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Abstract. Metric spaces, Borel and analytic sets, Baire property and measurabil-

ity, dichotomies, equivalence relations. Possible topics: determinacy, group actions,

rigidity, turbulence.
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1. Introduction

Suppose that X is a complete separable metric space and R0, ..., Rn are relations on

X. Suppose that we forget about the metric, and even the topology, and only remember

the Borel sets. Which structural properties remain, i.e. which pairs of such structures can

still be distinguished? If the relation is a graph, when is there a Borel measurable coloring

of the graph? If the structure is an equivalence relation, when is there a Borel measurable

function classifying the equivalence classes by elements of some other separable metric

space?

The scope of this setting extends to many classes of mathematical structures which

can be represented by elements of some Polish space, and isomorphism then corresponds

to an equivalence relation on that space. An equivalence relation is smooth if there is a

Borel measurable map which sends the equivalence classes to distinct points in a Polish

space.

Example 1.1. Graphs on the natural numbers can be represented as elements of the

Cantor space ω2. Isomorphism of countable graphs is the most complicated isomorphism

relation for classes of countable structures, in particular it is not smooth.
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Motivated by a problem in C∗-algebras, Glimm proved the following striking result in

1961.

Theorem 1.2. (Glimm) Suppose that G y X is a continuous action of a locally compact

Polish group G on a Polish space X. If the induced orbit equivalence relation E is not

smooth, then there is a continuous reduction f : E0 → E, i.e. a map f : ω2→ X such that

x(n) = y(n) for all but finitely many n if and only if (f(x), f(y)) ∈ E.

Harrington and Kechris proved this in 1990 for arbitrary Borel equivalence relations.

Subsequently Kechris and Todorcevic proved a dichotomy for analytic graphs which im-

plies this result. We will present a proof of this by Ben Miller.

To do this, we begin with results about metric spaces and their Borel and analytic

subsets.

2. Metric spaces

A standard Borel space is a set with a σ-algebra which is Borel isomorphic to [0, 1]. The

following facts about metric spaces are useful for showing that a given space is standard

Borel. Moreover, some of these facts are needed to prove results about standard Borel

spaces in the following sections, i.e. given a standard Borel space we will choose an

appropriate metric and work with it.

2.1. Polish spaces.

Definition 2.1. A Polish metric space is the completion of a countable metric space.

Such a space with its topology, but forgetting the metric, is called Polish.

If (X, d) is metric, let R(d) denotes the set of distances. A metric on a space is

compatible if it induces its topology. Let (X, d) denote a Polish metric space (unless stated

otherwise). Then d̂(x, y) = min{d(x, y), 1} is a bounded compatible complete metric on

X.

Example 2.2. • Countable spaces with the discrete topology.

• Compact metric spaces.

• Closed subsets of Polish spaces.

• Separable Banach spaces.

Lemma 2.3. If (Xn)n∈ω is a sequence of Polish spaces, then X =
Q
n∈ωXn is Polish.

Proof. Find a compatible complete metric dn on Xn bounded by 1
2n+1 . Let d : X×X → R,

d(x, y) =
P
n∈ω dn(xn, yn), where x = (xn) and y = (yn).
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To show that d induces the product topology, consider Bd(x, ε), where x = (xn) and

ε > 0. Find n ≥ 1 with 1
2n+1 <

ε
2
. Then Bd0(x0,

ε
2n

)× ...× Bdn(xn−1), ε
2n
×

Q
i≥nXi ⊆

Bd(x, ε).

If (x(i))i is a Cauchy sequence in X, then (x
(i)
n )i is a Cauchy sequence in Xn for each

n. Let xn = limdn
i x

(i)
n . The x = (xn) = limd

i x
(i). �

Definition 2.4. (1) A subset A of X is Gδ if it is the intersection of countably many

open sets.

(2) A subset A of X is Fσ if it is the union of countably many closed sets.

Lemma 2.5. Every Polish space is homeomorphic to a Gδ subset of the Hilbert cube

[0, 1]ω.

Proof. Let dn(x, y) = 1
2n+1 d(x, y) for each n. Suppose that {xn | n ∈ ω} ⊆ X is dense.

Let f : X → [0, 1]ω, f(x) = (fn(x))n, fn(x) = d(x, xn).

Then f is continuous, since d(x, y) < ε implies that |d(x, xn) − d(y, xn)| < ε and

d(f(x), f(y)) =
P
n∈ω

1
2n+1 |d(x, xn) = d(y, xn)| < ε. To see that f−1 (defined on the

range of f) is continuous, consider x ∈ X and any open set U ⊆ X with x ∈ U . Find n

and ε > 0 with x ∈ B(xn, r) ⊆ U . If f(x) ∈
Q
i<nXi × U ×

Q
i>nXi, then y ∈ U . �

Lemma 2.6. Every open U ⊆ X is Polish.

Proof. Let C = X \ U . Consider the metric d̂(x, y) = d(x, y) + | 1
d(x,C)

− 1
d(y,C)

| on U .

To show that d̂ is compatible with the topology, notice that d ≤ d̂ and hence every

d-open set is d̂-open. For the other direction suppose that x ∈ U , d(x,C) = δ > 0 and

ε > 0. Find η > 0 with η + η
δ−η < ε. If d(x, y) < η, then δ − η < d(y, C) < δ + η and

d̂(x, y) < η + max{|1
δ
− 1

δ − η |, |
1

δ
− 1

δ + η
|}

= η + max{| −η
δ(δ − η)

|, | η

η(δ − η)
| = η +

η

δ − η < ε

and hence every d̂-open set is d-open. �

Lemma 2.7. Every Gδ set U ⊆ X is Polish.

Proof. Let U =
T
n∈ω Un with Un open. Find compatible complete metrics dn <

1
2n+1 on

Un. Let d̂ : X ×X → R, d̂(x, y) =
P
n∈ω dn(x, y).

