQ )∈M. Then

∀yQ , zQ ∈M (ϕ(t(zQ ), yQ ))M↔ ϕM(tM(zQ ), yQ )).

Proof. If t = t(zQ ) is of the form t = z then there is nothing to show. Assume otherwise
that t is of the form t = {u|ψ(u, zQ )}. We work by induction on the complexity of ϕ.
Assume that ϕ≡x= y and y, zQ ∈M . Then

(t(zQ )= y)M ↔ ({u|ψ(u, zQ )}= y)M

↔ (∀u (ψ(u, zQ )↔u∈ y))M
↔ ∀u∈M (ψM(u, zQ )↔ u∈ y)
↔ {u∈M |ψM(u, zQ )}= y

↔ tM(zQ )= y

↔ ϕM(tM(zQ ), y)

Assume that ϕ≡ y ∈ x and y, zQ ∈M . Then

(y ∈ t(zQ ))M ↔ ψM(
y

u
, zQ )

↔ y ∈{u∈M |ψM(u, zQ )}
↔ y ∈ tM(zQ )

↔ ϕM(tM(zQ ), y)

Assume that ϕ≡x∈ y and y, zQ ∈M . Then

(t(zQ )∈ y)M ↔ (∃u (u= t(zQ )∧u∈ y)M
↔ ∃u∈M ((u= t(zQ ))M ∧u∈ y)
↔ ∃u∈M (u= tM(zQ )∧ u∈ y), by the first case,

↔ ∃u (u= tM(zQ )∧ u∈ y), since M is closed w.r.t. t,

↔ tM(zQ )∈ y
↔ ϕM(tM(zQ ), y)
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The induction steps are obvious since the terms t resp. tM are only substituted into the
atomic subformulas of ϕ. �

Theorem 31.

a) The formulas x= y and x∈ y are definite.

b) If the formulas ϕ and ψ are definite then so are ¬ϕ and ϕ∨ ψ.

c) Let the formula ϕ(x, yQ ) and the term t(zQ ) be definite. Then so are ϕ(t(zQ ), yQ ) and
∃x∈ t(zQ ) ϕ(x, yQ ).

d) The terms x, ∅, {x, y}, and ⋃ x are definite.

e) Let the terms t(x, yQ ) and r(zQ ) be definite. Then so is t(r(zQ ), yQ ).

f ) Let the formula ϕ(x, yQ ) be definite. Then so is the term {x∈ z |ϕ(x, yQ )}.

g) Let the term t(x, yQ ) be definite. Then so is the term {t(x, yQ ) |x∈ z}.

h) The formulas “R is a relation”, “f is a function”, “f is injective”, and “f is surjec-
tive” are definite.

i) The formulas Trans(x), Ord(x), Succ(x), and Lim(x) are definite.

j ) The term ω is definite.

Proof. Let M be a transitive ZF−-model.
a) is obvious since (x= y)M≡ (x= y) and (x∈ y)M ≡ (x∈ y).
b) Assume that ϕ and ψ are definite and that (M, ∈) is a transitive ZF−-model. Then
∀xQ ∈M (ϕM(xQ )↔ϕ(xQ )) and ∀xQ ∈M (ψM(xQ )↔ψ(xQ )). Thus

∀xQ ∈M ((ϕ∨ ψ)M(xQ )↔ (ϕM(xQ )∨ ψM(xQ ))↔ (ϕ(xQ )∨ ψ(xQ ))↔(ϕ∨ ψ)(xQ ))

and

∀xQ ∈M ((¬ϕ(xQ ))M↔¬(ϕM(xQ ))↔¬(ϕ(xQ ))↔(¬ϕ)(xQ )).

c) Let (M,∈) be a transitive ZF−-model. Let yQ , zQ ∈M . t(zQ )∈M since t is definite. Then

(ϕ(t(zQ ), yQ ))M ↔ ϕM(tM(zQ ), yQ ), by Lemma 30,

↔ ϕM(t(zQ ), yQ ), since t is definite,

↔ ϕ(t(zQ ), yQ ), since ϕ is definite.
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Also

(∃x∈ t(zQ ) ϕ(x, yQ ))M ↔ (∀x (x∈ t(zQ )→ ϕ(x, yQ )))M

↔ ∀x∈M ((x∈ t(zQ ))M→ ϕM(x, yQ ))

↔ ∀x∈M (x∈ tM(zQ )→ ϕM(x, yQ ))

↔ ∀x∈M (x∈ t(zQ )→ ϕ(x, yQ )), since t and ϕ are definite,

↔ ∀x (x∈ t(zQ )→ ϕ(x, yQ )), since t(zQ )⊆M,

↔ ∀x∈ t(zQ ) ϕ(x, yQ )).

d) A variable term x is trivially definite, since xM =x.

Consider the term ∅= {u|u� u}. Since M is non-empty and transitive, ∅∈M . Also

∅M = {u∈M |u� u}= ∅.

Consider the term {x, y}. For x, y ∈M :

{x, y}M = {u∈M |u=x∨ u= y}= {u|u=x∨u= y}= {x, y}.

The pairing axiom in M states that

(∀x, y∃z z= {x, y})M.

This implies

∀x, y ∈M∃z ∈Mz= {x, y}M = {x, y}

and

∀x, y ∈M {x, y}∈M.

Consider the term
⋃

x . For x∈M :

(
⋃

x)M = {u∈M |(∃v ∈ x u∈ v)M}= {u∈M |∃v ∈ x∩M u∈ v}= {u|∃v ∈ x u∈ v}=
⋃

x.

The union axiom in M states that

(∀x∃z z=
⋃

x)M.

This implies

∀x∈M∃z ∈M z=(
⋃

x)M =
⋃

x

and

∀x∈M
⋃

x∈M.
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e) is obvious.

f) Let yQ , z ∈M . By the separation schema in M ,

(∃w w= {x∈ z |ϕ(x, yQ )})M ,

i.e. {x∈ z |ϕ(x, yQ )}M ∈M . Moreover by the definiteness of ϕ

{x∈ z |ϕ(x, yQ )}M = {x∈M |x∈ y ∧ ϕM(x, yQ )}= {x |x∈ y ∧ ϕ(x, yQ )}= {x∈ z |ϕ(x, yQ )}.

g) Since t is definite, ∀x, yQ ∈M tM(x, yQ )∈M . This implies

∀x, yQ ∈M∃w ∈Mw= tM(x, yQ )

and (∀x, yQ ∃w w= t(x, yQ ))M . Let yQ , z ∈M . By replacement in M ,

(∃a a= {t(x, yQ )|x∈ z})M .

Hence {t(x, yQ )|x∈ z}M ∈M . Moreover

{t(x, yQ )|x∈ z}M = {w |∃x∈ z w= t(x, yQ )}M
= {w ∈M |∃x∈ z w= tM(x, yQ )}
= {w |∃x∈ z w= tM(x, yQ )}, since M is closed w.r.t. tM ,

= {w |∃x∈ z w= t(x, yQ )}, since t is definite,
= {t(x, yQ )|x∈ z}.

h) “R is a relation” is equivalent to

∀z ∈R∃x, y ∈ (
⋃ ⋃

z) z= {{x}, {x, y}}.

This is definite, using c), d), e). The other relational statements are definite for similar rea-
sons.

i)

Trans(x) ↔ ∀y ∈ x∀z ∈ y z ∈ x
Ord(x) ↔ Trans(x)∧∀y ∈ x Trans(y)

Succ(x) ↔ Ord(x)∧∃y ∈ xx= y∪{y}
Lim(x) ↔ Ord(x)∧¬Succ(x)∧ x� ∅

j) Consider the term ω=
⋂ {x|x is inductive}. Since M satisfies the axiom of infinity,

∃x∈M (x=ω)M .
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Take x0∈M such that (x0= ω)M. Then (Lim(x0))
M, (∀y ∈ x0¬Lim(y))M. By definiteness,

Lim(x0), ∀y ∈ x0 ¬Lim(y), i.e. x0 is equal to the smallest limit ordinal ω. Hence ω ∈ M .
The formula “x is inductive” has the form

∅∈ x∧∀y ∈ x
⋃

{y, {y}}∈ x

and is definite by previous considerations. Now

ωM = (
⋂

{x|x is inductive})M
= ({y |∀x (x is inductive→y ∈ x)})M
= {y ∈M |∀x∈M (x is inductive→y ∈ x)}, since “x is inductive” is definite,

=
⋂

{x∈M |x is inductive}
=
⋂

{x∩ω |x∈M is inductive}, since ω ∈M,

=
⋂

{ω}, since ω is the smallest inductive set,

= ω.

�

We may view this theorem as a “definite” form of the ZF−-axioms: common notions and
terms of set theory and mathematics are definite, and natural operations lead to further
definite terms. Since the recursion principle is so important, we shall need a definite recur-
sion schema:

Theorem 32. Let G(w, yQ ) be a definite term, and let F (α, yQ ) be the canonical term
defined by ∈-recursion with G:

∀xF (x, yQ )=G({(z, F (z, yQ ))|z ∈ x}, yQ ).

Then the term F (x, yQ ) is definite.

Proof. Let M be a transitive ZF−-model. By the recursion theorem, F is a total function
in V and in M :

∀x, yQ ∈M FM(x, yQ )∈M.

Assume that x were ∈-minimal such that FM(x, yQ ) � F (x, yQ ). Then we get a contradic-
tion by

FM(x, yQ ) = GM({(z, FM(z, yQ ))|z ∈ x}, yQ )
= GM({(z, F (z, yQ ))|z ∈ x}, yQ ), by the minimality of x,

= G({(z, F (z, yQ ))|z ∈ x}, yQ ), by the definiteness of G,

= F (x, yQ ).

�
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Lemma 33. rank(x) is a definite term.

Proof. rank(x) =
⋃ {rank(y)+ 1 |y ∈ x}=G(rank ↾x) with the definite recursion rule

G(f)= {f(z)+ 1 |z ∈ dom(f)} �

Theorem 34. Let G(w, yQ ) be a definite term and let R(z, x) be a strongly wellfounded
relation such that the term {z |zRx} is definite. Let F (α, yQ ) be the canonical term defined
by R-recursion with G:

∀xF (x, yQ )=G({(z, F (z, yQ ))|zRx}, yQ ).

Then the term F (x, yQ ) is definite.

Proof. Let M be a transitive ZF−-model. By the recursion theorem, F is a total function
in V and in M :

∀x, yQ ∈M FM(x, yQ )∈M.

Assume that x were R-minimal such that FM(x, yQ ) � F (x, yQ ). Then we get a contradic-
tion by

FM(x, yQ ) = GM({(z, FM(z, yQ ))|(zRx)M}, yQ )
= GM({(z, FM(z, yQ ))|zRx}, yQ ), by the assumptions on R,

= GM({(z, F (z, yQ ))|zRx}, yQ ), by the minimality of x,

= G({(z, F (z, yQ ))|zRx}, yQ ), by the definiteness of G,

= F (x, yQ ).

�

Also other kinds of recursions lead from definite recursion rules to definite functions.

Note that not every important notion is definite. For the powerset operation we have
PM(x) = P(x) ∩M . If M does not contain all subsets of x then PM(x) � P(x). We shall
later produce countable transitive models M of ZF− so that PM(ω) � P(ω), and we thus
prove that P(x) is not definite. Obviously the construction of models of set theory is espe-
cially geared at exhibiting the indefiniteness of some interesting notions.

Exercise 5. Show that (x, y), x× y, f ↾ x are definite terms.

Exercise 6. Show that TC(x) is a definite term.

Exercise 7. Show that the term Vn for n<ω is definite. Show that the term Vω is definite.
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Lemma 35. The following modeltheoretic notions are definite:

a) the term Fml of all formalised ∈-formulas;

b) the term Asn(M);

c) the formula “ (M,E)� ϕ[b]” in the variables M,E, ϕ, b.

Proof. a) and c). Fml and �are defined by recursion on the relation

yRx↔∃u, v (x= (u, y, v)∨ x=(u, v, y)).

Then

{y |yRx}= {y ∈TC(x)|∃u, v ∈TC(x) (x=(u, y, v)∨ x= (u, v, y))}

is definite. Therefore the characteristic function of Fml is definite as well as the term

Fml= {x∈Vω|x∈Fml}.

By Theorem 34 on definite recursions, Fml and � are definite.

b) Define by definite recursion Asn0(M) = {∅} and

Asnn+1(M) =Asnn(M)∪{ax
n
|a∈Asnn(M )∧ x∈M }.

Asnn(M) is a definite term, and Asn(M)=
⋃ {Asnn(M)|n∈ω} is also definite. �

7 Skolem hulls

Theorem 36. (Downward Löwenheim-Skolem Theorem, ZFC) Let X ⊆M � ∅ be sets.
Then there exists N ⊆M such that

a) X ⊆N and card(N)6 card(X)+ℵ0 ;

b) every ∈-formula is N-M-absolute.

Proof. Take a wellorder ≺ of M . Define a Skolem function S:Fml×Asn(M),

S(ϕ, a)=

{

the ≺ smallest element of I(M, ϕ, a), if this exists,
m0 , else,
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where m0 is some fixed element of M . Intuitively, S(ϕ, a0, a1, 	 , ak−1) is the ≺-smallest
element z ∈M such that M � ϕ(z, a1,	 , ak−1), if such a z exists.

Define N0=X, N1, N2,	 recursively:

Nn+1=Nn∪S[Fml×Asn(Nn)],

and let N =
⋃

n<ω
Nn .

We show inductively that card(Nn)6 card(X)+ℵ0 :

card(Nn+1) 6 card(Nn)+ card(Fml×Asn(Nn))

6 card(Nn)+ card(Fml) · card(<ωNn)

6 card(Nn)+ℵ0 · card(Nn)
<ω

6 card(X)+ℵ0+ℵ0 · (card(X)+ℵ0), by inductive assumption,

6 card(X)+ℵ0 .

Hence

card(N)6
∑

n<ω

card(Nn)6
∑

n<ω

(card(X)+ℵ0) =ℵ0 · (card(X) +ℵ0)= card(X)+ℵ0 .

We prove the N -M -absoluteness of the ∈-formula ϕ by induction on the complexity of ϕ.
The cases ϕ≡ v0 = v1 and ϕ≡ v0 ∈ v1 are trivial. The induction steps for ϕ≡ ϕ0 ∨ ϕ1 and
ϕ≡ ¬ϕ0 are easy. Finally consider the formula ϕ≡ ∃v0 ψ(v0, v1, 	 , vk−1). Consider a1, 	 ,
ak−1∈N . The Skolem value u=S(⌈ψ⌉, a1,	 , ak−1) is an element of N . Then

(∃v0 ψ(v0, a1,	 , ak−1))
N → ∃v0∈NψN(v0, a1,	 , ak−1)

→ ∃v0∈NψM(v0, a1,	 , ak−1), by the inductive assumption,

→ ∃v0∈MψM(v0, a1,	 , ak−1)

→ (∃v0 ψ(v0, a1,	 , ak−1))
M.

Conversely assume that (∃v0 ψ(v0, a1,	 , ak−1))
M . Then I(M, ⌈ψ⌉, a1,	 , ak−1)� ∅ and z =

S(⌈ψ⌉, a1,	 , ak−1) is the ≺-smallest element of M such that ψM(z, a1,	 , ak−1). The con-

struction of N implies that z ∈ N . By induction hypothesis, ψN(z, a1, 	 , ak−1). Hence
∃v0∈NψN(z, a1,	 , ak−1)≡ (∃v0 ψ(v0, a1,	 , ak−1))

N. �

Note that this proof has some similarities with the proof of the Levy reflection principle.
Putting X = ∅ the theorem implies that every formula that has some infinite model M has
a countable model N . E.g., the formula “there is an uncountable set” has a countable
model. This is the famous Skolem paradox. As a prepartation for the forcing method we
also want the countable structure to be transitive.
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Theorem 37. Assume (Extensionality)N. Then there is a transitive N̄ and π: N ↔ N̄

such that π is an ∈-isomorphism, i.e. ∀x, y ∈N (x∈ y↔ π(x)∈ π(y)). Moreover, N̄ and π
are uniquely determined by N. π and N̄ are called the Mostowski transitivisation or col-
lapse of N.

Proof. Define π:N→V recursively by

π(y)= {π(x)|x∈ y ∩N }.

Set N̄ =π[N ].

(1) N̄ is transitive.
Proof . Let z ∈ π(y)∈ N̄ . Take x∈ y ∩N such that z=π(x). Then z ∈ π[N ] = N̄ . qed(1)

(2) π:N↔ N̄ .
Proof . It suffices to show injectivity. Assume for a contradiction that z ∈ N̄ is ∈-minimal
such that there are y, y ′ ∈ N , y � y ′ with z = π(y) = π(y ′). (Extensionality)N implies
(∃x(x ∈ y↔ x � y ′))N. Take x ∈ N such that x ∈ y↔ x � y ′. We may assume that x ∈ y
and x � y ′. Then π(x) ∈ π(y) = π(y ′). According to the definition of π take x′ ∈ y ′ ∩ N
such that π(x) = π(x′). By the minimality of z, x= x′. But then x= x′∈ y ′, contradiction.
qed(2)

(3) π is an ∈-isomorphism.
Proof . Let x, y ∈ N . If x ∈ y then π(x) ∈ π(y) by the definition of π. Conversely assume
that π(x) ∈ π(y). By the definition of π take x′ ∈ y ∩ N such that π(x) = π(x′). By (2),
x= x′ and so x∈ y. qed(3)

To show uniqueness assume that Ñ is transitive and π̃ : N ↔ Ñ is an ∈-isomorphism.
Assume that y ∈ N is ∈-minimal such that π(y) � π̃(y). We get a contradiction by

showing that π(y) = π̃(y). Consider z ∈ π̃(y). The transitivity of Ñ implies z ∈ Ñ . By the
surjectivity of π̃ take x ∈N such that z = π̃(x). Since π̃ is an ∈-isomorphism, x ∈ y. And
since π is an ∈-isomorphism, π(x)∈ π(y). By the minimality of y, π(x) = π̃(x). Hence z =
π̃(x) = π(x) ∈ π(y). Thus π̃(y) ⊆ π(y). The converse can be shown analogously. Thus
π(y)= π̃(y), contradiction. �

It is easy to see that ∈-isomorphisms preserve the truth of ∈-formulas.

Lemma 38. Let π: N ↔ N̄ be an ∈-isomorphism. Let ϕ(v0, 	 , vn−1) be an ∈-formula.
Then

∀v0,	 , vk−1∈N (ϕN(v0,	 , vk−1)↔ϕN̄(π(v0),	 , π(vk−1))).

Lemma 39. (ZFC) Let ϕ0, 	 , ϕn−1 be ∈-formulas without free variables with are true in

V. Then there is a countable transitive set N̄ such that ϕ0
NQ ,	 , ϕn−1

N̄ .
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Proof. We may assume that ϕ0 is the extensionality axiom. By the Reflection Theorem 8

we can take θ ∈Ord such that ϕ0
Vθ, 	 , ϕn−1

Vθ . By Theorem 36 there is a countable N such
that all ∈-formulas as N -Vθ-absolute. In particular ϕ0

N , 	 , ϕn−1
N . By Theorem 37 there is

transitive set N̄ and an ∈-isomorphism π: N ↔ N̄ . Then N̄ is countable. By Lemma 38
ϕ0
NQ ,	 , ϕn−1

N̄ . �

Theorem 40. If ZFC is consistent then the following theory is also consistent: ZFC+M

is countable and transitive + ZFCM, where M is some variable.

Proof. Assume that the theory ZFC+M is countable and transitive + ZFCM is inconsis-
tent. Then there is a finite sequence ϕ0,	 , ϕn−1 of ZFC-axioms such that the theory

ϕ0,	 , ϕn−1,M is countable and transitive, ϕ0
M ,	 , ϕn−1

M

implies x� x. Work in ZFC. By Lemma 39 there is a countable transitive set N̄ such that

ϕ0
NQ , 	 , ϕn−1

N̄ . Setting M = N̄ we get the contradiction x � x. Hence ZFC is inconsis-
tent. �

The considerations so far justify the following picture as a basis for further studies:

(V ,∈)

M

HOD

The argument of the Theorem can be extended to every ∈-theory which extends ZFC, like
ZFC+CH or ZFC+¬CH.

Theorem 41. Let T be a theory in the language of set theory which extends ZFC.
Assume that T is consistent. Then the following theory is also consistent: T +M is count-
able and transitive +TM, where M is some variable.
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8 Extensions of Models of Set Theory

So far we have constructed and studied the inner model HOD, i.e. a submodel of a given
model of set theory. We shall now work towards extending models of set theory by the
forcing method of Paul Cohen. Cohen introduced these techniques to show the inde-
pendence of AC and CH from ZF.

We shall work in the situation justified by Theorem 40: assume ZFC and ZFCM where M
is countable and transitive. Such an ∈-structure (M, ∈) is called a ground model . We
intend to adjoin a generic set G to M so that the extension M [G] is again a model of
ZFC. Cohen proved the independence of CH by constructing a generic extension

M [G]�ZFC+¬CH.

As already said in the introduction the extension M ⊆ M [G] has some similarities to a
transcendental field extension k ⊆ k(a). The transcendental element a can be described in
the ground field k by a variable x; some properties of a can be described in k. That k(a)
is a field follows from the field axioms in k. The extension is generated by k and a: every
intermediate field K with k ⊆K ⊆ k(a) and a∈K satisfies K = k(a).

The set-theoretic situation will be much more complicated than the algebraic analogue.
Whereas there is up to isomorphism only one transcendental field extension of transcen-
dence degree 1 we shall encounter a rich spectrum of generic extensions.

So fix the ground model M as above. We shall use sets G to determine extensions M [G].
G may be seen as the limit of a (countable) procedure in which more and more properties
of M [G] are being determined or forced . Limits are often described by filters. Our G will
be a filter on a preordering (P ,6).

Definition 42. A partial order or a forcing is a tripel (P , 6, 1P) such that (P , 6) is a
transitive and reflexive binary relation (a preordering) with a maximal element 1P . The
elements of P are called (forcing) conditions. We say that p is stronger than q iff p 6 q.
Conditions q0,	 , qn−1 are compatible iff they have a common extension p6 q0,	 , qn−1 .

An example of a forcing relation is Cohen forcing (P ,6, 1P):

P =Fn(ω, 2,ℵ0)= {p|p:dom(p)→ 2∧ dom(p)⊆ω∧ card(dom(p))<ℵ0

consists of all partial functions from ω to 2. Cohen forcing will approximate a total func-
tion from ω to 2, i.e. a real number. The approximation of a total function is captured by
the forcing relation: a condition p is stronger than q iff the function p extends the func-
tion q:

p6 q iff p⊇ q.
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Let 1P = ∅ be the function with the least information content. Two Cohen condition q1, q2
are compatible iff they are compatible as functions, i.e. if q1∪ q2 is a function.

Fix some forcing relation (P , 6, 1P) ∈ M . It is important that the forcing relation is an
element of the ground model so that the ZFC-properties of M may be applied to P .

Definition 43. G⊆P is a filter on P iff

a) 1P ∈G ;

b) ∀q ∈G∀p> q p∈G ;

c) ∀p, q ∈G∃r ∈G (r6 p∧ r6 q).

In the case of Cohen forcing, a filter is a system of pairwise compatible partial function
whose union is again a partial function from ω to 2. We shall later introduce generic fil-
ters which would make that union a total function.

Fix a filter G on P . We shall construct an extension M [G] which will satisfy some axioms
of ZFC. This will later be strengthened to generic extensions which satisfy all of ZFC.
Elements x∈M [G] will have names ẋ ∈M in the ground model; G allows to interpret ẋ as
x : x = ẋG. The crucial issue for computing the interpretation ẋG is to decide when ẏG ∈
ẋG. This shall be decided by the filter G. So the important information about ẋ is con-
tained in the set

{(ẏ , p)|p decides that ẏ ∈ ẋ}.

In the forcing method one identifies ẋ with that set:

ẋ= {(ẏ , p)|p decides that ẏ ∈ ẋ}.

This motivates the following interpretation function:

Definition 44. Define the G-interpretation ẋG of ẋ ∈ M by recursion on the strongly
wellfounded relation ẏ R ẋ iff ∃u (ẏ , u)∈ ẋ :

ẋG= {ẏG|∃p∈G (ẏ , p)∈ ẋ}.

Let

M [G] = {ẋG|ẋ ∈M }

be the extension of M by P and G.

We examine which set-theoretic axioms hold in M [G].
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Lemma 45. M [G] is transitive.

Proof. Let u∈ ẋG∈M [G]. Then u∈{ẏG|∃p∈G (ẏ , p)∈ ẋ}⊆M [G]. �

Lemma 46. ∀ẋ ∈M rank(ẋG)6 rank(ẋ).

Proof. By induction on the relation ẏ R ẋ iff ∃u (ẏ , u)∈ ẋ:

rank(ẋG) =
⋃

{rank(ẏG) + 1 |∃p∈G (ẏ , p)∈ ẋ}
6
⋃

{rank(ẏ)+ 1 |∃p∈G (ẏ , p)∈ ẋ}, by inductive hypothesis,

6
⋃

{rank((ẏ , p))+ 1 | (ẏ , p)∈ ẋ}
6
⋃

{rank(u)+ 1 |u∈ ẋ}
= rank(ẋ).

�

To show that M [G]⊇M we define names for elements of M .

Definition 47. Define by ∈-recursion the canonical name for x∈M:

x̌= {(y̌ , 1P) |y ∈ x}.

Lemma 48. For x∈M holds x̌G=x. Hence M ⊆M [G].

Proof. By ∈-induction.

x̌G = {ẏG|∃p∈G (ẏ , p)∈ ẋ}
= {y̌G|y ∈ x}, by the definition of x̌ and since 1P ∈G,
= {y |y ∈ x}, by inductive hypothesis,

= x.

�

Lemma 49. M [G]∩Ord=M ∩Ord.

Proof. Let α ∈M [G] ∩ Ord. Take ẋ ∈M such that ẋG = α . By Lemma 33, rank(u) is a
definite term. Hence rank(ẋ)∈M ∩Ord. Hence

α= rank(α)= rank(ẋG)6 rank(ẋ)∈M ∩Ord . �

To check that G∈M [G] we need a name for G.
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Definition 50. Ġ= {(p̌ , p)|p∈P } is the canonical name for the filter on P.

Lemma 51. Ġ ∈M and ĠH=H for any filter H on P.

Proof. The term x̌ in the variable x is definite since it is defined by a definite ∈-recur-
sion. So (x̌ , x) and {(p̌ , p)|p ∈ P } are definite terms in the variables x and P resp. Then

P ∈M implies that Ġ ∈M . Moreover

ĠH= {p̌H |p∈H}= {p|p∈H }=H.

�

Theorem 52. M [G] is a model of Extensionality, Pairing, Union, Infinity, and Founda-
tion.

Proof. We employ the criteria of Theorem 3. Extensionality and Choice hold since M [G]
is a transitive ∈-model.

Pairing: Let x, y ∈M [G]. Take names ẋ , ẏ ∈M such that x= ẋG, y= ẏG. Set

ż = {(ẋ , 1P), (ẏ , 1P)}.

Then

{x, y}= {ẋG, ẏG}= żG∈M [G].

Union: Let x∈M [G] and x= ẋG, ẋ ∈M . Set

ż = {(u̇ , r)|∃p, q ∈P ∃v̇(r6 p∧ r6 q∧ (u̇ , p)∈ v̇ ∧ (v̇ , q)∈ ẋ}.

The right-hand side is a definite term in the variables P ,6, ẋ ∈M , hence ż ∈M . We show
that

⋃

x= żG.

Let u∈⋃ x. Take v ∈ x such that u∈ v ∈ x= ẋG. Take v̇ ∈M and q ∈G such that (v̇ , q)∈
ẋ and v̇G = v. Take u̇ ∈M and p ∈ G such that (u̇ , p) ∈ v̇ and u̇G = u. Take r ∈ G such
that r6 p, q. By the definition of ż , (u̇ , r)∈ ż , and u= u̇G∈ żG since r ∈G.
Conversely let u ∈ żG. Take r ∈G and u̇ ∈M such that (u̇ , r)∈ ż and u= u̇G. By the defi-
nition of ż , take p, q ∈P and v̇ ∈M such that

r6 p∧ r6 q ∧ (u̇ , p)∈ v̇ ∧ (v̇ , q)∈ ẋ.

Then p, q ∈G and u= u̇G∈ v̇G∈ ẋG= x. Hence u∈⋃ x.

Infinity holds in M [G] since ω ∈M ⊆M [G]. �
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Problem 1. Do Powerset and Choice hold in M [G]?

9 Generic Filters and the Forcing Relation

If (ẏ , p) ∈ ẋ then p ∈ H → ẏH ∈ ẋH; so regardless of other aspects p “forces” that ẏ ∈ ẋ.
And if ẏH ∈ ẋH this is (leaving some technical issues aside) forced by some p ∈ H . We
want to generalise this phenomenon from the most fundamental of formulas, v0∈ v1 , to all
∈-formulas: consider a formula ϕ(v0,	 , vn−1) and names ẋ0,	 , ẋn−1 . We want a relation

p
 ϕ(ẋ0,	 , ẋn−1)

such that

a) p 
 ϕ(ẋ0, 	 , ẋn−1) implies that M [H] � ϕ(ẋ0
H , 	 , ẋn−1

H ) for every appropriate filter
H on P with p∈H

b) if M [H ]� ϕ(ẋ0
H ,	 , ẋn−1

H ) for some appropriate filter H on P with p∈H then there
is p∈H such that p
 ϕ(ẋ0,	 , ẋn−1).

Let us continue the discussion with the vague notion of “appropriate filter”. By b), an
appropriate filter H has to decide every ϕ . There is r ∈H such that r
 ϕ or r
¬ϕ:

{r ∈P |r
 ϕ or r
¬ϕ}∩H � ∅;

We argue that the set D = {r ∈ P |r 
 ϕ or r 
 ¬ϕ} is a dense set in P . Let p ∈ P . Take
an appropriate filter H on P with p ∈H . Suppose that M [H ] � ϕ. By b) take some q ∈H
such that q 
 ϕ. By the compatibility of filter elements take r ∈ H such that r 6 p, q .
Then r
 ϕ and r ∈D. In case M [H ]�¬ϕ we similarly find r6 p, r ∈D.

It will turn out that the set D will be definable inside the ground model, thus D ∈ M .
Accordingly, a filter H on P will be appropriate if it intersects every D ∈ M which is a
dense subset of P . We now give rigorous definitions of appropriate filters and of the
forcing relation.

Definition 53. Let (P ,6, 1P) be a forcing.

a) D⊆P is dense in P iff ∀p∈P ∃q ∈Dq6 p.

b) A filter G on P is M-generic iff D∩G� ∅ for every D ∈M which is dense in P.

If M [G] is an extension of M by an M-generic filter we call M [G] a generic extension.

For countable ground models we have
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Theorem 54. Let (P , 6, 1P) be a partial order, let M be a countable ground model, and
let p∈P. Then there is an M-generic filter G on P with p∈G.