To show that d̂ is compatible with the relative topology on U , consider x ∈ X and

ε > 0. Find n with 1
2n < ε

2
. then

T
i<nB

di(x, ε
2n

) ∩ U ⊆ Bd̂(x, ε). To show that (U, d̂) is

complete, suppose that (xi) is a Cauchy sequence. Then (xi) is a Cauchy sequence with

respect to each dn and hence its limit is in U . �
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Lemma 2.8. Every Polish U ⊆ X is Gδ.

Proof. We can assume that U = X. Suppose that (Un) is a base for (X, d) and that d̂ is

a compatible complete metric on U . Let

A =
\
m∈ω

\
{Un | diamd̂(U ∩ Un) <

1

m+ 1
}.

Then A is Gδ in X and U ⊆ A. To show that A ⊆ U , suppose that x ∈ A. Find ni with

x ∈ Uni and diamd̂(U ∩ Uni) < 1
i+1

. There is some xm ∈ U ∩
T
i≤m Uni since U is dense

in X. Then (xn) is a Cauchy sequence in (U, d̂) and hence x = limn xn ∈ U . �

Question 2.9. Why is Q not Polish?

Exercise 2.10. Show that every Polish space is Baire, i.e. the intersection of countably

many dense open subsets is dense.

Definition 2.11. Suppose that (X, dX) and (Y, dY ) are Polish metric spaces. A map

f : X → Y is Lipschitz if dY (f(x), f(y)) ≤ dX(x, y) for all x, y ∈ X.

Example 2.12. Let L(X,Y ) denote the set of all Lipschitz maps from X to Y and suppose

that DX = {xn | n ∈ ω} is dense in X and DY is dense in Y . Let

dL(f, g) =
X
i∈ω

2−(i+1)dY (f(xi), f(xj))

for f, g ∈ L(X,Y ). Then dL is a metric on L(X,Y ).

Exercise 2.13. (1) Show that the family of Ux,y,n = {f ∈ L(X,Y ) | d(f(x), y) <

2−n} for x ∈ DX , y ∈ Dy, and n ∈ ω is a base for (L(X,Y ), dL).

(2) Show that (L(X,Y ), dL) has the topology of pointwise convergence and hence it is

complete.

Example 2.14. Let DP (X,Y ) denote the set of all distance-preserving maps (isometric

embeddings) from X into Y with the pointwise convergence topology. Then DP (X,Y ) is

a closed subset of L(X,Y ) and hence Polish.

Example 2.15. Let Iso(X,Y ) denote the set of all isometries from X onto Y with the

pointwise convergence topology. Suppose that DX ⊆ X and DY ⊆ Y are countable dense.

Then Iso(X,Y ) is a Gδ subset of DP (X,Y ) and hence Polish, since f ∈ Iso(X,Y ) if and

only if for all y ∈ DY and all n, there is x ∈ DY with d(f(x), y) < 1
n

.
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2.2. Urysohn space. A Polish metric space is universal if it contains an isometric copy

of any other Polish metric space (equivalently, of every countable metric space). Urysohn

constructed such a space with a random construction which predates the random graph.

Definition 2.16. Suppose that (X, d) is a metric space. A function f : X → R is Katetov

if it measures the distances of a point in a one-point metric extension of (X, d). Equiva-

lently

|f(x)− f(y)| ≤ d(x, y) ≤ f(x) + f(y)

for all x, y ∈ X.

Definition 2.17. Suppose that R ⊆ R. A metric space (X, d) has the (R-)extension

property (for R ⊆ R) if for all finite F ⊆ X and every Katetov f : F → R (f : F → R),

there is y ∈ X such that

f(x) = d(x, y)

for all x ∈ F .

Lemma 2.18. If (X, dX) and (Y, dY ) are Polish and have the extension property, then

X and Y are isometric.

Proof. Suppose that DX ⊆ X and DY ⊆ Y are countable dense. Let DX = {xn | n ∈ ω}

and DY = {yn | n ∈ ω}. We construct countable sets EX and EY with DX ⊆ EX ⊆ X

and DY ⊆ EY ⊆ Y and an isometry f : EX → EY using the extension property.

We then extend f to a map g : X → Y as follows. If (xn) is in EX and x = limn xn,

let g(x) = limn f(xn). Then g is well-defined and g is an isometry. �

Definition 2.19. (X, d) is ultrahomogeneous if every isometry between finite subsets

extends to an isometry of X (onto X).

Remark 2.20. The extension property implies ultrahomogeneity by an argument as in

the previous lemma.

Suppose that K is a class of first-order structures in a countable language. An embed-

ding f : A→ B for A,B ∈ K is an isomorphism onto its image.

Definition 2.21. Suppose that K is a class of first-order structures in a countable lan-

guage. Consider the following properties.

• (Hereditary property HP) If A ∈ K and B is a finitely generated substructure of

A, then B is isomorphic to some structure in K.
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• (Joint embedding property JEP) If A,B ∈ K, then there is C ∈ K such that both

A and B are embeddable in C.

• (Amalgamation property AP) If A,B,C ∈ K and f : A → B, g : A → C are

embeddings, then there are D ∈ K and embeddings h : B → D and i : C → D with

hf = ig.

Lemma 2.22. The class of finite rational metric spaces has the HP, JEP, and AP.

Proof. The HP and JEP are clear. Suppose that A,B,C are finite rational metric spaces

and f : A → B, g : A → C are isometric embeddings. We can assume that A = B ∩ C

and f = g = id � A. Extend d to a metric d̂ on D := B ∪ C by letting d̂(b, c) =

infa∈A(d(a, b) + d(a, c)). Let h = id � B and i = id � C. �

Lemma 2.23. (Fraissé) For every class K of finitely generated structures with only count-

ably many isomorphism types and with the HP, JEP, and AP, there is a unique (up to

isomorphism) countable structure U such that K is the class of finitely generated substruc-

tures of U (then K is called the age of U) and U is ultrahomogeneous.