Proof. Take a wellorder ≺ of M in ordertype ω. Let (Dn|n< ω) be an enumeration of all
D ∈M which are dense in P . Define an ω-sequence p= p0> p1> p2>	 recursively:

pn+1 is the ≺-smallest element of M such that pn+16 pn and pn+1∈Dn .

Then G= {p∈P |∃n<ω pn6 p} is as desired. �

Fix a ground model M and a partial order (P ,6, 1P)∈M .

Definition 55. Let ϕ(ẋ0, 	 , ẋn−1) be a sentence of the forcing language, i.e. ϕ(v0, 	 ,
vn−1) is an ∈-formulas and ẋ0,	 , ẋn−1∈M. For p∈P define p
P

Mϕ(ẋ0,	 , ẋn−1), p forces
ϕ(ẋ0,	 , ẋn−1), iff for all M-generic filters G on M with p∈G :

ϕM [G](ẋ0
G,	 , ẋn−1

G ).

If M or P are obvious from the context we also write 
P or 
 instead of 
P
M .

We shall state several properties of 
. Some of the properties amount to a definition of

ϕ by recursion on the complexity of ϕ which can be carried out inside the ground model
M .

Lemma 56.

a) If p
 ϕ and q6 p then q
 ϕ.

b) If p
 ϕ and ϕ implies ψ then p
 ψ.

c) If (ẏ , p)∈ ẋ and p∈P then p
 ẏ ∈ ẋ .

Proof. a) Let G∋ q be M -generic on P . Then p∈G. Hence M [G]� ϕ.

b) Let G∋ p be M -generic on P . Then M [G]� ϕ. Since ϕ implies ψ, also M [G]� ψ.

c) Let G∋ p be M -generic on P . Then

ẏG∈{u̇G|∃q ∈G (u̇ , q)∈ ẋ}= ẋG. �

For simplicity we assume that ∈-formulas are only built from the connectives ∧, ¬, ∀. We
want to show (recursively) that every ∈-formula has the following property:
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Definition 57. The ∈-formula ϕ(v0, 	 , vn−1) satisfies the forcing theorem iff the fol-
lowing hold:

a) The class

Forceϕ= {(p, ẋ0,	 , ẋn−1) |p∈P ∧ ẋ0,	 , ẋn−1∈M ∧ p
 ϕ(ẋ0,	 , ẋn−1)}

is definable in M;

b) if M [G] is a generic extension and ẋ0, 	 , ẋn−1 ∈ M with M [G] � ϕ(ẋ0
G, 	 , ẋn−1

G )
then there is p∈G such that p
 ϕ(ẋ0,	 , ẋn−1).

Lemma 58. Let ϕ(v0, 	 , vn−1) and ψ(v0, 	 , vn−1) be ∈-formulas satisfying the forcing
theorem. Then we have for all names ẋ0,	 , ẋn−1∈M

a) p
 (ϕ∧ ψ)(ẋ0,	 , ẋn−1) iff p
 ϕ(ẋ0,	 , ẋn−1) and p
 ψ(ẋ0,	 , ẋn−1).

b) p
¬ϕ(ẋ0,	 , ẋn−1) iff ∀q6 p¬q
 ϕ(ẋ0,	 , ẋn−1).

c) p
∀v0ϕ(v0,ẋ1,	 , ẋn−1) iff ∀ẋ0∈Mp
 ϕ(ẋ0,	 , ẋn−1).

d) The formulas (ϕ∧ ψ), ¬ϕ, and ∀v0 ϕ satisfy the forcing theorem.

Proof. a) is immediate.

b) For the implication from left to right assume p 
 ¬ϕ(ẋ0, 	 , ẋn−1) and let q 6 p. If
q 
 ϕ(ẋ0, 	 , ẋn−1) then p 
 ϕ(ẋ0, 	 , ẋn−1). Take an M -generic G ∋ p. Then M [G] � ¬
ϕ(ẋ0

G,	 , ẋn−1
G ) and M [G]� ϕ(ẋ0

G,	 , ẋn−1
G ). Contradiction.

For the converse assume ¬p 
 ¬ϕ(ẋ0, 	 , ẋn−1). By the definition of 
 take an M -generic

G ∋ p such that M [G] � ϕ(ẋ0
G, 	 , ẋn−1

G ). Since ϕ satisfies the forcing theorem take r ∈ G
with r 
 ϕ(ẋ0, 	 , ẋn−1). Take q ∈ G such that q 6 p, r. Then q 
 ϕ(ẋ0, 	 , ẋn−1), and the
right-hand side of the equivalence is false.

c) is similar to the case a). The implication from left to right is immediate. For the con-
verse assume ∀ẋ0 ∈ M p 
 ϕ(ẋ0, 	 , ẋn−1). et G ∋ p be M -generic on P . Then ∀ẋ0 ∈
M M [G] � ϕ(ẋ0

G, 	 , ẋn−1
G ). Then M [G] � ∀v0ϕ(v0, ẋ1G, 	 , ẋn−1

G ). Thus p 
 ∀v0ϕ(v0,ẋ1, 	 ,
ẋn−1).

d) The cases a) − c) contain definitions of Forceϕ∧ψ , Force¬ϕ , and Force∀v0ϕ on the basis
of definitions of Forceϕ and Forceψ . We now show b) of Definition 57 for ϕ ∧ ψ, ¬ϕ, and
∀v0 ϕ. So let M [G] be a generic extension.

ϕ ∧ ψ : Assume M [G] � (ϕ ∧ ψ)(ẋ0
G, 	 , ẋn−1

G ). Then M [G] � ϕ(ẋ0
G, 	 , ẋn−1

G ) and

M [G]� ψ(ẋ0
G,	 , ẋn−1

G ). Since ϕ and ψ satisfy the forcing theorem, take p, q ∈G such that
p 
 ϕ(ẋ0, 	 , ẋn−1) and q 
 ψ(ẋ0, 	 , ẋn−1). Take r ∈ G with r 6 p, q. Then r 
 ϕ(ẋ0, 	 ,
ẋn−1), r
 ψ(ẋ0,	 , ẋn−1), and r
 (ϕ∧ ψ)(ẋ0,	 , ẋn−1).
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¬ϕ : Assume M [G]�¬ϕ(ẋ0G,	 , ẋn−1
G ). Define

D= {p∈P |p
 ϕ(ẋ0,	 , ẋn−1) or ∀q6 p ¬q
 ϕ(ẋ0,	 , ẋn−1)}.

Since Forceϕ is definable in M , we get D ∈M . It is easy to see that D is dense in P . By
the genericity of G take p ∈G ∩D. We cannot have p 
 ϕ(ẋ0, 	 , ẋn−1) because M [G] � ¬
ϕ(ẋ0

G, 	 , ẋn−1
G ). Hence ∀q 6 p ¬q 
 ϕ(ẋ0, 	 , ẋn−1). Then b) implies that p 
 ¬ϕ(ẋ0, 	 ,

ẋn−1).

∀v0 ϕ : Assume M [G]�∀v0 ϕ(v0, ẋ1G,	 , ẋn−1
G ). Define

D= {p∈P |∀ẋ0∈M p
 ϕ(ẋ0,	 , ẋn−1) or ∃ẋ0∈Mp
¬ϕ(ẋ0, ẋ1	 , ẋn−1)}.

Then D ∈M since Forceϕ and Force¬ϕ are definable in M .

(1) D is dense in P .
Proof . Consider r ∈ P . If ∀ẋ0 ∈M r 
 ϕ(ẋ0, 	 , ẋn−1) then r ∈ D. Otherwise take ẋ0 ∈M
with ¬r 
 ϕ(ẋ0, 	 , ẋn−1). Take an M -generic filter H ∋ r such that M [H ] � ¬ϕ(ẋ0G, 	 ,
ẋn−1
G ). Since ¬ϕ satisfies the forcing theorem, take s ∈ H with s 
 ¬ϕ(ẋ0, 	 , ẋn−1). Take
p∈H such that p6 r, s. Then p
¬ϕ(ẋ0,	 , ẋn−1) and p∈D. qed(1)

By the genericity of G take p∈G∩D. Assume for a contradiction that ∃ẋ0∈Mp
¬ϕ(ẋ0,
ẋ1	 , ẋn−1). Take ẋ0 ∈ M such that p 
 ¬ϕ(ẋ0, ẋ1	 , ẋn−1). Since p ∈ G, M [G] � ¬ϕ(ẋ0G,
ẋ1
G, 	 , ẋn−1

G ), contradicting the assumption of the quantifier case. So p is in the “other
half” of D, i.e. ∀ẋ0∈M p
 ϕ(ẋ0,	 , ẋn−1). By c), p
 ∀v0 ϕ(v0, ẋ1,	 , ẋn−1). �

10 The Atomic Case

The atomic case of the forcing theorem turns out more complicated than the cases that we
have considered so far. This is due to the hierarchical structure of sets. We treat the
equality case v1= v2 as two inclusions v1⊆ v2 and v2⊆ v1 . The relation x1

G ⊆ x2G is equiva-
lent to

{y1G|∃s1∈G (y1, s1)∈ x1}⊆{y2G|∃s2∈G (y2, s2)∈ x2}.

Lemma 59.

a) p
x1⊆x2 iff ∀(y1, s1)∈ x1 (s1∈P→
D(y1, s1, x2):={q∈P |q6 s1→∃(y2, s2)∈x2(s2∈P ∧ q6 s2∧ q
 y1⊆ y2∧ q
 y2⊆ y1)}
is dense in P below p).

b) Forcev1⊆v2 is definable in M.

c) If x1
G⊆x2G then there is p∈G such that p
 x1⊆x2 .
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Here we say that a set D⊆P is dense in P below p iff ∀p′6 p∃q6 q q ∈D.

Proof. Consider the relation

(q, y1, y2)R (p, x1, x2)↔ (y1∈ dom(x1)∨ y1∈ dom(x2))∧ (y2∈ dom(x1)∨ y2∈ dom(x2)).

(1) R is strongly wellfounded.
Proof . If (q, y1, y2)R (p, x1, x2) then

(rg(y1)< rg(x1)∨ rg(y1)< rg(x2))∧ (rg(y2)< rg(x1)∨ rg(y2)< rg(x2)),

and so max (rg(y1), rg(y2))<max (rg(x1), rg(x2)). Hence an infinite decreasing sequence in
R leads to an infinite decreasing sequence in Ord. qed(1)

By recursion on R define

S(p, x1, x2) ↔ ∀(y1, s1)∈ x1 (s1∈P→
{q ∈P |q6 s1→∃(y2, s2)∈ x2(s2∈P ∧ q6 s2∧S(q, y1, y2)∧S(q, y2, y1)}
is dense in P below p).

By a simultaneous induction on R we prove that (p 
 x1 ⊆ x2)↔ S(p, x1, x2) and proper-
ties a) and c). This also proves b).

a) Assume p
 x1⊆ x2 . Let (y1, s1)∈ x1 and s1∈ P . To show that D(y1, s1, x2) is dense in
P below p consider p′6 p. It suffices to find q6 p ′ with q ∈D(y1, s1, x2). Let G∋ p′ be M -
generic on P .

If ¬p′6 s1 then p′∈D(y1, s1, x2) and we can take q= p′.

So assume that p′6 s1 . Then s1, p∈G and

y1
G∈ x1G⊆x2G= {y2G|∃s2∈G (y2, s2)∈ x2}.

Take (y2, s2)∈ x2 such that s2∈G and y1
G= y2

G. Then y1
G⊆ y2G and y2

G⊆ y1G. By the induc-
tive assumption c) take p′′, p ′′′ ∈ G such that p′′ 
 y1 ⊆ y2 and p′′′ 
 y2 ⊆ y1 . Take q ∈ G
such that q 6 p′, s2, p

′′, p ′′′. Then q 6 p′ 6 s1 , q 6 s2 , q 
 y1⊆ y2 , and q 
 y2⊆ y1 . Hence
q ∈D(y1, s1, x2).

Conversely assume the right-hand side of a). Let G∋ p be M -generic on P . We have show
that x1

G ⊆ x2G, i.e. {y1G|∃s1 ∈ G (y1, s1) ∈ x1} ⊆ {y2G|∃s2 ∈ G (y2, s2) ∈ x2}. So let y1
G ∈ x1G.

Take s1 ∈ G such that (y1, s1) ∈ x1 . Take p′ ∈ G, p ′ 6 p, s1 . The right-hand side of a)
implies that D(y1, s1, x2) is dense in P below p and thus below p′. By the inductive
assumption, D(y1, s1, x2) ∈M . By the genericity of G, take q ∈G, q 6 p′, q ∈D(y1, s1, x2).
By the definition of D(y1, s1, x2) take (y2, s2)∈ x2 such that

s2∈P ∧ q6 s2∧ q
 y1⊆ y2∧ q
 y2⊆ y1 .
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Since q, s2∈G this implies y1
G⊆ y2G, y2G⊆ y1G, and so

y1
G= y2

G∈ x2G.

Ror (q, y1, y2) R (p, x1, x2) the induction hypothesis implies that S(q, y1, y2) and S(q,
y2, y1) agree with q 
 y1⊆ y2 and q 
 y2⊆ y1 respectively. Now a) and the recursive defini-
tion of S(p, x1, x2) agree and yield that

(p
 x1⊆x2)↔S(p, x1, x2).

c) Let M [G] be a generic extension such that M [G]�x1
G⊆x2G. Set

D={p∈P | p
 x1⊆x2
∨∃(y1, s1)∈ x1 (s1∈P ∧∀q6 p

(q6 s1∧∀(y2, s2)∈x2((s2∈P ∧ q
 y1⊆ y2∧ q
 y2⊆ y1)→¬q6 s2)))}.

D ∈M since by the inductive assumption we may replace 
 in the definition of D by the
predicate S which is definable in M .

(2) D is dense in P .
Proof . Let r ∈ P . If r 
 x1⊆ x2 we are done. So assume ¬r 
 x1⊆ x2 . By the equivalence
in a) take (y1, s1) ∈ x1 such that s1 ∈ P and D(y1, s1, x2) is not dense in P below r. Take
p6 r such that ∀q6 p q � D(y1, s1, y2). q � D(y1, s1, y2) is equivalent to

q6 s1∧∀(y2, s2)∈ x2(s2∈P ∧ q
 y1⊆ y2∧ q
 y2⊆ y1→¬q6 s2).

Hence p6 r is an element of D. qed(2)

By the M -genericity take p ∈ G ∩ D. We claim that p 
 x1 ⊆ x2 . If not then the alterna-
tive in the definition of D holds: take (y1, s1)∈ x1 such that s1∈P and

∀q6 p (q6 s1∧∀(y2, s2)∈ x2((s2∈P ∧ q
 y1⊆ y2∧ q
 y2⊆ y1)→¬q6 s2)). (5)

In particular for q= p we have

p6 s1∧∀(y2, s2)∈ x2((s2∈P ∧ p
 y1⊆ y2∧ p
 y2⊆ y1)→¬p6 s2).

Then s1∈G and y1
G∈ x1G⊆ x2G= {y2G|∃s2∈G (y2, s2)∈ x2}. Take (y2, s2)∈ x2 such that s2∈

G and y1
G= y2

G. Then y1
G ⊆ y2G and y2

G ⊆ y1
G. Since c) holds at R-smaller triples, there are

q ′, q ′′ ∈ G such that q ′ 
 y1 ⊆ y2 and q ′′ 
 y2 ⊆ y1 . Take q ∈ G such that q 6 p, s2, q
′, q ′′.

Then (y2, s2) satisfies

s2∈P ∧ q
 y1⊆ y2∧ q
 y2⊆ y1∧ q6 s2 .

But this contradicts (5). Hence p
 x1⊆x2 . �
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We can now deal with the other atomic cases:

Lemma 60.

a) x= y satisfies the forcing theorem.

b) x∈ y satisfies the forcing theorem.

Proof. For a) observe that p
x= y iff p
x⊆ y and p
 y ⊆x .
b) We claim that p 
 x ∈ y iff D = {q 6 p|∃(u, r) ∈ y (q 6 r ∧ q 
 x = u)} is dense in P

below p.

Assume that p
 x∈ y. To prove the density of D consider s6 p. Take an M -generic filter
G on P with s∈G. s
 x∈ y and so xG∈ yG= {uG|∃r ∈G (u, r)∈ y}. Take (u, r)∈ y such
that xG= uG and r ∈G. By the forcing theorem for equalities take t ∈G such that t
 x=
u. Take q ∈G such that q6 s, r, t. Then q6 p, q6 r, and q
 x=u. Hence q ∈D.

Conversely let D be dense in P below p. To show that p 
 x ∈ y let G be an M -generic
filter on P with p ∈G. By the genericity there is q 6 p such that q ∈G ∩D. Take (u, r) ∈
y such that q6 r∧ q
x= u . Then r ∈G and xG=uG∈ yG.
Finally assume that xG ∈ yG. yG = {uG|∃r ∈G (u, r) ∈ y}. Take some (u, r) ∈ y such that
r ∈ G and xG = uG. By a) take s ∈ G such that s 
 x = u. Take p ∈ G such that p 6 r, s.
Then p
 x=u and p
 u∈ y. Hence p
 x∈ y. �

So we have proved the forcing theorem:

Theorem 61. For every ∈-formula ϕ(v0,	 , vn−1) the following hold:

a) The property p
P
Mϕ(ẋ0,	 , ẋn−1) is definable in M;

b) if M [G] � ϕ(ẋ0
G,	 , ẋn−1

G ) in a generic extension M [G] then there is p ∈G such that
p
 ϕ(ẋ0,	 , ẋn−1).

11 ZFC in M [G]

Let M [G] be a generic extension of the ground model M by the generic filter G on P ∈M .
We know already that M [G] is a model of Extensionality, Pairing, Union, Infinity, and
Foundation.

Theorem 62. M [G]�Separation
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Proof. Consider an ∈-formula ϕ(x, wQ ) and sets wQ , a ∈ M [G]. It suffices to prove that

{x ∈ a|ϕM [G](x, wQ )} ∈M [G]. Take names ẇQ , ȧ ∈M such that ẇQ G= wQ and ȧG= a. Define
the name

ż = {(ẋ , p)|ẋ ∈ dom(ȧ)∧ p
 (ẋ ∈ ȧ ∧ ϕ(ẋ , ẇQ ))}.

By the forcing theorem, ż ∈M . It suffices to show that żG= {x∈ a|ϕM [G](x, wQ )}.
Consider x ∈ żG. Take (ẋ , p) ∈ ż such that p ∈G and x= ẋG. Then p
 (ẋ ∈ ȧ ∧ ϕ(ẋ , ẇQ )).
By the definition of 
, x= ẋG ∈ ȧG= a , ϕM [G](ẋG, ẇQ G), and ϕM [G](x, wQ ). Hence x ∈ {x ∈
a|ϕM [G](x, wQ )}.
Conversely let x∈ {x∈ a|ϕM [G](x, wQ )}. Take (ẋ , p′)∈ ȧ such that p′∈G and x= ẋG. Then

ϕM [G](ẋG, ẇQ G). By the forcing theorem, take p′′ ∈ G such that p ′′ 
 ϕ(ẋ , ẇQ ). Take p ∈ G
such that p6 p′ and p6 p′′. Then

ẋ ∈ dom(ȧ)∧ p
 (ẋ ∈ ȧ ∧ ϕ(ẋ , ẇQ ))

and

(ẋ , p)∈ ż .

Hence x= ẋG∈ żG. �

Theorem 63. M [G]�Power.

Proof. Let x ∈M [G]. It suffices to show that P(x) ∩M [G] ∈M [G]. Take a name ẋ ∈M
such that ẋG= x. Define the name

ż = {(ẏ , p)|ẏ ⊆ dom(ẋ)×P ∧ p
 ẏ ⊆ ẋ}.

By the forcing theorem and by the powerset axiom in M , ż ∈M . It suffices to show that
żG=P(x)∩M [G].

Consider y ∈ żG. Take (ẏ , p) ∈ ż such that y = ẏG and p ∈G. Then p 
 ẏ ⊆ ẋ and so y =
ẏG⊆ ẋG=x. Hence y ∈P(x)∩M [G].

Conversely let v ∈ P(x) ∩M [G]. Take v̇ ∈M such that v = v̇G and take q ∈ G such that
q
 v̇ ⊆ ẋ. Define

ẏ = {(u̇ , r)∈ dom(ẋ)×P |r6 q∧ q
 u̇ ∈ v̇ }.

(1) ẏG= v̇G.
Proof . Let u̇G∈ ẏG, (u̇ , r)∈ ẏ and r ∈G. Then r
 u̇ ∈ v̇ , and u̇G∈ v̇G. Conversely let u∈
v̇G⊆ ẋG. Then u= u̇G for some u̇ ∈ dom(ẋ). Since u̇G ∈ v̇G take r ∈G such that r6 q and
r
 u̇ ∈ v̇ . Then (u̇ , r)∈ ẏ and u= u̇G∈ ẏG. qed(1)

Take p ∈G such that p
 ẏ = v̇ and p 
 v̇ ⊆ ẋ. Then p
 ẏ ⊆ ẋ and (ẏ , p) ∈ ż . Hence v =
v̇G= ẏG∈ żG. �
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Theorem 64. M [G]�Replacement.

Proof. Consider an ∈-formula ϕ(x, y, wQ ) and sets wQ , a ∈M [G]. Suppose that ϕ(x, y, wQ )
is functional in M [G], i.e.,

M [G]�∀x, y, y ′(ϕ(x, y, wQ )∧ ϕ(x, y ′, wQ )→y= y ′).

Take p∈G such that p
 ∀x, y, y ′(ϕ(x, y, wQ )∧ ϕ(x, y ′, wQ )→y= y ′).

It suffices to prove that

{y |∃x∈ aϕM [G](x, y, wQ )}∩M [G]∈M [G].

Take names ẇQ , ȧ ∈ M such that ẇQ G = wQ and ȧG = a. Using replacement in the ground
model M take a set B ∈M such that

∀ẋ ∈ dom(ȧ) ∀s∈P (∃ẏ ∈Ms
 ϕ(ẋ , ẏ , ẇQ )→∃ẏ ∈Bs
 ϕ(ẋ , ẏ , ẇQ )).

Define the name

ż = {(ẏ , p)|ẏ ∈B}∈M.

We claim that

{y |∃x∈ aϕM [G](x, y, wQ )}∩M [G]⊆ żG.

Let x ∈ a such that ϕM [G](x, y, wQ ). Take ẋ ∈ dom(ȧ) such that x = ẋG and take ẏ ∈M
such that y= ẏG. Take s∈G such that s
 ϕ(ẋ , ẏ , ẇQ ). We may assume that s6 p. By the

choice of B there is u̇ ∈ B such that s 
 ϕ(ẋ , u̇ , ẇQ ). Since s forces the functionality of ϕ
we have s
 ẏ = u̇. Hence y= ẏG= u̇G∈ żG.
But then separation in M [G] implies that

{y |∃x∈ aϕM [G](x, y, wQ )}∩M [G] = {y |∃x∈ aϕM [G](x, y, wQ )}∩ żG∈M [G]

as required. �

Theorem 65. M [G]�AC.

Proof. Let x ∈ M [G]. It suffices to find a surjection f : α→ x′ ⊇ x, f ∈ M [G], α ∈ Ord.
Take a name ẋ ∈ M such that x = ẋG. Since AC holds in M , take a surjective g: α →
dom(ẋ), g ∈M , α∈Ord. Define f :α→ range(f) by

f(ξ)= g(ξ)G.
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Note that the interpretation function ż � żG is defined by a definite recursion in the
parameter G. Hence it is definable within M [G] and f ∈ M [G], using replacement in
M [G]. To show that x⊆ range(f) consider y ∈ x. Take ẏ ∈ dom(ẋ) such that y= ẏG. Take
ξ <α such that g(ξ)= ẏ . Then

y= ẏG= g(ξ)G= f(ξ)∈ range(f).

�

Theorem 66. M [G] is the ⊆-minimal transitive model of ZF− such that M ∪ {G} ⊆
M [G].

Proof. Assume that N is a transitive model of ZF− such that M ∪ {G} ⊆ N . Since the
interpretation function ż � żG is defined by a definite recursion in the parameter G, the
model N is closed under the interpretation function. This means that

M [G] = {żG|ż ∈M }⊆N.

�

12 Adding a Cohen real

To exclude trivial generic extensions of the form M [G] =M we define

Definition 67. A forcing (P , 6, 1) is separative if ∀p ∈ P ∃q, r 6 p q⊥r where q⊥r
denotes that q and r are incompatible.

Most forcings are separative. As an example consider the Cohen forcing (P ,6, 1)

P =Fn(ω, 2,ℵ0)= {p|p:dom(p)→ 2∧ dom(p)⊆ω∧ card(dom(p))<ℵ0}

with 6=⊇ and 1= ∅. Given p∈P take i∈ω \dom(p). Then

p∪{(i, 0)}6 p, p∪{(i, 1)}6 p, and p∪{(i, 0)}⊥ p∪{(i, 1)}.

Lemma 68. Let G be M-generic on the separative forcing (P , 6, 1) ∈ M. Then G � M

and M [G]�M.

Proof. Assume that G∈M . Define

D= {q ∈P |q � G}∈M.
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(1) D is dense in P .
Proof . Let p∈P . By separativity take q, r6 p such that q⊥r . Since elements of the filter
G are pairwise compatible, q � G or r � G. Hence q ∈D or r ∈D. qed(1)

By the genericity of G, G ∩ D � ∅. But by the definition of D, G ∩ D = ∅. Contradic-
tion. �

Now consider Cohen forcing P = Fn(ω, 2, ℵ0) over the ground model M . Let G be M -
generic on P .

Lemma 69. The set

c=
⋃

G

is a Cohen real over M, i.e.,

a) c:ω→ 2;

b) the generic G can be defined from c as G= {p∈P |p⊆ c};

c) c � M.

Proof. a) We show that c is functional. Let (n, i), (n, j) ∈ c. Take p, q ∈G such that (n,
i) ∈ p and (n, j) ∈ q. Since G is a filter there is r ∈ G such that r 6 p, q. Then (n, i), (n,
j)∈ r. Since r is a function, i= j.

Hence c:dom(c)→ 2 where dom(c)⊆ω.
(1) dom(c) =ω.
Proof . We use a density argument which is typical for the analysis of forcing extensions.
Let n∈ω. Define

Dn= {p∈P |n∈ dom(p)}.

Obviously Dn∈M . We show that Dn is dense in P . Let q ∈P . If n∈ dom(q) then q ∈Dn.
Otherwise q∪{(n, 0)}6 q and q ∪{(n, 0)}∈Dn.

Since G is M -generic on P , G∩Dn� ∅. Take p∈G∩Dn. Then

n∈ dom(p)⊆ dom(c).

b) If q ∈G then q ⊆⋃ G= c. Conversely consider q ∈ P , q ⊆ c. For every assignment (n,
i) ∈ q take pn ∈G such that pn(n) = i. Since dom(q) is finite and since G is a filter we can
take p ∈G such that ∀n ∈ dom(q) p6 pn . Then ∀n ∈ dom(q) p(n) = pn(n) = q(n) and p6

q. Since G is upwards closed, q ∈G.
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c) follows from b) since G � M . But we want to give another density argument. Consider a
real x∈M , x:ω→ 2. Define

Dx= {p∈P |p *x}.

Dx ∈M since this is a definite definition from the parameter x ∈M . We show that Dx is
dense in P . Let q ∈ P . Since dom(q) is finite, take n ∈ ω \ dom(q). Then q ∪ {(n, 1 −
x(n))}6 q and q∪{(n, 1−x(n))}∈Dx .

Since G is M -generic on P , G ∩Dx � ∅. Take p ∈G ∩Dx . Then p * x. Take n ∈ dom(p)
such that p(n) � x(n). Then c(n) = p(n) � x(n) and so c � x. Since c is different from
every ground model real x we have that c � M . �

By b) the extension M [G] is also the ⊆-smallest ZF−-extension of M which contains c. So
one can also write M [c] instead of M [G] and call it a Cohen extension.

Cohen reals are a very common component of forcing extensions. In the next section we
shall adjoin a great number of Cohen reals thereby violating the continuum hypothesis.
As a preparation we shall study some more properties of the present generic extension
M [G]. A lot of information can be decoded from (the bits of) a Cohen real and we shall
see an example now.

If we identify reals with characteristic functions on ω, R= ω2, then R∩M [G]⊇R∩M is a
proper transcendental field extension. We shall see that the adjunction of c makes the set
of ground model reals very small.

Definition 70. A set X ⊆ R has measure zero if for every ε > 0 there exists sequence
(In|n<ω) of intervals in R such that X ⊆⋃

n<ω
In and

∑

n<ω
length(In)6 ε .

Lemma 71. In the Cohen extension M [c] the set R∩M of ground model reals has mea-
sure zero.

Proof. For our purposes we define real intervals as follows: for s ∈ <ω2 = {t|t: dom(t)→
2∧ dom(t)∈ω} define the interval

Is= {x∈R|s⊆ x}⊆R

and define length(Is) = 2−dom(s). Note that Is = Is∪{(dom(s),0)} ∪ Is∪{(dom(s),1)} , length(R) =

I∅=2−0=1, and length(Is∪{(dom(s),0)})= length(Is∪{(dom(s),1)})=
1

2
length(Is) .

Let ε > 0 be given. We may assume that ε = 2−i. We shall extract intervals I0, I1, I2, 	 of
lengths 2−i−1, 2−i−2, 2−i−3,	 from the Cohen real c. For n<ω define sn: i+n+1→ 2 by

sn(l) = c(n+ l).
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Let In= Isn . Then

∑

n<ω

length(In) =
∑

n<ω

2−i−n−1=2−i= ε.

We show by a density argument that R∩M ⊆⋃
n<ω

In . Let x∈R∩M . Define

Dx= {p∈P |∃n<ω ∀l < i+n+1 (n+ l ∈ dom(p)∧ p(n+ l)= x(l))}∈M.

(1) Dx is dense in P .
Proof . Let q ∈P . Take n<ω such that dom(q)⊆ n. Set

p= q∪{(n+ l, x(l))|l < i+n+1}.

Then p6 q and p∈Dx . qed(1)

By the genericity of G take p∈G∩Dx . Take n<ω such that

∀l < i+n+1 (n+ l∈ dom(p)∧ p(n+ l) =x(l)).

Then

∀l < i+n+1 c(n+ l) =x(l)

and

∀l < i+n+1 sn(l)= x(l).

Hence sn⊆x and x∈ In⊆
⋃

n<ω
In . �

It is conceivable that R ∩M becomes small in M [G] for trivial reasons, namely that R ∩
M is countable in M [G]. We shall however show that cardinalities are absolute between
M and M [G]. In particular R∩M is uncountable in M [G].

Definition 72. A forcing P preserves cardinals if for every generic extension M [G] ⊇M
by P the following holds: every cardinal in M is a cardinal in M [G].

The following simple arguments will be generalised later.