We go through Fraissé’s construction for the class of finite rational metric spaces. We

construct finite metric spaces ∅ = D0 ⊆ D1 ⊆ ... such that

• if A,B ∈ K with A ⊆ B, and there is an isometric embedding f : A → Di for

some i ∈ ω, then there are j > i and an isometric embedding g : B → Dj which

extends f .

Take a bijection π : ω × ω → ω such that π(i, j) ≥ i for all i, j.

When Di is defined, list as (fkj , Akj , Bkj)j∈ω the triples (f,A,B) (up to isomorphism)

where A ⊆ B and f : A → Dk is an isometry. Construct Dk+1 by the amalgamation

property so that if k = π(i, j), then fij extends to an embedding of Bij into Dk+1.

Let U =
S
iDi (the rational Urysohn space). Then U has the extension property.

Definition 2.24. (Urysohn space) Let U denote the completion of U .

Lemma 2.25. For F ⊆ U finite, f : F → R Katetov, and ε > 0, there is y ∈ U with

|d(x, y)− f(x)| < ε

for all x ∈ F .

Proof. Suppose that F = {x0, ..., xn} and f(x0) ≥ f(x1) ≥ ... ≥ f(xn) > 0. We can

assume that ε ≤ min{d(xi, xj) | i < j ≤ n}.
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Let ε0 = ε
4(n+1)

. Find y0, ..., yn ∈ U with d(xi, yi) < ε0 for I ≤ n. Let G = {y0, ..., yn}.

To approximate f by an admissible function g : G → Q, we increase the values of f and

decrease the distances between the values.

Find g(yi) ∈ Q with |f(xi) + (4i+ 2)ε0 − g(yi)| ≤ ε0. Then

d(yi, yj) ≤ d(xi, yi) + d(xj , yj) + f(xi) + f(xj)

≤ 2ε0 + f(xi) + f(xj) ≤ g(yi) + g(yj)

For i < j ≤ n

g(yi)− g(yj) ≤ f(xi)− f(xj)− 4(j − i)ε0 + 2ε0

≤ d(xi, xj)− 2ε0 ≤ d(yi, yj)

and

g(yj)− g(yi) ≤ f(xj)− f(xi) + 4(j − i)ε0 + 2ε0

≤ (4n+ 1)ε0 = ε− 2ε+ 0

≤ d(xi, xj)− d(xi, yi)− d(xj , yj) ≤ d(y < i, yj).

Find y ∈ U realizing g by the extension property. Then

|d(xi, y)− f(xi)| = |d(yi, y)− f(xi)|+ d(x, yi)

= |g(yi)− f(xi)|+ d(x, yi) ≤ (4n+ 3)ε0 + ε0 = ε

�

Lemma 2.26. U has the extension property.

Proof. Suppose that F = {x0, ..., xm} ⊆ U. Suppose that f : F → R is admissible and

f(x0) ≥ f(x1) ≥ ... ≥ f(xn) = ε > 0. We define a sequence (yn) in U with

|d(xi, yn)− f(xi)| ≤ 2−nε

for i ≤ m. Find y0 using that f is admissible. If yn is defined, extend f to g by letting

g(yn) = 2−nε. Now g is admissible by the inductive assumption on yn. Find yn+1 realizing

g up to 2−(n+1)ε. Then |d(yn, yn+1) − 2−nε| ≤ 2−(n+1)ε, so d(yn, yn+1) < 2−n+1ε. Let

y = limn yn. Then d(xi, y) = f(xi) for i ≤ n. �

A Polish metric space is universal if it contains an isometric copy of any other Polish

metric space.

Exercise 2.27. Show that any ultrahomogeneous universal Polish metric space has the

extension property and hence is isometric to U.
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For studying isometry groups we need a variant of the Fraissé construction, the Katetov

construction, which begins from any Polish metric space (X, d) instead of the empty set.

Definition 2.28. We say that a Katetov function f : X → R has finite support if for

some finite S ⊆ X, f(x) = inf{f(y) + d(x, y) : y ∈ S} for all x ∈ X. Let E(X) denote the

set of finitely supported Katetov functions on X and dE the function defined by

dE(f, g) = sup{|f(x)− g(x)| : x ∈ X}.

Exercise 2.29. dE is a metric on E(X).

Lemma 2.30. (E(X), dE) is separable.

Proof. Suppose that D ⊆ X is dense and countable. It follows from the proof of Lemma

2.25 that E(D) is dense in E(X). �

We go through the Katetov contruction. Let X0 = X and Xn+1 = E(Xn) for n ≥ 1.

As in the Fraissé construction,
S
n∈ωXn has the extension property. Then its completion

has the extension property by Lemma 2.26.

Example 2.31. When we consider R as a subset of R2, the Katetov construction over R

adds no element of R2 \ R to R.

2.3. Ultrametric spaces.

Definition 2.32. An ultrametric space is a metric space (X, d) which satisfies the ultra-

metric inequality

d(x, z) ≤ max{d(x, y), d(y, z)}

for all x, y ∈ X.

Example 2.33. The Baire space ωω with the ultrametric d : ωω × ωω → R, d(x, y) =

2−min{i∈ω|x(i)6=y(i)} for x 6= y in ωω.

Example 2.34. The Cantor space ω2 with the ultrametric inherited from the Baire space.

Example 2.35. Sym(ω) with the ultrametric d : Sym(ω)× Sym(ω)→ R,

d(x, y) = 2−max{∆(x,y),∆(x−1,y−1)}

and ∆(x, y) = min{i ∈ ω | x(i) 6= y(i)} for x 6= y in Sym(ω).
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Example 2.36. The space of models or logic space for a countable relational language.