Lemma 73. Let M [G] be a generic extension by Cohen forcing P = Fn(ω, 2, ℵ0) and let
f :α→ β, f ∈M [G]. Then there is a function F :α→M, F ∈M such that

∀ξ <α (f(ξ)∈F (ξ)∧ cardM(F (ξ))6ℵ0).
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Proof. Take a name ḟ ∈M such that f = ḟ
G. Take p ∈G such that p
 ḟ : α̌→ β̌ . In M ,

define F :α→M by

F (ξ)= {ζ < β |∃q6 p q
 ḟ (ξ̌ ) = ζ̌ }.

Let ξ <α.

(1) f(ξ)∈F (ξ).
Proof . Let ζ = f(ξ). Take q ∈ G such that q 
 ḟ (ξ̌ ) = ζ̌ . We may assume that q 6 p.
Then ζ ∈F (ξ). qed(1)

(2) cardM(F (ξ))6ℵ0 .
Proof . For ζ ∈ F (ξ) choose qζ 6 p such that qζ 
 ḟ (ξ̌ ) = ζ̌ . If ζ , ζ ′ ∈ F (ξ) and qζ = qζ ′

then qζ 
 ζ̌ = ḟ (ξ̌ ) = ζ ′̌. Since ζ̌ and ζ ′̌ are canonical names this implies ζ = ζ ′. Thus the
function ζ� qζ is an injection of F (ξ) into the countable set P . �

Theorem 74. Cohen forcing P =Fn(ω, 2,ℵ0) preserves cardinals.

Proof. Let M [G] be a generic extension by Cohen forcing. Assume that κ > ω is not a
cardinal in M [G]. Take a surjective function f : α→ κ , f ∈M [G] with α < κ. By the pre-
vious Lemma take a function F :α→M , F ∈M such that

∀ξ <α (f(ξ)∈F (ξ)∧ cardM(F (ξ))6ℵ0).

Then κ⊆⋃
ξ<α

F (ξ) and

cardM(κ)6 cardM(
⋃

ξ<α

F (ξ))6
∑

ξ<α

cardM(F (ξ))6
∑

ξ<α

ℵ0= cardM(α) · ℵ0= cardM(α)<κ.

So κ is not a cardinal in M . �

Problem 2. Is R∩M meager in M [G], i.e., is it a union of countably many nowhere dense sets?

13 Models for ¬CH

We shall obtain ¬CH by adjoining λ Cohen reals to a ground model M where λ ∈ [ω2
M ,

Ord ∩ M). So define λ-fold Cohen forcing P = (P , 6, 1) ∈ M by P = Fn(λ × ω, 2, ℵ0),
6=⊇, and 1 = ∅. Let G be M -generic on P . Let F =

⋃

G. Like Lemma 69a) one can
show

(1) F :λ×ω→ 2.
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We extract a sequence (cα|α<λ) of reals cα:ω→ 2 from F by:

cα(n) =F (α, n).

(2) α< β <λ→ cα� cβ .
Proof . Define

Dαβ= {p∈P |∃n<ω ((α, n)∈ dom(p)∧ (β, n)∈ dom(p)∧ p(α, n)� p(β, n))}∈M.

To prove that Dαβ is dense in P consider q ∈ P . Since q is finite take n < ω such that (α,
n) � dom(q) and (β, n) � dom(q). Then

p= q∪{((α, n), 0), ((β, n), 1)}6 q

and p∈Dαβ . By the M -genericity of G take p∈G∩Dαβ . Take n<ω such that

(α, n)∈ dom(p)∧ (β, n)∈ dom(p)∧ p(α, n)� p(β, n).

Then cα� cβ since

cα(n)=F (α, n)= p(α, n)� p(β, n)=F (β, n)= cβ(n).

qed(2)

So in M [G] there is an injection α� cα of λ into R and

cardM [G](R)> cardM [G](λ).

If we can show that cardinals are absolute between M and M [G] then this would yield ¬
CH in M [G] by

cardM [G](R)> cardM [G](λ)> cardM [G](ω2
M) = cardM [G](ω2

M [G])=ω2
M [G]

.

The proof of the absoluteness of cardinals is modeled after the proof of cardinal preserva-
tion for simple Cohen forcing. The countability of simple Cohen forcing is replaced by
the following combinatorial property of forcings:

Definition 75. Let Q = (Q, 6, 1) be a forcing. A ⊆ Q is an antichain in Q if ∀p, q ∈
A (p � q→ p⊥ q). Q has the countable chain condition (ccc) if every antichain in Q is at
most countable.

To prove that Fn(λ×ω, 2,ℵ0) has the ccc we use the following.
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Theorem 76. Let (ai|i < ℵ1) be a sequence of finite sets. Then there are Z ⊆ ℵ1 ,
card(Z)=ℵ1 and a finite set b such that (ai|i <Z) is a ∆-system with root b , i.e.,

∀i, j ∈Z (i� j→ ai∩ aj= b).

Proof. By the regularity of ℵ1 there is Z0⊆ℵ1 , card(Z0)=ℵ1 and a finite n<ω such that

∀i∈Z0 card(ai)=n.

Take m 6 n maximal such that there is a set b with card(b) =m and Z1⊆ Z0 , card(Z1) =
ℵ1 such that

∀i∈Z1 b⊆ ai .

Such an m exists, since trivially ∀i∈Z0 ∅⊆ ai .

(1) For all u � b there is i(u)<ℵ1 such that ∀i∈Z1 (i > i(u)→u � ai),
because otherwise b∪{u} would contradict the maximality of m.

Define a strictly increasing sequence (iξ |ξ < ℵ1) of ordinals iξ ∈ Z1 by recursion: let iξ be
the minimal i∈Z1 such that ∀ζ < ξ ∀u∈ aζ \ b i > i(u).

(2) Z = {aiξ|ξ <ℵ1} is a ∆-system with root b .

Proof . Let ζ , ξ ∈Z, ζ < ξ. By the choice of Z1 we have b⊆ aiζ , b⊆ aiξ , and so aiζ∩ aiξ⊇ b.
For the converse consider u∈ aiζ ∩ aiξ . Assume for a contradiction that u � b. By construc-

tion iξ> i(u). Then (1) implies that u � aiξ . Contradiction, and so u∈ b. �

Theorem 77. Fn(λ×ω, 2,ℵ0) has the ccc.

Proof. Assume for a contradiction that {pi|i <ℵ1} is an antichain in Fn(λ× ω, 2,ℵ0) con-
sisting of pairwise distinct conditions. (dom(pi)|i < ℵ1) is a sequence of finite sets and by
the ∆-system theorem one can take a finite set b and Z ⊆ ℵ1 , card(Z) = ℵ1 such that
(dom(pi)|i < Z) forms a ∆-system with root b. Since there are only finitely many 0-1-
valued functions on the finite set b take a function q: b→ 2 and Z1⊆Z , card(Z1) =ℵ1 such
that

∀i∈Z1 pi ↾ b= q .

Take i, j ∈Z1 , i� j. Then dom(pi)∩ dom(pj) = b and pi ↾ b= pj ↾ b= q. Then pi and pj are
compatible in Fn(λ×ω, 2,ℵ0), contradiction. �

We extend the proof of Lemma 73 from countable forcing to ccc forcing.
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Lemma 78. Let M [G] be a generic extension by some ccc forcing Q= (Q,6, 1) and let f :
α→ β, f ∈M [G]. Then there is a function F :α→M, F ∈M such that

∀ξ <α (f(ξ)∈F (ξ)∧ cardM(F (ξ))6ℵ0).

Proof. Take a name ḟ ∈M such that f = ḟ
G. Take p ∈G such that p
 ḟ : α̌→ β̌ . In M ,

define F :α→M by

F (ξ)= {ζ < β |∃q6 p q
 ḟ (ξ̌ ) = ζ̌ }.

Let ξ <α. As before we see that

(1) f(ξ)∈F (ξ).
(2) cardM(F (ξ))6ℵ0 .
Proof . For ζ ∈ F (ξ) choose qζ 6 p such that qζ 
 ḟ (ξ̌ ) = ζ̌ . Consider ζ , ζ ′ ∈ F (ξ), ζ � ζ ′

and assume for a contradiction that qζ and qζ ′ are compatible in Q. Take q ∈ Q, q 6 qζ ,

qζ ′ . Then q 
 ζ̌ = ḟ (ξ̌ ) = ζ ′̌. Since ζ̌ and ζ ′̌ are canonical names this implies ζ = ζ ′, which
is a contradiction. So qζ and qζ ′ are incompatible in Q. Thus the function ζ � qζ is an
injection of F (ξ) into to antichain {qζ |ζ ∈ F (ξ)}. By the ccc, {qζ |ζ ∈ F (ξ)} is at most
countable, and so F (ξ) is at most countable. �

This covering property implies immediately that the ccc forcing Q preserves cardinals.
Hence M [G]�¬CH, and we have

Theorem 79. Assume that ZFC is consistent. Then so is ZFC+¬CH.

Proof. The construction above showed the consistency of ZFC+¬CH. �

The violation of CH means that 2ℵ0> ℵ1 . We now want to arrange that the value of 2ℵ0 is
exactly equal to κ.

Lemma 80. Let M ⊆M [G] be a generic extension by some partial order P ∈M. Let β ∈
OrdM and x∈M [G], x⊆ β. Then there is a name ẋ ∈M, ẋG=x of the form

ẋ= {(α̌ , q)|α< β ∧ q ∈Aα},

where every Aα is an antichain in P.

Proof. Take some name x̃ ∈ M , x̃G = x. Take p ∈ G such that p 
 x̃ ⊆ β̌ . Work in M .
Consider α< β and let Fα= {q ∈P |q
 α̌ ∈ x̃}. The set

Z = {A⊆Fα|A is an antichain in P }
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is partially ordered by ⊆. Let C ⊆Z be a chain in (Z,⊆), i.e.

A,A′∈Z→A⊆A ′∨A′⊆A.

Then
⋃

C ⊆ Fα is also an antichain in P . Thus (Z, ⊆) is an inductive partial order. By
Zorn’s lemma, choose a maximal element Aα∈Z. Then define

ẋ= {(α̌ , q)|α< β ∧ q ∈Aα}∈M.

We show that ẋG= x. Let α ∈ ẋG. Take q ∈G such that (α̌ , q)∈ ẋ. Then q ∈Aα⊆ Fα and
q
 α̌ ∈ x̃ . Hence α∈ x̃G=x .

Conversely let α ∈ x= x̃G. Take r ∈G such that r 
 α̌ ∈ x̃ . We may assume that r 6 p so

that r
 x̃ ⊆ β̌ . Then r
 ǎ < β̌ and so α< β. Set

D= {s∈P |∃q ∈Aα s6 q}∈M.

D is dense in P below r: Let r ′ 6 r. Then r ′ 
 α̌ ∈ x̃ and r ′ ∈ Fα . If r ′ ∈ Aα then r ′ ∈D.
Otherwise r ′ � Fα and by the maximality of Aα we have that Aα∪{r ′} is not antichain. So
take q ∈Aα such that q and r ′ are compatible. Take s6 q, r ′. Then s∈D.

Since G ∋ r is M -generic there is s ∈G ∩D. Take q ∈Aα such that s6 q. Then q ∈G and
(α̌ , q)∈ ẋ. Hence α= α̌G∈ ẋG. �

Lemma 81. Let M ⊆M [G] be a generic extension by some ccc partial order P ∈M. Let
β ∈OrdM, β>ω. Then

cardM [G](PM [G](β))6 (card(P )card(β))M.

Proof. In M [G] define a map F : (β×ωP )M→PM [G](β) by

f � {(α, f(α, n))|α< β ∧n<ω}G.

By the previous lemma, F is a surjection. Hence

cardM [G](PM [G](β))6 cardM [G]((β×ωP )M)6 cardM((β×ωP )M)6 (card(P )card(β))M. �

Let us reconsider the forcing extension of the ground model M by λ Cohen reals.
Assume GCH in M and take λ ∈ CardM with M � cof(λ) > ω1 . Let G be M -generic on
P =Fn(λ×ω, 2,ℵ0)∈M . Cardinals are absolute between M and M [G].

Lemma 82. M [G]� 2ℵ0= λ .
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Proof.

λ 6 cardM [G](PM [G](ω)) , by our first results about this forcing,

6 (card(P )ℵ0)M , by the previous lemma,

6 (λℵ0)M , by GCH in M,

= λ, by GCH in M.

�

So 2ℵ0 can be any cardinal λ of uncountable cofinality. Note that cof(2ℵ0)> ω by König’s
lemma. For cardinals λ = ℵ2, ℵ3, 	 , ℵω+1, 	 , ℵω1, 	 in M we obtain relative consistency
results of the following type.

Theorem 83. Assume that ZFC + GCH is consistent. Then the following theories are
consistent:

a) ZFC+2ℵ0=ℵ2 ;

b) ZFC+2ℵ0=ℵ3 ;

c) ZFC+2ℵ0=ℵω+1 ;

d) ZFC+2ℵ0=ℵω1 .

14 Models for CH

We shall obtain CH by adjoining a surjection from ℵ1M onto P(ω)M.

In M , let P = Fn(ℵ1, P(ω), ℵ1), 6=⊇, and 1 = ∅. Let G be M -generic on P . Let F =
⋃

G. Like Lemma 69a) one can show

(1) F :ℵ1M→P(ω)M.

(2) F :ℵ1M→P(ω)M is surjective.

Proof . Let a∈P(ω)M =P(ω)∩M . Define, in M ,

Da= {p∈P | a∈ rng(p)}.

Da∈M is dense in P . By genericity take p∈Da∩G. Then a∈ rng(p)⊆ rng(F ). qed .

To show CH in M [G] it suffices to show ℵ1M =ℵ1M [G] and P(ω)M =P(ω)M [G].

For this we use another combinatorial property of partial orders.
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Definition 84. Let Q= (Q,6, 1) be a forcing. A subset C ⊆ Q is a chain in Q if (C,6)
is a linear order. Q is θ-closed if every chain in Q of cardinality <θ has a lower bound in
Q, i.e.,

∀C(C is a chain in Q∧ card(C)<θ→∃p∈Q∀q ∈C : p6 q).

Lemma 85. P =Fn(ℵ1,P(ω),ℵ1) is ℵ1-closed (in M).

Proof. Let C ⊆P , card(C)<ℵ1. Then p=
⋃

C ∈P is a lower bound for C . �

Lemma 86. Let M [G] be a generic extension by Q= (Q,6, 1)∈M where Q is θ-closed in
M. Let f :α→ β, f ∈M [G], α< θ. Then f ∈M.

Proof. Take a name ḟ ∈M and p∈G such that f = ḟ
G and p
 ḟ : ǎ→ β̌ . Define

D= {q ∈Q|∃g ∈M : q
 ḟ = ǧ }∈M.

(1) D is dense in Q below p.
Proof . Work in M . Let p′ 6 p. Define a descending sequence (pi|i < α) of conditions 6p′

and a function g: α→ β by recursion. Let (pi|i < j) and g ↾ j be defined. {pi|i < j} ∪ {p′}
is a chain in Q of cardinality 6card(j) 6 card(α) < θ. By θ-closure choose a lower bound

pj
′ of {pi|i < j}∪ {p′}. Then choose pj6 pj

′ and g(j)< β such that pj
 ḟ (ǰ )= g(j).

{pi|i < α} is a chain in Q of cardinality card(α)< θ. By θ-closure choose a lower bound q

of {pi|i <α}. Then

q
 ḟ : ǎ→ β̌ ∧ ǧ : ǎ→ β̌ ∧∀i <αQ : ḟ (ǰ ) = g(j).

Hence q
 ḟ = ǧ and q ∈D. qed(1)

By genericity take q ∈G∩D. Take g ∈M such that q
 ḟ = ǧ . Then f = ḟ
G= g ∈M . �

Lemma 87. Let M [G] be a generic extension by Q= (Q,6, 1)∈M where Q is θ-closed in
M. Then

a) ∀β <θ P(β)M =P(β)M [G].

b) ∀β ∈CardM(β6 θ→β ∈CardM [G])

Proof. a) By the previous lemma, (β2)M = (β2)M [G]. This is equivalent to P(β)M =

P(β)M [G].

b) Let β 6 θ and β � CardM [G]. Take some surjective function f ∈M [G], f : α→ β, with
α< β. By the previous lemma f ∈M . Hence β � CardM. �
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So forcing with P = Fn(ℵ1,P(ω), ℵ1) preserves ℵ1 and P(ω), i.e., ℵ1M =ℵ1M [G] and P(ω)M =

P(ω)M [G]. Hence M [G]�CH, and we have

Theorem 88. Assume that ZFC is consistent. Then so is ZFC+CH.

Theorem 89. Let n be a natural number >1. Assume that ZFC is consistent. Then so is
ZFC+2ℵ0=ℵn .

Proof. The case n = 1 is the previous theorem. So let n > 1. We can assume the relative
consistency of CH, and force over a ground model of ZFC + CH. By the Hausdorff recur-
sion formula

ℵnℵ0=ℵn · ℵn−1
ℵ0

and so, by induction ℵnℵ0 = ℵn in M . Adjoin ℵn Cohen reals with Fn(ℵn × ω, 2, ℵ0). Using
the estimates from Theorem XXX we get

ℵnM [G]
6 (2ℵ0)M [G]= cardM [G](PM [G](ω))6 (card(P )ℵ0)M 6 (ℵnℵ0)M =ℵnM =ℵnM [G]

.

�

15 Changing the value of 2κ

We have seen that the value of 2ℵ0 is highly independent of the ZFC-axioms. We now
extend our techniques from ℵ0 to an arbitrary regular cardinal κ. So fix a ground model
M with M � ZFC and let κ be a regular cardinal in M . Also let λ be a cardinal in M

with cof(λ)>κ. We want to construct a generic extension with 2κ=λ.

In M , define the forcing P = (P ,6, 1)∈M for adding λ Cohen subsets of κ by

P =Fn(λ×κ, 2, κ)= {p∈M |p: dom(p)→ 2∧ dom(p)⊆λ×κ∧ cardM(dom(p))<κ}∈M,

and 6=⊇, 1 = ∅. Let G be M -generic on P . Let F =
⋃

G. Like Lemma 69a) one can
show

(1) F :λ×κ→ 2.

We extract a sequence (cα|α<λ) of functions cα:κ→ 2 from F by:

cα(n) =F (α, n).
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The density argument used for the case κ=ℵ0 also shows

(2) α< β <λ→ cα� cβ .

So in M [G] there is an injection α� cα of λ into κ2 and

(2κ)M [G]= cardM [G](κ2)> cardM [G](λ).

To study the cardinality situation in M [G] we extend the ccc-techniques developed previ-
ously.

Definition 90. Let Q= (Q,6, 1) be a forcing. Q has the θ-chain condition (θ-cc) if every
antichain in Q has cardinality <θ.

Note that the ℵ1-chain condition is the countable chain condition.

Theorem 91. Assuming the GCH, P =Fn(λ×κ, 2, κ) has the κ+-cc.

Proof. Consider an antichain A in P . By simultaneous recursion we define ascending
sequences (Ai|i6 κ) of subsets of A and (Di|i6 κ) where every Ai and Di has cardinality
6κ. Set A0 = {p0} where p0 is some fixed element of A. If Ai is defined let Di =

⋃

{dom(p)|p ∈ Ai}. For limit l 6 κ let Al =
⋃

i<l
Ai and Dl =

⋃

i<l
Di . Then card(Al)6 κ ·

κ= κ and card(Dl)6κ ·κ=κ

It remains to define Ai+1 from Ai and Di . For h: dom(h) → 2 with dom(h) ⊆ Di and
card(dom(h))<κ choose ph,i∈A with ph,i ↾Di= h , if possible; if such a ph,i does not exist
set ph,i= p0 . Then let

Ai+1=Ai∪{ph,i|h: dom(h)→ 2∧ dom(h)⊆Di∧ card(dom(h))<κ}.

When we view the relevant functions h as defined on a bounded subset of κ > card(Di)
then their number is 6 card(<κκ) = κ<κ = κ ; the last equality follows from GCH and the
regularity of κ. Hence card(Ai)6 card(Ai) +κ=κ.

To show that card(A) 6 κ it suffices to see that A = Aκ . So let p ∈ A. Since
card(dom(p))<κ there is some i <κ such that dom(p)∩Dκ= dom(p)∩Di . Set h= p ↾Di .
Then in the recursive construction we chose some ph,i ∈ A with ph,i ↾Di = h . dom(ph,i) ⊆
Di+1 .

dom(p)∩ dom(ph,i) ⊆ dom(p)∩Di+1 , since dom(ph,i)⊆Di+1

⊆ dom(p)∩Di , since dom(p)∩Dκ=dom(p)∩Di

⊆ Di

But p ↾ Di = h = ph,i ↾ Di , and so p and ph,i are compatible. Since A is an antichain we
have p= ph,i∈Aκ . �
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We generalise a “covering” lemma from the ccc case.

Lemma 92. Let M [G] be a generic extension by some θ-cc forcing Q = (Q, 6, 1) ∈ M
where θ is a cardinal in M. Let f : α→ β, f ∈M [G]. Then there is a function F : α→M,
F ∈M such that

∀ξ <α (f(ξ)∈F (ξ)∧ cardM(F (ξ))<θ).

Proof. Take a name ḟ ∈M such that f = ḟ
G. Take p ∈G such that p
 ḟ : α̌→ β̌ . In M ,

define F :α→M by

F (ξ)= {ζ < β |∃q6 p q
 ḟ (ξ̌ ) = ζ̌ }.

Let ξ <α. As before we can show that

(1) f(ξ)∈F (ξ).

(2) cardM(F (ξ))<θ . �

θ-cc forcing preserves cardinals >θ :

Lemma 93. Let M [G] be a generic extension by some θ-cc forcing Q = (Q, 6, 1) ∈ M
where θ is a cardinal in M. Then

∀β ∈CardM(β> θ→β ∈CardM [G]).

Proof. Let β > θ and β � CardM [G]. We may assume that β is a limit ordinal. Take some
surjective function f ∈M [G], f : α→ β, with α < β. By the previous lemma take a func-
tion F :α→M , F ∈M such that

∀ξ <α (f(ξ)∈F (ξ)∧ cardM(F (ξ))<θ).

Then β ⊆⋃
ξ<α

F (ξ) and

cardM(β)6 cardM(
⋃

ξ<α

F (ξ))6
∑

ξ<α

cardM(F (ξ))6
∑

ξ<α

ℵ0= cardM(α) · ℵ0= cardM(α)<κ.

So κ is not a cardinal in M . �

The previous lemmas show that forcing by P =Fn(λ× κ, 2, κ) preserves cardinals >κ+. To
show the preservation of cardinals 6κ we use another combinatorial property of the par-
tial order.
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Definition 94. Let Q= (Q,6, 1) be a forcing. A subset C ⊆ Q is a chain in Q if (C,6)
is a linear order. Q is θ-closed if every chain in Q of cardinality <θ has a lower bound in
Q, i.e.,

∀C(C is a chain in Q∧ card(C)<θ→∃p∈Q∀q ∈C : p6 q).

Lemma 95. P =Fn(λ×κ, 2, κ) is κ-closed.

Proof. Let C ⊆P , card(C)<κ. Then p=
⋃

C ∈P is a lower bound for C . �

Lemma 96. Let M [G] be a generic extension by Q= (Q,6, 1)∈M where Q is θ-closed in
M. Let f :α→ β, f ∈M [G], α< θ. Then f ∈M.

Proof. Take a name ḟ ∈M and p∈G such that f = ḟ
G and p
 ḟ : ǎ→ β̌ . Define

D= {q ∈Q|∃g ∈M : q
 ḟ = ǧ }∈M.

(1) D is dense in Q below p.
Proof . Work in M . Let p′ 6 p. Define a descending sequence (pi|i < α) of conditions 6p′

and a function g: α→ β by recursion. Let (pi|i < j) and g ↾ j be defined. {pi|i < j} ∪ {p′}
is a chain in Q of cardinality 6card(j) 6 card(α) < θ. By θ-closure choose a lower bound

pj
′ of {pi|i < j}∪ {p′}. Then choose pj6 pj

′ and g(j)< β such that pj
 ḟ (ǰ )= g(j).

{pi|i < α} is a chain in Q of cardinality card(α)< θ. By θ-closure choose a lower bound q

of {pi|i <α}. Then

q
 ḟ : ǎ→ β̌ ∧ ǧ : ǎ→ β̌ ∧∀i <αQ : ḟ (ǰ ) = g(j).

Hence q
 ḟ = ǧ and q ∈D. qed(1)

By genericity take q ∈G∩D. Take g ∈M such that q
 ḟ = ǧ . Then f = ḟ
G= g ∈M . �

Lemma 97. Let M [G] be a generic extension by Q= (Q,6, 1)∈M where Q is θ-closed in
M. Then

∀β ∈CardM(β <θ→β ∈CardM [G]).

Proof. Let β < θ and β � CardM [G]. Take some surjective function f ∈M [G], f : α→ β,
with α< β. By the previous lemma f ∈M . Hence β � CardM. �

So forcing with P = Fn(λ × κ, 2, κ) preserves all cardinals. To see that it makes 2κ= λ we
use again names of a canonical form for subsets of κ.
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Lemma 98. Let M ⊆M [G] be a generic extension by P =Fn(λ× κ, 2, κ)M. Let β ∈OrdM,
β>ω. Then

cardM [G](PM [G](β))6 (λcard(β))M.

Proof. We first show card(P )= λ in M :

card(Fn(λ×κ, 2, κ)) = card({p|p: dom(p)→ 2∧ dom(p)⊆λ×κ∧ card(p)<κ})
6 card({p|∃λ̄ < λ (p: dom(p)→ 2∧ dom(p)⊆ λ̄ ×κ })

since cof(λ)>κ,

6
∑

λ̄<λ

2card(λ̄×κ)

6
∑

λ̄<λ

λ , by GCH,

= λ

In M [G] define a map F : (β×κP )M→PM [G](β) by

f � {(ǎ , f(α, i))|α< β ∧ i < κ}G.

By Lemma 80, F is a surjection. Hence

cardM [G](PM [G](β)) 6 cardM [G]((β×κP )M)

6 cardM((β×κP )M)

= (λκ·card(β))M

= ((λκ)card(β))M

= (λcard(β))M, by GCH and (λκ)M =λ.

�

Theorem 99. Let M be a ground model satisfying GCH. Let κ, λ be cardinals in M

where κ is regular in M and cofM(λ) > κ. Let M ⊆ M [G] be a generic extension by P =
Fn(λ×κ, 2, κ)M. Then

a) M [G]�∀µ<κ 2µ= µ+;

b) M [G]� 2κ= λ .

Proof. In M , the forcing P =Fn(λ× κ, 2, κ)M is κ-closed and satisfies κ+-cc.

a) Let µ<κ. By Lemma 96, PM [G](µ) =PM(µ). Using GCH in M we get in M [G]

µ+6 2µ= card(P(µ))= card(PM(µ))6 cardM(PM(µ))= (µ+)M = µ+.
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b) Combining a first observation about M [G] with the preservation of cardinals we get

(2κ)M [G]= cardM [G](κ2)> cardM [G](λ) =λ.

For the converse

(2κ)M [G]= cardM [G](PM [G](κ))6 (λκ)M =λ.

�

With more effort, the behaviour of 2µ above κ can also be exactly determined. We obtain
relative consistency results of the form

Theorem 100. Assume that ZFC + GCH is consistent. Then the following theories are
consistent:

a) ZFC+2ℵ0=ℵ1+2ℵ1=ℵ3 ;

b) ZFC+2ℵ0=ℵ1+2ℵ1=ℵω+1 ;

c) ZFC+2ℵ0=ℵ1+2ℵ1=ℵω2
;

d) ZFC+2ℵ0=ℵ3+2ℵ1=ℵ4+2ℵ2=ℵω+1 .

Proof. To prove results like (b), first apply our construction to κ1 = ℵ2, λ1 = ℵω+1. Then
apply the construction to κ2 = ℵ1, λ2 = ℵ4 in the generic extension M [G]. Finally apply it
in the next generic extension to κ3=ℵ0, λ3=ℵ3. �

Note, that it is important to proceed backwards, dealing with the largest cardinal first.
This is necessary because the first step preserves GCH below κ1 which is used in the
second step to preserve cardinals. Since we have to proceed backwards, we can change the
value of the continuum function only at finitely many places in this way. Can we also do
it for infinitely many places? Yes, but then we have to do it all in one step. This is done
by product forcing .

16 Product forcing

Definition 101. Let P = (P ,≤P , 1P) and Q= (Q,≤Q, 1Q) be forcings. Then the product
forcing

P ×Q=(P ×Q,≤, 1)= (P ,≤P , 1P)× (Q,≤Q, 1Q)
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is defined by

(p1, q1)≤ (p2, q2) iff p1≤P p2∧ q1≤Q q2 ,

and 1= (1p, 1Q).

Let M be a ground model. Let G be an M -generic filter on P ×Q. Define

G1= {p∈P N ∃q ∈Q(p, q)∈G}

and

G1= {q ∈QN ∃p∈P (p, q)∈G}.

Then it is easily seen that G1 and G2 are M -generic on P and Q respectively, and G =
G1×G2. The exact relationship is given by the next lemma.

Theorem 102. (The Product Lemma) G ⊆ P × Q is an M-generic filter if and only if
G = G1 × G2 for some M-generic filter G1 on P and some M [G1]-generic filter G2 on Q.
Moreover, M [G] =M [G1][G2].

Proof. For the direction from left to right, let G be the M -generic filter on P ×Q. Define
G1 and G2 as above. It is easily checked that G1 and G2 are filters and that G ⊆G1×G2.
For G1 × G2 ⊆ G, let (p1, p2) ∈ G1 × G2. Then there are p1

′ ∈ P and p2
′ ∈ Q such that (p1

′ ,

p2) ∈ G and (p1, p2
′ ) ∈ G. Since G is a filter, there exists (p, q) ≤ (p1

′ , p2), (p1, p2
′ ) with (p,

q)∈G. But (p, q)≤ (p1, p2). So (p1, p2)∈G since G is a filter. This proves G=G1×G2.

It is easy to see that G1 is generic over M : If D1 ∈M is dense in P , then D1× Q is dense
in P ×Q; and since (D1×Q)∩G� ∅, we have D1∩G1� ∅.
To show that G2 is generic over M [G1], let D2 ∈ M [G1] be dense in Q. Let Ḋ2 be a P -

name such that Ḋ2
G1=D2 and p1∈G1 such that

p1
P (Ḋ2 is dense in Q).

Let D′= {(r1, r2)N r1≤ p1 and r1
P ř2 ∈ Ḋ2}. We first show that D′ is dense below (p1, 1q).
Fix (q1, q2)≤ (p1, 1Q). We have q1≤ p1, so

q1
P ∃x∈ Q̌(x∈ Ḋ2∧ x≤ q2).

So there is r2∈Q and a r1≤ q1 such that

r1
P (ř2∈ Ḋ2∧ ř2≤ q̌2);
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thus (r1, r2) ≤ (q1, q2) and (r1, r2) ∈ D′. Since (p1, 1Q) ∈ G1 × G2, there is some (r1, r2) ∈
(G1×G2)∩D′. Hence r1
P ř2∈ Ḋ2, i.e. r2= ř2

G1∈ Ḋ2
G1=D2. So r2∈G2∩D2.