Suppose L = {Ri | i ∈ ω} and Ri ⊆ ωni . Let

Mod(L) =
Y
i∈ω

2(ωni )

where each M ∈ Mod(L) codes a sequence of characteristic functions of relations on ω

and hence a model of L.

Note that we can define the logic space for any countable language by representing

functions and constants by relations.

Lemma 2.37. The set of distences R(d) for a complete ultrametric d on a separable space

is countable.

Proof. Suppose (X, d) is ultrametric Polish. Find D ⊆ X countable dense. Let R =

{d(x, y) | x, y ∈ D}. We show that R = R(d). Suppose that x 6= y in X. Suppose that

x′, y′ ∈ X with d(x, x′), d(y, y′) < d(x,y)
3

. Then d(x, y) = d(x′, y′) ∈ R. �

Suppose that R ⊆ R is countable. We can construct an ultrametric Urysohn space UultR
similar as the Urysohn space U by a Fraisse construction or a Katetov construction.1

Exercise 2.38. Suppose d is the standard ultrametric on the Baire space.Then (ωω, d)

has the R(d)-Urysohn property.

We now prove that every Polish space is a bijective continuous image of a closed subset

of the Baire space.

Lemma 2.39. Suppose that (X, d) is Polish, U ⊆ X is open, and ε > 0. Then there is a

sequence (Un)n∈ω of open sets such that U =
S
n∈ω Un =

S
n∈ω Un and diam(Un) < ε for

all n.

Proof. See Marker: Lecture notes on descriptive set theory, Lemma 1.6. �

Lemma 2.40. Suppose that (X, d) is Polish, F ⊆ X is Fσ, and ε > 0. Then there is a

sequence (Fn)n∈ω of Fσ sets such that F =
S
n∈ω Fn =

S
n∈ω Fn and diam(Fn) < ε for

all n.

Proof. See Marker: Lecture notes on descriptive set theory, Lemma 1.18. �

Lemma 2.41. For every Polish space (X, d), there is a closed set C ⊆ ωω and a contin-

uous bijection f : C → X.

1See Gao-Shao: Polish ultrametric Urysohn spaces and their isometry groups
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Proof. See Marker: Lecture notes on descriptive set theory, Lemma 1.19. �

It is easy to see that every closed subset of the Baire space is a continuous image of

the Baire space (from a retraction). Hence every Polish space is a continuous image of

the Baire space. This also follows from a modification of the construction above.

2.4. Hyperspaces. To represent closed subsets of a Polish space X as elements of another

Polish space, we need to define a metric measuring the distance between closed sets. Let

us first consider compact sets.

Example 2.42. (Hausdorff metric) Suppose that (X, d) is Polish. Let K(X) = {K ⊆

X | K is compact }. Let

dH(K,L) :=

8>>>>><>>>>>:
max{max{d(x, L) | x ∈ K},max{d(K, y) | y ∈ L}} if K,L 6= ∅

0 if K = L = ∅

1 if exactly one ofK,Lis ∅.

Lemma 2.43. (K(X), dH) is Polish.

Proof. It is easy to see that dH is a metric. To show that (K(X), dH) is separable, suppose

that D ⊆ X is countable dense. Then {K ⊆ D | K is finite} is dense in K(X) (use that

every compact subset of a metric space is totally bounded).

To show that (K(X), dH) is complete, suppose that (Kn) is a Cauchy sequence. Let

K = {limn xn | xn ∈ Kn, (xn) is Cauchy}. It is straightforward to check that K =

limnKn. �

Borel subsets of a topological space are the elements of the σ-algebra generated by the

open sets.

Remark 2.44. Suppose that (X, d) is Polish. Let F (X) = {C ⊆ X | C is closed}. Let

EU = {C ∈ F (X) | C ∩ U 6= ∅}

EU = {C ∈ F (X) | C ⊆ U}

where U ⊆ X is open.

(1) The family of all sets EU and EU form a subbase for (K(X), dH). For example,

to show that Uε(L) := {K | max{d(x, L) | x ∈ K} < ε} is a union of sets of the

form EV , cover L with a finite union of open balls of radius δ for any given δ < ε

using compactness. This topology on F (X) is called the Vietoris topology.

(2) The Effros Borel structure on F (X) is defined as the σ-algebra generated by the

sets EU (equivalently by the sets EU ).
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Definition 2.45. (Gromov-Hausdorff metric) Suppose that K,L are compact metric

spaces. Let

dGH(K,L) = inf{dXH(f(K), g(L) | f : K → X, g : L→ X are isometric embeddings }.

Fact 2.46. (Gromov)2 Let C denote the set of isometry classes of compact metric spaces.

Then (C, dGH) is a compact metric space.

To define a Polish topology on F (X), suppose that (Un) is a base for X. Suppose that

Y is a metric compactification of X (i.e. Y is a compact metric space and X is dense in Y )

(see 2.5). We consider the topology τ on F (X) induced by (K(Y ), dH) via the pullback

of C 7→ C. Note that this might depend on the choice of the compactification.

Lemma 2.47. (F (X), τ) is Polish.

Proof. Let A = {C | C ∈ F (X)} ⊆ K(Y ). Then for all C ∈ K(Y ), C ∈ A if and only if

for all n

C ∩ Un 6= ∅ ⇒ C ∩ Un ∩X 6= ∅.

Then A is Gδ in K(Y ) and hence Polish. Moreover (F (X), τ) is homeomorphic to (A, τH),

where τH is the topology induced by dH . �

Remark 2.48. It is easy to see that τ generates the Effros Borel structure on F (X).

Every set (EU )X is of the form (EU )Y , every set (EU )Y is a countable intersection of sets

of the form (EU )X , and (EU )X = (EU )Y .

The Wijsman topology on F (X) is the least topology which makes all maps C 7→ d(x,C)

for x ∈ X continuous. Like τ it is also Polish and generates the Effros Borel structure,

and moreover it only depends on the metric on X.