For the direction from right to left, let G1 ⊆ P be M -generic and let G2 ⊆ Q be M [G1]-
generic. Set G=G1×G2. Clearly G is a filter on P ×Q. To show that G is M -generic, let
D ∈M be dense in P ×Q. Let

D2= {p2∈QN (p1, p2)∈D for some p1∈G1}.

The set D2 is in M [G1]. We will show that D2 is dense in Q and thus D ∩ (G1 × G2) � ∅.
Let q2 ∈ Q be arbitrary. Since D is dense in P × Q, it follows that the set D1 = {p1 ∈ P N
∃p2≤ q2(p1, p2)∈D} is dense in P . Hence there is p1∈G1∩D1 and so D2 is dense in Q.

The fact that M [G1 × G2] = M [G1][G2] follows from the fact that generic extensions are
minimal ZFC models containing M as a subset and the generic filter as element. Thus
M ⊆ M [G1][G2] and G1 × G2 ∈ M [G1][G2] implies M [G1 × G2] ⊆ M [G1][G2]. Conversely,
M ⊆M [G1×G2] and G1∈M [G1×G2], so M [G1]⊆M [G1×G2]; but also G2∈M [G1×G2],
so M [G1][G2]⊆M [G1×G2]. �

17 Forcing initial segments of GCH

Theorem 103. (Easton) Let M be a ground model and µ ∈ OrdM. Then there exists a
generic extension M [G] of M such that

M [G]�∀κ< µ 2κ= κ+.

Recall the recursively defined i-sequence of cardinals:

i0=ℵ0, iα+1=2iα, and iλ=
⋃

α<λ

iα for limit ordinals λ.

The GCH is equivalent to the property

iα+1=iα
+

It is thus natural to require from the forcing that the ground model sequence

ℵ0< (i0
+)M < (i1

+)M <	 <iω
M <	 < (iα+1

+ )M < (iα+2
+ )M <	 < µ

becomes the sequence

ℵ0<ℵ1M [G]
<ℵ2M [G]

<	 <ℵωM [G]
<	 <ℵαM [G]

<ℵα+1
M [G]

<	 < µ
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in the generic extension. This will be achieved by adjoining surjections from (iα
+)M onto

iα+1
M for (iα

+)M < µ .

Work in M . Let A= {α| iα+< µ} . For each α ∈A, let Pα= Fn(iα
+, iα+1, iα

+), i.e. the set
of all p:dom(p)→iα+1 such that

dom(p)⊆iα
+ and |dom(p)|<iα

+.

Let (P , ≤, 1) be the Easton product of Pα, α ∈ A: P consists of all functions p = (pαN α ∈
A)∈Πa∈APα such that

|{α∈AN pα� ∅}∩ γ |< γ

for every strongly inaccessible γ . s(p): ={α ∈ AN pα � ∅} is called the support of p. Set
p≤ q iff

p(α)≤ q(α) for all α∈A.

Also let 1= (∅ |α∈A).

Set

P<β= {p∈P N s(p)⊆ β}

and

P>β= {p∈P N s(p)⊆Ord \ β}.

There is a canonical isomorphism

P D P>β×P<β.

Hence we can for any β view an extension by P as an extension obtained in two steps,
first by P>β and then by P<β. This allows us to do for infinitely many regular cardinals
what we could do before only for finitely many.

Let β ∈Ord . The regularity of iβ
+ implies

Lemma 104. P>β is iβ
+-closed.

In particular P =P>0 is i0
+=ℵ1-closed, i.e., countably closed.

Lemma 105. card(P<β)6iβ+1
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Proof. For Pα=Fn(iα
+,iα+1,iα

+) we have

card(Pα)6 card(iα(iα
+×iα+1))6 card(iαiα+1)=iα+1

iα =iα+1 .

Then

card(P<β) 6 card

(

∏

α<β

Pα

)

6
∏

α<β

iα+1

6
∏

α<β

iβ

6 iβ+1

�

Lemma 106. If iβ is regular or if β is a successor ordinal then card(P<β)6iβ

Proof. Case 1 . β=0 is trivial, since P<0= {1}.
Case 2 . β is a successor ordinal, say β= γ+1 . Then

card(P<β)6 card

(

∏

i6γ

Pi

)

6 card(γ(Pγ))6
(

iγ+1
iγ
)

card(γ)6 ((2iγ)iγ)iγ =iγ+1=iβ

Case 3 . β is a limit ordinal. Then iβ is regular. By regularity, iβ= β is strongly inacces-
sible. In the Easton product, the supports of conditions in P<β are bounded below β .
Therefore

P<β=
⋃

γ<β

P<γ .

Using Case 2,

card(P<β)6 card

(

⋃

γ<β

P<γ

)

6
∑

γ<β

card(P<γ)6iβ ·iβ=iβ

�

Now let G be M -generic for P . For each α∈A, the set

Gα= {p(α)N p∈G}∈M [G]

is an M -generic filter on Pα. As before,
⋃

Gα is a surjection from (iα
+)M onto iα+1

M for
(iα

+)M < µ .
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Lemma 107. If (iα
+)M < µ then (iα

+)M is a cardinal in M [G].

Proof. As before P D P>α × P<α . Let G>α and G<α be the corresponding projections of
G . Then

M [G] =M [G>α][G<α].

Since P>α is iα
+-closed in M , cardinals 6(iα

+)M are preserved between M and M [G>α].

We want to show that the cardinal-ness of (iα
+)M is preserved by the further forcing with

P<α .

Case 1 . iα is regular in M or α is a successor ordinal. By Lemma 106, we have that

cardM [G>α](P<α) 6 cardM(P<α) < (iα
+)M. So P<α has the iα

+-chain condition in M [G>α],

and so (iα
+)M = (iα

+)M [G>α] remains a cardinal by the extension from M [G>α] to M [G].

Case 2 . iα is singular in M and α is a limit ordinal. Then iα
M is a limit of cardinals of

the form (iγ
+)M where iγM is regular in M ; by Case 1 these (iγ

+)M are preserved as cardi-

nals between M and M [G]. Hence iα
M is a (singular) cardinal in M [G].

Assume for a contradiction that (iα
+)M is not a cardinal in M [G]. Then

cofM [G]((iα
+)M)6iαM ,

and since (iα)M is singular in M [G]

cofM [G]((iα
+)M)<iαM.

Take some β <α such that

cofM [G]((iα
+)M)<iβ

M

and such that iβ
M is regular in M .

Take f ∈ M [G] such that f : κ→ (iα
+)M cofinally and κ 6 iβ

M. The extension M [G>β] ⊆
M [G>β][G<β] is an extension by the forcing P<β which has size 6(iβ)M in M [G>β]. By
the “covering lemma” for forcings with chain conditions there is a function F : κ →
P((iα+)M), F ∈M [G>β] such that for all i < κ

f(i)∈F (i) and cardM [G>β](F (i))6 (iβ)M .

In M [G>β] F can be transformed into a cofinal function f ′: (iβ)M→ (iα
+)M, f ′ ∈M [G>β].

The extension M ⊆ M [G>β] is by the forcing P>β which is iβ
+-closed in M . By another

lemma, M and M [G>β] have the same iβ
M-sequences of ordinal. Hence f ′ ∈ M which

means that (iα
+)M is singular in M , contradicting the regularity of successor cardinals. �
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This lemma together with the surjections
⋃

Gα from (iα
+)M onto iα+1

M for (iα
+)M < µ

shows that below µ the sequence of infinite cardinals in M [G] consists of cardinals (iα
+)M

and their limits:

ℵ0M [G] = ℵ0
ℵα+1
M [G] = (iα

+)M , for (iα
+)M < µ

ℵαM [G] = iα
M for limit ordinals α such that iα

M < µ

We now prove the GCH for cardinals <µ in M [G]. Consider some κ < µ which is a car-
dinal in M [G].

Case 1 . κ = ℵ0 . Note that P is a countably closed forcing which does not adjoin subsets

of ℵ0 . It also adjoins a surjection from ℵ1M onto i1
M. Hence (2ℵ0)M [G]=ℵ1M =ℵ1M [G].

Case 2 . κ = ℵα+1
M [G] = (iα

+)M. View M [G] as the two-step extension M [G>α+1][G<α+1]. For
any subset x⊆ κ , x∈M [G] there is a “canonical” name ẋ ∈M [G>α+1] which is basically of
the form

ẋ ⊆κ×P<α+1

By Lemma 106 cardM(P<α+1) 6 iα+1
M . So ẋ is basically a subset of iα+1

M . The forcing
P>α+1 is iα+1

+ -closed in M and does not adjoin new subsets of iα+1
M . Hence ẋ ∈M . Since

M [G] contains a surjection from (iα+1
+ )M onto iα+2

M :

(2ℵα+1)M [G] = cardM [G](PM [G](κ)) 6 cardM [G](PM(iα+1
M )) 6 cardM [G](iα+2

M ) 6 (iα+1
+ )M =

ℵα+2
M [G]

Case 3 . κ = ℵαM [G] = iα
M where α is a regular limit ordinal. View M [G] as the two-step

extension M [G>α][G<α]. For any subset x ⊆ κ , x ∈M [G] there is a “canonical” name ẋ ∈
M [G>α] which is basically of the form

ẋ ⊆κ×P<α

By Lemma 106 cardM(P<α) 6 iαM . So ẋ is basically a subset of iαM . The forcing P>α is
iα
+-closed in M and does not adjoin new subsets of iαM . Hence ẋ ∈M . Since M [G] con-

tains a surjection from (iα
+)M onto iα+1

M :

(2ℵα)M [G]= cardM [G](PM [G](κ))6 cardM [G](PM(iαM))6 cardM [G](iα+1
M )6 (iα

+)M =ℵα+1
M [G]

Case 4. κ=ℵαM [G]=iα
M where α is a singular limit ordinal. We first show

(1) For ρ<κ , M [G]�κρ6κ+.

Proof . Take some successor ordinal β < α such that ρ < iβ
M. View M [G] as the two-step

extension M [G>β][G<β]. Any map f : ρ→ κ , f ∈M [G] has a “canonical” name ḟ ∈M [G>β]
which is a function defined on ρ such that

ḟ (i) =
{

(j , p)∈κ×P<β
∣

∣ p
 ḟ (ǐ )= ǰ
}
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Since cardM(P<β)6 iβ
M, ḟ is basically a function from iβ

M into κ . The forcing P>β is iβ
+-

closed in M and does not adjoin new function from iβ
M into κ . Hence ḟ ∈M . Since M [G]

contains a surjection from (iα
+)M onto iα+1

M :

(κρ)M [G]= cardM [G](ρκ)6 cardM [G]
((

iα
iβ
)

M
)

6 cardM [G](iα+1
M )6 (iα

+)M =ℵα+1
M [G]

qed(1)

Now GCH at κ in M [G] follows from cardinal arithmetic. Work in M [G]. Let c: cof(α)→
α be cofinal. The map

x� (x∩ c(i) | i < cof(α))

injects P(κ) into ∏
i<cof(α)

P(c(i)). Hence

2κ6
∏

i<cof(α)

2ℵc(i)6
∏

i<cof(α)

κ6κcof(α)6κ+.

This concludes the proof of Theorem 103.

Forcing with sets (P , 6, 1) ∈ M can be generalized to classes P , 6 which are definable
over the ground model M . If 6 satisfies some properties, the resulting generic extension
M [G] is a model of ZFC. The above Theorem can then be extended to:

Theorem 108. (Easton) Let M be a ground model. Then there exists a generic extension
M [G] of M by class forcing such that M [G]�GCH .

Hence

Theorem 109. (Gödel) If ZFC is consistent then ZFC+GCH is consistent.

18 Forcing arbitrary values of 2κ at regular cardinals

Theorem 110. (Easton) Let M �GCH be a ground model. In M, let F ∈M be a function
whose arguments are regular cardinals and whose values are cardinals, such that for all κ,
λ∈ dom(F )

a) F (κ)>κ

b) F (κ)≤F (λ) if κ≤λ

c) cof(F (κ))>κ.
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Then there exists a generic extension M [G] of M such that M and M [G] have the same
cardinals and cofinalities, and for every κ∈ dom(F )

M [G]� 2κ=F (κ).

For the proof, work in M . For each κ ∈ dom(F ), let Pκ= Fn(F (κ)× κ, 2, κ), i.e. the set of
all p: dom(p)→ 2 such that

dom(p)⊆F (κ)×κ and |dom(p)|<κ.

Let (P ,≤) be the Easton product of Pκ, κ ∈ dom(F ): A condition p ∈ P is a function p=
(pκN κ∈ dom(F ))∈Πκ∈dom(F )Pκ such that

|{κ∈ dom(F )N pκ� ∅}∩ γ |< γ

for every regular γ (not necessarily in dom(F )). s(p): ={κ ∈ dom(F )N pκ � ∅} is the sup-
port of p. Set p≤ q iff

pκ≤ qκ for all κ∈ dom(F ).

Set

P≤λ= {p∈P N s(p)⊆λ+}

and

P>λ= {p∈P N s(p)⊆Ord \λ+}.

Then

P D P>λ×P≤λ.

Hence we can for any λ view the extension by P as an extension obtained in two steps,
first by P>λ and then by P≤λ.

It is easy to see that

Lemma 111. P>λ is λ+-closed.

To prove the λ+-cc for P≤λ we use a ∆-system lemma.

Lemma 112. Let κ ≥ ω be a cardinal. Let θ ≥ κ be regular such that ∀α < θ |α<κ| < θ.
Assume |A|≥θ and ∀x ∈ A |x|< κ. Then there exists a B ⊆A such that card(B) = θ and
B forms a ∆-system, i.e. ∃r∀a� b∈B a∩ b= r.
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Proof. Exercise. �

Lemma 113. If λ is regular then P≤λ satisfies the λ+-cc.

Proof. For p∈P≤λ, let

d(p)=
⋃

{{κ}× dom(pκ)N κ∈ dom(F )∩λ+}.

Then by the assumption on s(p), |d(p)|<λ. Consider A⊆P≤λ, |A|= λ+. Since we assume
GCH, we can apply the ∆-system lemma. Hence there is B ⊆A of size λ+ such that

{d(p)N p∈B}

forms a ∆-system with root r, |r | < λ . By GCH, 2|r | ≤ λ . So there is C ⊆ B of size λ+

such that for all p, q ∈C

pκ(x)= qκ(x) for all (κ, x)∈ r .

But then all p∈C are compatible in P6λ . Hence A is not an antichain. �

Lemma 114. Let G × H be an M-generic filter on P × Q where P is λ+-closed and Q

satisfies the λ+-cc. Then every function f :λ→M in M [G×H] is in M [H ]. In particular,

PM [G×H](λ)=PM [H ](λ)

Proof. Let ḟ ∈M be a P × Q-name such that ḟ G×H = f . Assume w.l.o.g. that for some
A∈M

1
 ḟ : λ̌→ Ǎ.

For α<λ, let

Dα= {p∈P N ∃W max. antichain in Q∧∃(a(p,q)α
N q ∈W )∀q ∈W (p, q)
 ḟ (α̌) = ǎ(p,q)

α }.

Then p≤ q ∈Dα→ p ∈Dα. Every Dα is dense in P : Let p0
′ ∈ P . Since 1
 ḟ : λ̌→ Ǎ, there

exists (p0, q0)≤ (p0
′ , 1) and a0∈A such that (p0, q0)
 ḟ (α̌)= ǎ0. We construct by induction

sequences 〈piN i < δ〉 and 〈qiN i < δ〉 such that

pi≤ pj for all i≤ j < δ,

(pi, qi)
 ḟ (α̌)= ǎi for some ai∈A,
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and

{qiN i < δ} is a maximal antichain in Q.