3. Borel and analytic sets

Suppose that X = (X, d) is a Polish space.

Definition 3.1. (perfect) A set A ⊆ X is perfect if it is uncountable, closed, and has no

isolated points.

Lemma 3.2. Suppose that (X, d) is a perfect Polish space. Then there is a continuous

injection f : ω2→ X.

Proof. We construct a family (Us)s∈<ω2 of open nonempty subsets of X such that for all

s ∈ <ω2 and i < 2

2See Heinonen: Geometric embeddings of metric spaces, section 2: Gromov-Hausdorff convergence
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(1) Usai ⊆ Us and

(2) Usai ∩ Usa(1−i) = ∅.

For each x ∈ ω2, let f(x) denote the unique element of
T
n∈ω Ux�n. Then f : ω2 → X is

continuous and injective. �

Lemma 3.3. Suppose that U ⊆ X is open and that ε > 0. There is a sequence (Un)n∈ω

of open sets with U =
S
n∈ω Un =

S
n∈ω Un and diam(Un) < ε for all n.

Proof. Suppose that D ⊆ X is countable and dense. Let (Ui)i∈ω list all B(x, 1
n

) with

x ∈ D, 1
n
< ε

2
, and Un ⊆ U . We claim that U =

S
i∈ω Ui. Suppose that x ∈ U . Find

n with B(x, 2
n

) ⊆ U . Find y ∈ D ∩ B(x, 1
n

). Then x ∈ B(y, 1
n

) and B(y, 1
n

) ⊆ U , so

B(y, 1
n

) = Ui for some i. �

Lemma 3.4. Suppose that F ⊆ X is Fσ and ε > 0. There is a sequence (Fn)n∈ω of

pairwise disjoint Fσ sets with F =
S
n∈ω Fn =

S
n∈ω Fn and diam(Fn) < ε for all n.

Proof. Let F =
S
h∈ω Cn with C0 ⊆ C1 ⊆ ... closed. Then F = C0 t (C1 \ C0) t ... and

Cn+1 \ Cn ⊆ Cn+1 ⊆ F . Hence it is sufficient to show that for A ⊆ X closed and B ⊆ X

open, there is a sequence Fn)n∈ω of pairwise disjoint Fσ sets with A ∩B =
S
n∈ω Fn and

diam(Fn) < ε for all n.

Write B =
S
n∈ω Bn =

S
n∈ω Bn as in the previous lemma. Then Fn = A ∩ (Bn \S

i<nBi) works. �

Lemma 3.5. There is a continuous bijection f : C → X for some closed C ⊆ ]ωω.

Proof. We construct level by level a tree T ⊆ <ωω and a family (Xt)t∈T of nonempty Fσ

sets such that X0 = X and for all s ∈ T ∩ nω

• Xs =
F
sai∈T Xsai,

• Xsai ⊆ Xs, and

• diam(Xs) <
1

2n .

We write [T ] = {x ∈ ωω | ∀n x � n ∈ T}. For each x ∈ [T ], let f(x) denote the unique

element of
T
n∈ωXx�n. Then f is continuous by the last condition. For each n, there is a

unique s ∈ n2 with x ∈ Xs by the first condition, and hence f is surjective. �

Corollary 3.6. There is a continuous surjection f : ωω → X.

Proof. It is easy to see that there is a continuous retraction r : ωω → [T ], i.e. such that

r � [T ] = id � [T ]. �

Definition 3.7. Suppose that A ⊆ X and x ∈ X. The x is a condensation point of A if

A ∩ U is uncountable for every open U ⊆ X with x ∈ X.
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Lemma 3.8. Suppose that A ⊆ X is uncountable and C ⊆ X is the set of condensation

points of A. Then A ∩ C is uncountable.

Proof. It is easy to see that C is closed. For each x ∈ X \ C, there is a basic open set

U ⊆ X \ C with x ∈ U such that A ∩ U is countable. Hence A \ C is countable. �

Lemma 3.9. Suppose that A ⊆ X is uncountable. Then there are disjoint open sets

U, V 6= ∅ such that A ∩ U and A ∩ V are uncountable.

Proof. Find condensation points x 6= y of A and disjoint open neighborhoods of x and

y. �

Lemma 3.10. Suppose that f : X → Y is continuous and A = f [X] si uncountable. Then

there are open set U, V ⊆ X such that f [U ] and f [V ] are disjoint and uncountable.

Proof. Find disjoint open sets U, V ⊆ Y such that A ∩ U and A ∩ V are uncountable.

Consider f−1[U ] and f−1[V ]. �

Proposition 3.11. Every uncountable analytic set has a perfect subset.

Proof. Suppose that f : ωω → X is continuous and A = f [ωω]. We construct by the

previous lemma (ts)s∈<ω2 in <ωω such that for all s ∈ n2 and i < 2

• ts ( tsai,

• f [Uts ] is uncountable, and

• f [Ut
sa0
∩ Ut

sa1
] = ∅ (so in particular tsa0 ⊥ tsa1).

Let g : ω2→ ωω, where g(x) is the unique element of
T
n∈ω Utx�n . Then g is a continuous

injection. Moreover fg is injective by the last requirement. Since ω2 is compact, fg[ω2]

is closed in X. Since fg is injective, fg[ω2] is perfect. �

Lemma 3.12. Suppose that Y ⊆ X is Borel and f : X → Y is an injection such that the

preimages and images of Borel sets are Borel. Then there is a Borel isomorphism between

X and Y .

Proof. Let A0 = X, An+1 = f [An], B0 = Y , Bn+1 = f [Bn]. Then f [An \ Bn] =

An+1 \ Bn+1. The sets An \ Bn are disjoint since f [An] ⊆ Bn. Let A =
S
n∈ω(An \ Bn).

Let g : X → Y , where

g(x) =

8><>:f(x) if x ∈ A

x otherwise.

Then g � A = f � A : A → A is a Borel isomorphism and g � (X \ A) = id � (X \ A) is a

Borel isomorphism. �
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Proposition 3.13. All uncountable Polish spaces are Borel isomorphic.

Proof. Suppose that X is an uncountabl Polish space. We construct a continuous injection

f : ω1→ X. Then f maps closed sets to closed sets. and hence Borel sets to Borel sets.

We have constructed a continuous bijection g : C → X, where C ⊆ ωω is closed. Note

that the specific function which we contructed earlier maps basic open sets to Fσ sets and

hence Borel sets to Borel sets.

To apply the previous lemma, it is sufficient that there is an injection ωω → ω2 which

maps Borel sets to Borel sets. Let h : ωω → ω2, where h(x) = 0x(0)10x(1)10x(2)1.... �

Stefan proved the following lemmas.

Lemma 3.14. Suppose that An ⊂ X is Borel for each n ∈ ω. Then there is a finer Polish

topology with the same Borel sets in which each An is both closed and open.

Lemma 3.15. Suppose that A0 and A1 are disjoint analytic subsets of X. Then there

are disjoint Borel subsets of X with Ai ⊆ Bi for i < 2.

Lemma 3.16. Suppose that f : X → Y is a function and A = {(x, y) ∈ X×Y | f(x) = y}

its graph. Then the following are equivalent:

(1) f is Borel measurable.

(2) A is Borel.

(3) A is analytic.

Proof. To prove (2) from (1), find a base (Un)n∈ω for Y . Then (x, y) ∈ A if for all n, if

x ∈ f−1[Un], then y ∈ Un.

To prove (1) from (3), suppose that B ⊆ Y is Borel. Then x ∈ f−1[B] if and only if

∃y ∈ B (x, y) ∈ A if and only if ∀y ∈ Y ((x, y) ∈ A⇒ y ∈ B). �

Lemma 3.17. suppose that (An)n∈ω is a sequence of analytic subsets of X. Then there

is a sequence (Bn)n∈ω of pairwise disjoint Borel subsets of X with An ⊆ Bn for all n. So

f−1[B] is analytic and coanalytic, so it is Borel.

Proof. Find Bn Borel with An ⊆ Bn and Bn ∩ Ai = ∅ for all i 6= n by separation of

analytic sets. Let Cn = Bn \
S
i 6=nBi. �

Suppose that X = (X, dX) and Y = (Y, dY ) are Polish spaces.

Theorem 3.18 (Lusin-Suslin). If f : X → Y is Borel, A ⊆ X is Borel, and f � A is

injective, then f [A] is Borel.
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Proof. Let us first argue that it is sufficient to prove this for X = ωω, closed sets A ⊆ X,

and continuous f . We refine the topology on X to a Polish topology with the same Borel

sets such that f is continuous and A is closed. Then there is a closed C ⊆ ωω and a

continuous bijection g : C → A. There is a continuous h : ωω with h � C = id. Now

consider fgh : ωω → Y and C ⊆ ωω instead of A.

Now suppose that f : ωω → Y is continuous, A ⊆ X is closed, and f � A is injective.

Let As = f [A ∩ Ns] for s ∈ <ωω. Then each As is analytic. Let B∅ = Y . For n > 0

find disjoint Borel sets (Bs)s∈Nω with As ⊆ Bs ⊆ As for s ∈ nω by the version of the

separation theorem in the previous lemma. We can assume that Bs ⊆ As by intersection

Bs with As if necessary. Let Ct =
T
s⊆tBs for all t ∈ <ωω. Then At ⊆ Ct.

We claim that f [A] =
T
n∈ω

S
s∈nω Cs. If y ∈ f [A], find x ∈ A with f(x) = y. Then

y ∈ f [A ∩Nx�n ⊆ Cx�n for all n ∈ ω.

If y ∈
T
n∈ω

S
s∈nω Cs, then there is x ∈ ωω with y ∈

T
n∈ω Cx�n by the choice of Cs.

Then y ∈
T
n∈ω Ax�n. So A ∩ Nx�n 6= ∅ for all n. Since A is closed, this implies that

x ∈ A. We claim that f(x) = y. If f(x) 6= y, find an open neighborhood U of f(x) with

y 6= U . Find n with f [Nx�n] ⊆ U by the continuity of f . This contradicts the assumption

that y ∈ Cx�n ⊆ Ax�n. �

Exercise 3.19. Read about Lusin schemes in section 7C of Kechris’ book.

We would now like to show that analytic and coanalytic sets have the Baire property and

are universally measurable, i.e. measurable with respect to every σ-finite Borel measure

on X. A measure µ is σ-finite if there are Borel sets Xn ⊆ X for n ∈ ω with X =
S
n∈ωXn

and µ(Xn) <∞ for all n.

Definition 3.20. Suppose that S is a σ-algebra on a set X and A, Â ⊆ X with Â ∈ S.

Then Â is an S-cover of A if

(1) A ⊆ Â and

(2) if A ⊆ B ∈ S, then every subset of Â \B is in S.

We say that S admits covers if every A ⊆ X has an S-cover.

Lemma 3.21. Suppose that X is a Polish space and S is the set of all A ⊆ X with the

Baire property. Then S admits covers.

Proof. Suppose that A ⊆ X and let U =
S
{V ⊆ X | V is basic open, (X \ A) ∩ V is

comeager in V }. Let C = X \U . Then A \C = A∩U is meager by the choice of U . Find

a meager Fσ set D ⊆ X with A \ C ⊆ D and let Â = C ∪D.



16 PHILIPP SCHLICHT

Suppose that B ⊇ A has the Baire property and that Â\B is nonmeager. Find a basic

open set V such that (Â \B) ∩ V is comeager in V . Then V ⊆ U . So D ∩ V is comeager

in V , contradicting the choice of D. �

Lemma 3.22. Suppose that X is a Polish space and µ is a σ-finite Borel measure on X.