Hence δ < λ+ by the λ+-cc. Assume that 〈piN i < η〉 and 〈qiN i < η〉 have already been con-
structed. Then let pη

′ ∈ P be by λ+-closedness such that pη
′ ≤ pi for all i < η. If {qiN i < η}

is a maximal antichain, pη
′ ∈Dα and pη

′ ≤ p0′ . So we are done. If {qiN i < η} is not maximal,

we pick some qη
′ such that qη

′ is incompatible with all i < η. Consider (pη
′ , qη

′ ). Since 1
 ḟ :

λ̌→ Ǎ, there exists (pη, qη)≤ (pη
′ , qη

′ ) and aη∈A such that

(pη, qη)
 ḟ (α̌)= ǎη.

This proves the density of Dα.
Since P is λ+-closed, it follows that

⋂ {DαN α < λ} is dense. So there exists some p ∈ G
such that p ∈Dα for all α < λ. We pick (in M) for each α < λ a maximal antichain Wα ⊆
Q and a family {a(p,q)α

N q ∈Wα} such that

(p, q)
 ḟ (α̌) = ǎ(p,q)
α

for all q ∈Wα. By the genericity of H , for every α there is a unique q ∈Wα such that q ∈
H, and we have for every α<λ

f(α)= a(p,q)
α where q is the unique q ∈Wα∩H.

However, this defines f in M [H ]. �

Now, we can finish the proof of Easton’s theorem.

Let µ be a regular cardinal in M . We show that µ is regular in M [G]. If not take a func-
tion f that maps some λ < µ, regular in M , cofinally into µ. We consider P as the pro-
duct P = P>λ × P≤λ. Then G = G>λ × G≤λ and M [G] = M [G>λ][G≤λ]. By the previous
lemma, f is in M [G≤λ] and so µ is not regular in M [G≤λ]. However, this is a contradic-
tion since P≤λ satisfies the λ

+-cc.

It remains to prove that (2κ)M [G]=F (κ), for each κ∈ dom(F ). The projection

Gκ= {pκ | p∈G}

is M -generic for Pκ = Fn(F (κ) × κ, 2, κ). As in previous arguments this induces an injec-

tion of F (κ) into P(κ). Hence (2κ)M [G]>F (κ).

By Lemma 114, (2κ)M [G]= (2κ)M [G≤λ]. And

(2κ)M [G≤λ]
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However, like before (2λ)M [G≤λ]=F (λ).

19 Models of ¬AC

So far we have only considered constructions of models of AC. To obtain models of ¬AC
we use a relativised version of the HOD construction, that we already introduced in an
exercise.

Definition 115. Define

OD(s) = {y |∃α∈Ord ∃ϕ∈Fml ∃a∈Asn((α∪ s)∩Vα) y= {z ∈Vα|(Vα,∈)� ϕ[az
0
]}},

and

HOD(s) = {x|TC({x})⊆OD(s)}.

So HOD(s) is built from parameters in Ord∪ s much like HOD was built from parameters
in Ord.

We shall examine which axioms of set theory hold in HOD(s). Just as before we get that
Ord⊆HOD and HOD is transitive.

Lemma 116. Let z be definable from x1,	 , xn−1 by the ∈-formula ϕ(v1,	 , vn):

∀vn(vn= z↔ϕ(x1,	 , xn−1, vn)). (6)

Let x1,	 , xn∈OD(s) and z ⊆HOD(s). Then z ∈HOD(s).

Proof. TC({z}) = {z} ∪ TC(z) ⊆ {z} ∪ HOD(s). So it suffices to prove that z ∈ OD(s).
By the definition of OD(s) choose

α1,	 , αn−1∈Ord, ϕ1,	 , ϕn−1∈Fml, and a1,	 , an−1 ,

such that for i=1,	 , n− 1

ai∈Asn((αi∪ s)∩Vαi
) and xi= {w ∈Vαi

|(Vαi
,∈)� ϕi[aiw

0
]}.
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Choose sufficiently high, pairwise distinct j1,	 , jn−1<ω which are intended to be indices
for “new” variables vj1, 	 , vjn−1 in the Gödelised language. Let ϕi

vji ∈ Fml be obtained
from ϕi ∈ Fml by relativising all quantifiers to the term for the von Neumann level Vvji .

Let α be a limit ordinal >α1,	 , αn−1 such that z ∈ Vα and such that the formula ϕ is Vα-
absolute. Let ai

∗ be the assignment obtained by adding the assigment ji� αi . Then ai
∗ is

an assignment in α∪ s and

xi= {w ∈Vαi
|(Vαi

,∈)� ϕi[aiw
0
]}= {w ∈Vα|(Vα,∈)� ϕi

vji[ai
∗w

0
]}.

By renaming variables we may assume that the formulas ϕi
vji do not share variables except

the variable v0 and that they do not contain the variables v1, 	 , vn . One may also assume
that the assignments ai

∗ are all merged into a single assignment a . Then

z = {u |Vα�∃vn∃v1	 ∃vn−1(u∈ vn∧ ϕ(v1,	 , vn−1, vn)∧
∀w(w ∈ v1↔ ϕ1

vj1[a∗
w

0
])∧	 ∧∀w(w ∈ vn−1↔ ϕn−1

vjn−1[a∗
w

0
]))}

= {u | ( Vα,∈)�∃vn∃v1	 ∃vn−1(u∈ vn∧ ϕ(v1,	 , vn−1, vn)∧
∀w(w ∈ v1↔ ϕ1

vj1w

v0
)∧	 ∧∀w(w ∈ vn−1↔ ϕn−1

vjn−1w

v0
)) [a∗]}

Here we assume that the formula behind ( Vα, ∈) � is Gödelised and an element of FML.
Hence z ∈OD(s). �

Theorem 117. Let s=TC({r}) for some set r ∈V. Then ZFHOD(s).

Proof. The transitivity of s implies

(1) s⊆HOD(s).

Also

(2) The class HOD(s) =HOD(TC({r})) is definable from the parameter r ∈ s .
Using the criteria of Theorem 3 we check certain closure properties of HOD(s).

a) Extensionality holds in HOD(s), since HOD(s) is transitive.

b) Let x, y ∈ HOD(s). Then {x, y} is definable from x, y, and {x, y} ⊆ HOD(s). By
Lemma 116, {x, y} ∈ HOD(s), i.e. HOD(s) is closed under unordered pairs. This implies
Pairing in HOD(s).

c) Let x ∈ HOD(s). Then
⋃

x is definable from x, and
⋃

x ⊆ TC({x}) ⊆ HOD(s). So
⋃

x∈HOD(s), and so Union holds in HOD(s).

d) Let x∈HOD(s). Then P(x)∩HOD(s) is definable from x and r ∈HOD(s), and P(x)∩
HOD(s)⊆HOD(s). So P(x)∩HOD(s)∈HOD(s) and Powerset holds in HOD(s).

e) ω ∈HOD(s) implies that Infinity holds in HOD(s).
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f) Let ϕ(x, wQ ) be an ∈-formula and wQ , a∈HOD(s). Then {x∈ a|ϕHOD(s)(x,wQ )} is a set by
Separation in V , and it is definable from wQ , a and r ∈ HOD(s). Moreover {x ∈
a|ϕHOD(s)(x, wQ )} ⊆ HOD(s). So {x ∈ a|ϕHOD(s)(x, wQ )} ∈ HOD(s), and Separation for the
formula ϕ holds in HOD(s).

g) Let ϕ(x, y, wQ ) be an ∈-formula and wQ , a∈HOD(s). Assume that

∀x, y, y ′∈HOD(s)(ϕHOD(s)(x, y, wQ )∧ ϕHOD(s)(x, y ′, wQ )→y= y ′).

Then {y |∃x ∈ aϕHOD(s)(x, y, wQ )} ∩ HOD(s) is a set by Replacement and Separation in V .

It is definable from wQ , a and r ∈ HOD(s). Moreover {y |∃x ∈ aϕHOD(s)(x, y, wQ )} ∩
HOD(s)⊆HOD(s). So {y |∃x ∈ aϕHOD(s)(x, y, wQ )} ∩HOD(s) ∈HOD(s), and Replacement
for ϕ holds in HOD(s).

h) Foundation holds in HOD(s) since HOD(s) is an ∈-model. �

Hence HOD(s) is an inner model of ZF set theory. We shall see that in general HOD(s) is
not a model of AC.

Fix a ground model M and the forcing

P =(P ,<, 1)=Fn(ω×ω, 2, ω)M =Fn(ω×ω, 2, ω),

partially ordered by reverse inclusion. P is the partial order for adjoining ω many Cohen
reals ai⊆ω . Let G be M -generic on P , f =

⋃

G:ω×ω→ 2, and for i <ω define

ai= {n∈ω |f(i, n)= 1}.

Let A= {ai|i < ω}, s= TC({A}) = {A} ∪ A ∪ ω. Set N = (HOD(s))M [G]. By the previous
lemma:

Lemma 118. N is transitive, A∈N and ZFN.

We shall see that A does not have a wellorder in N . Note that A is the “unordered” set
{ai|i < ω} but not the sequence (ai|i < ω). The basic idea is that the Cohen reals ai
behave in very similar ways so that one may permute them without changing the overall
properties of the model N . This permutability of the ai is reflected in a symmetry prop-
erty of the forcing P .

Lemma 119. Let π:ω↔ω be a permutation. Let π ′:P↔P be the induced map

π ′(p)= {((π(i), n), p(i, n))|(i, n)∈ dom(p)}.
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Then

a) π ′: (P ,<, 1)↔ (P ,<, 1) is an order isomorphism and (π−1)′ ◦ π ′= id ↾P.

b) If D is dense in P then π ′[D] is dense in P.

c) If G is M-generic on P then π ′[G] is M-generic on P; moreover M [G] =M [π ′[G]].

Proof. Easy. �

Let uns now introduce some canonical names for the generic objects so far.

Definition 120. For i <ω let

ȧi= {(ň , p)|n<ω, p∈P , p(i, n) = 1}.

Let Ȧ = {(ȧi, 1)|i <ω}. Obviously ȧi
G= ai and Ȧ

G=A .

Permutions π:ω↔ω act on the forcing construction as follows.

Lemma 121. (ȧπ(i))
π ′[G]= ȧi

G and Ȧπ ′[G]= ȦG.

Proof.

(ȧπ(i))
π ′[G] = {n<ω |∃p∈ π ′[G] p(π(i), n)= 1}

= {n<ω |∃p∈Gp(i, n) = 1}
= ȧi

G.

Ȧπ ′[G]= {(ȧi)π ′[G]|i <ω}= {ȧπ−1(i)
G |i <ω}= {ȧiG|i <ω}= ȦG.

�

Lemma 122. Let ϕ(u0, 	 , uk−1, v0, 	 , vl−1, w) be an ∈-formula, α0, 	 , αk−1 ∈ Ord, and
i0,	 , il−1<ω. For p∈P holds

p
 ϕ(α̌0,	 , α̌k−1, ȧi0,	 , ȧil−1
, Ȧ) iff π ′(p)
 ϕ(α̌0,	 , α̌k−1, ȧπ(i0),	 , ȧπ(il−1), Ȧ).

Proof. Assume p
 ϕ(α̌0,	 , α̌k−1, ȧi0,	 , ȧil−1
, Ȧ). Let H be M -generic on P with π ′(p) ∈

H. Then (π ′)−1[H ] is M -generic on P with p ∈ (π ′)−1[H ], and M [H ] = M [(π ′)−1[H ]]. By
assumption

M [(π ′)−1[H ]]� ϕ(α0,	 , αk−1, ȧi0
(π ′)−1[H]

,	 , ȧil−1

(π ′)−1[H]
, Ȧ(π ′)−1[H ]).
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Then

M [H ]� ϕ(α0,	 , αk−1, ȧ(π ′)−1◦π ′(i0)
(π ′)−1[H]

,	 , ȧ(π ′)−1◦π ′(il−1)
(π ′)−1[H]

, Ȧ(π ′)−1[H ])

and

M [H ]� ϕ(α0,	 , αk−1, ȧπ(i0)
H ,	 , ȧπ(il−1)

H , ȦH).

Hence

π ′(p)
 ϕ(α̌0,	 , α̌k−1, ȧπ(i0),	 , ȧπ(il−1), Ȧ).

The converse direction follows by considering π−1 instead of π. �

Lemma 123. In N there is no wellorder of the set A.

Proof. Assume that N possesses a wellorder of A. Then take f ∈ N and η ∈ Ord such
that f : η↔ A . Then f ∈ N = (HOD(s))M [G] where s = TC({A}) = {A} ∪ A ∪ ω. So take
α0, 	 , αk−1 ∈Ord and i0, 	 , il−1< ω such that f is definable in M [G] by the ∈-formula ϕ
and the parameters α0,	 , αk−1, ai0,	 , ail−1

, A:

f(ξ) = b iff M [G]� ϕ(α0,	 , αk−1, ai0,	 , ail−1
, A, ξ , b).

Consider some i∗∈ω \ {i0,	 , il−1} and ξ < η such that f(ξ)= ai∗ . Then

M [G]� ϕ(α0,	 , αk−1, ai0,	 , ail−1
, A, ξ , ai∗).

Take p∈G such that

p
 ϕ(α̌0,	 , α̌k−1, ȧi0,	 , ȧil−1
, Ȧ , ξ̌ , ȧi∗)

and

p 
 ∀y∀y ′(ϕ(α̌0, 	 , α̌k−1, ȧi0, 	 , ȧil−1
, Ȧ , ξ̌ , y) ∧ ϕ(α̌0, 	 , α̌k−1, ȧi0, 	 , ȧil−1

, Ȧ , ξ̌ , y ′)→ y =

y ′).

Take i∗∗ ∈ ω \ {i0, 	 , il−1, i∗} such that dom(p) ∩ ({i∗∗} × ω) = ∅. Define a permutation π:
ω↔ω,

π(i)=







i∗∗ iff i= i∗
i∗ iff i= i∗∗
i else

By the previous lemma

π ′(p)
 ϕ(α̌0,	 , α̌k−1, ȧπ(i0),	 , ȧπ(il−1), Ȧ , ξ̌ , ȧπ(i∗)),

75



i.e.

π ′(p)
 ϕ(α̌0,	 , α̌k−1, ȧi0,	 , ȧil−1
, Ȧ , ξ̌ , ȧi∗∗).

Consider (i, n) ∈ dom(p) ∩ dom(π ′(p)). The choice of i∗∗ and π implies that i � i∗, i∗∗ .
Then π(i)= i and π ′(p)(i, n)= π ′(p)(π(i), n) = p(i, n). Hence p and π ′(p) are compatible in
P . Take q6 p, π ′(p). The previous forcing statements imply

q
 ϕ(α̌0,	 , α̌k−1, ȧi0,	 , ȧil−1
, Ȧ , ξ̌ , ȧi∗),

q
 ϕ(α̌0,	 , α̌k−1, ȧi0,	 , ȧil−1
, Ȧ , ξ̌ , ȧi∗∗),

and

q 
 ∀y∀y ′(ϕ(α̌0, 	 , α̌k−1, ȧi0, 	 , ȧil−1
, Ȧ , ξ̌ , y) ∧ ϕ(α̌0, 	 , α̌k−1, ȧi0, 	 , ȧil−1

, Ȧ , ξ̌ , y ′)→ y =

y ′).

Then

q
 ȧi∗= ȧi∗∗ .

This is a contradiction since the weakest condition 1 forces that the Cohen reals ȧi are
pairwise distinct. �

Theorem 124. (Paul Cohen) If ZF is consistent then ZF + ¬AC is consistent. Hence
the Axiom of Choice is independent from ZF.
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