Suppose that S is the set of all µ-measurable A ⊆ X (i.e. such that the inner and outer

measures µ∗(A) and µ∗(A) coincide). Then S admits covers.

Proof. We can assume that µ(X) < ∞. Let µ∗(A) = inf{µ(B) | B ⊆ X Bore, A ⊆ B}

denote the outer measure of A ⊆ X. Then there is a Borel set Â ⊆ X with A ⊆ Â and

µ(Â) = µ∗(A). Suppose that B ⊇ A is µ-measurable and µ(Â \B) > 0. Then A ⊆ Â ∩B

and µ(Â ∩B) < µ(Â), contradicting the choice of Â. �

Definition 3.23. (Suslin operation) Suppose that (Cs)s∈<ωω is a family of subsets of a

set X with Cs ⊇ Ct for all s ⊆ t. Let

A(Cs) =
[
x∈ωω

\
n∈ω

Cx�n.

Lemma 3.24. Suppose that A ⊆ X is analyitic. Then there is a family (Cs)s∈<ωω of

closed subsets of X such that Cs ⊇ Ct for all s ⊆ t and A = A(Cs).

Proof. Suppose that A 6= ∅ and that f : ωω → X is continuous with f [ωω] = A. Let

Cs = f [Ns] for s ∈ <ωω. Then A ⊆ A(Cs).

To show that A(Cs) ⊆ A, suppose that y ∈
T
n∈ω Cx�n =

T
n∈ω f [Nx�n]. Find xn ∈

Nx�n with d(f(xn), y) < 1
2n . Then limn xn = x. So f(x) = y and hence y ∈ f [U ]. �

Lemma 3.25. Suppose that S is a σ-algebra which admits covers. Then S is closed under

the Suslin operation.

Proof. Suppose that A = A(Cs) with Cs ∈ S for all s ∈ <ωω and Cs ⊇ Ct if s ⊆ t. Let

Cs =
[
s⊆x

\
n∈ω

Cx�n ⊆ Cs

for each s ∈ <ωω. Then A = C∅. Find an S-cover Ĉs for Cs with Ĉs ⊆ Cs. Let

Ds = Ĉs \
[
n∈ω

Ĉs
an.

Since Cs =
S
n∈ω C

san ⊆
S
n∈ω Ĉ

san, every subset of Ds is in S and hence every subset

of D :=
S
s∈<ωωDs is in S.

We claim that Â\A = Ĉ∅\C∅ ⊆ D and hence A ∈ S. Suppose that y ∈ (Â\A)\D. For

all s ∈ <ωω, if y ∈ Ĉs \D, then y ∈ Ĉs
an for some n. Find x ∈ ωω with y ∈ Ĉx�n ⊆ Cx�n

for all n ∈ ω. Then y ∈
T
n∈ω Cx�n ⊆ A, contradicting the choice of y. �
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The previous lemmas imply

Proposition 3.26. All analytic and coanalytic subsets of Polish spaces have the Baire

property and are universally measurable.

4. The G0 dichotomy

We present Ben Miller’s proof of the G0 dichotomy and some consequences.

As usual, X and Y denote Polish spaces, unless stated otherwise. Suppose that G

is a graph on X. We say that A ⊆ X is G-discrete if there are no x 6= y in A with

(x, y) ∈ G. A κ-coloring of G is a map c : X → κ such that c−1[{α}]. A homomorphism

from a graph G on X to a graph H on Y is a map f : X → Y such that (x, y) ∈ G implies

(f(x), f(y)) ∈ H.

Supose that I ⊆ 2<ω is dense, i.e. for every s ∈ 2<ω there is some t ∈ I with s ⊆ t.

Let GI denote the graph consisting of all pairs (saiax, sa(1− i)ax), where s ∈ I, i < 2,

and x ∈ ω2. We fix a sequence (sn)n∈ω with sn ∈ 2n such that I = {sn | n ∈ ω} is dense

and let G0 = GI .

Lemma 4.1. (Ben Miller) Suppose that A ⊆ ω2 is nonmeager and has the Baire property.

Then A is not G0-discrete.

Theorem 4.2. (Kechris-Solecki-Todorcevic) Suppose that X is a Hausdorff space and G

is an analytic graph on X. Then either

(1) there is a Borel ω-coloring of G or

(2) there is a continuous homomorphism from G0 to G.

The space ωκ is the product of κ with the discrete topology.

Definition 4.3. Suppose that X is a topological space. A set A ⊆ X is κ-Suslin if

A = f [ωω] for some continuous map f : ωκ→ X or A = ∅. A set A ⊆ X is co-κ-Suslin if

X \A is κ-Suslin.

The ω-Suslin subsets of Polish spaces are the analytic sets. The G0 dichotomy and

many if its consequences can be generalized to κ-Suslin graphs on Hausdorff spaces, which

we don’t pursue here.

Lemma 4.4 (Mycielski). Suppose that E is a meager binary relation on X. Then there

is a perfect C ⊆ X with (x, y) /∈ E for all x 6= y in X.

Proof. Suppose that Un ⊆ X is open dense for eachn ∈ ω and E ∩
T
n∈ω Un = ∅. We can

assume that U0 ⊇ U1 ⊇ .... We construct (Us)s∈2<ω with Us ⊆ X nonempty open such

that for all sai 6= taj in 2n+1



18 PHILIPP SCHLICHT

(1) Usai ∩ Utaj = ∅,

(2) diam(Usai) < 2−n, and

(3) Usai × Utaj ⊆ Un.

Let U∅ = X. If Un is defined for all s ∈ n2, first find (Usai)s∈2n, i<2 satisfying (1) and

(2). For (3) we successively shrink each pair Usai, Utaj with sai 6= taj in 2n+1.

Let f : ω2→ X, f(x) =
T
n∈ω Ux�n. Then f is continuous and injective. Let C = f [2ω].

Then C is compact and perfect.

We claim that (f(x), f(y)) /∈ E for all x 6= y in 2ω. Suppose that x(n) 6= y(n). Then

(f(x), f(y)) ∈ Ux�m+1 × Uy�m+1 ⊆ Um for all m ≥ n. So (f(x), f(y)) /∈ E. �

Lemma 4.5. If U ⊆ X×Y is open dense, then S := {x ∈ X | Ux is dense } is comeager.

Proof. Suppose that W ⊆ Y is basic open and nonempty. We claim that SW := {x ∈ X |

UX ∩W 6= ∅} is comeager. Then S =
T
W SW is comeager.

Otherwise let TW := {x ∈ X | UX ∩ W = ∅} . There is a nonempty basic open

set U ⊆ X such that TW ∩ U is comeager in U . Then TW × W is nonmeager and

(TW ×W ) ∩ U = ∅, contradicting the assumption that U is comeager. �

Lemma 4.6 (Kuratowski-Ulam). A set A ⊆ X × Y with the Baire property is comeager

(nonmeager) if and only if {x ∈ X | Ax is comeager (nonmeager)} is comeager (nonmea-

ger).

Proof. Suppose that A ⊆ X × Y is comeager, A ⊆
T
n∈ω Un, Un open dense in X × Y .

Then {x ∈ X | Ax is comeager} ⊆
T
n∈ω{x ∈ X | (Un)x is comeager in Y } is comeager in

X by the previous lemma.

Suppose that A ⊆ X×Y is nonmeager. Since A has the Baire property, there is a basic

open set U×V ⊆ X×Y such that A∩(U×V ) is comeager in U×V . Then {x ∈ X | Ax∩V

is comeager in V } is comeager in U by the previous argument, so nonmeager.

If A is not comeager, then (X×Y )\A is nonmeager, so {x ∈ X | Ax is not comeager} =

{x ∈ X | ((X×Y )\A)x is nonmeager} is nonmeager and hence {x ∈ X | Ax is comeager}

is not comeager.

If A is meager, then (X × Y ) \ A is comeager, so {x ∈ X | Ax is meager} = {x ∈

X | ((X × Y ) \ A)x is comeager} is comeager and hence {x ∈ X | Ax is nonmeager} is

meager. �

Theorem 4.7 (Silver). Suppose that X is a Hausdorff space and E is a coanalytic equiv-

alence relation on X. Then either

(1) E has countably many equivalence classes or
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(2) there is a perfect set C ⊆ X of pairwise E-inequivalent points.

Proof. The condition are mutually exclusive. Let G = X2 \ E. Suppose that c : X → ω

is a coloring of G. Then c−1[{n}] is contained in some E-class for every n ∈ ω. So E has

countably many equivalence classes.

Otherwise there is a continuous homomorphism f : ω2 → X from G0 to G by the G0

dichotomy. Then F = (f × f)−1[E] is an equivalence relation on ω2 with G0 ∩ F = ∅.

We claim that F is meager. By Kuratowski-Ulam, it is sufficient to show that every

equivalence with the Baire property class is meager. Suppose that x ∈ ω2 and [x]F

is nonmeager and has the Baire property. Then [x]F is not G0-discrete by a previous

lemma. Find y, z ∈ [x]F with (y, z) ∈ G0 ∩ F . There is a continuous g : ω2 → ω2

with (g(x), g(y)) ∈ F for all x 6= y in ω2 by Mycielski’s theorem. Let h = fg. Then

(h(x), h(y)) /∈ E for all x 6= y in ω2. So C = h[ω2] satisfies (2). �

Theorem 4.8 (Lusin-Novikov). Suppose that X,Y are Polish spaces, R ⊆ X × Y is

analytic and Rx is countable for all x ∈ X. then there are partial functions fn : X → Y

with relatively Borel graphs Rn ⊆ R (i.e. Rn = R ∩Bn for some Borel set Bn) such that

R =
S
n∈ω Rn.

Proof. Let G ⊆ ω2 × ω2 where ((x0, y0), (x1, y1)) ∈ G if x0 = x1, y0 6= y1, and (y0, y1) ∈

Rx0 .

Suppose that f : ω2 → X × Y is a homomorphism from G0 to G. If x, y ∈ ω2 and

(x, y) ∈ G, then f(x)0 = f(y)0. Since the connected G0-component of 0∞ is dense in ω2,

f(x)0 = f(y)0 for all x, y ∈ ω2. Let z = f(x)0.

Let f1 : ω2 → Y , f1(x) = f(x)1. Let H = {(x, y) ∈ Y × Y | x 6= y and (x ∈ Rz or

y ∈ Rz)}. Then f1 is a homomorphism from G0 to H. Let I = (f1 × f1)−1[H]. Then

G0 ⊆ I. Now each Ix is analytic and hence it has the Baire property. It is easy to

check that the complement of H is an equivalence relation, so the complement of I is an

equivalence relation as well. Using this and the fact the nonmeager sets with the Baire

property are not G0-discrete, if some Ix was not comeager, then there have to be y, z ∈ Ix

with (y, z) ∈ G0, contradicting the assumption that f1 is a homomorphism from G0 to H.

So every Ix is is comeager, and hence I is comeager by the Kuratowski-Ulam theorem.

Then there is a continuous map g : ω2 → ω2 with (g(x), g(y)) ∈ I for all x 6= y in ω2

by Mycielski’s theorem. Let h = f1g. Then h(x), h(y) ∈ Rz and h(x) 6= h(y) for all x 6= y

in ω2, by the definition of I as I = (f1× f1)−1[H] and by the definition of G and H. This

contradicts the assumption that Rz is countable.
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By the G0 dichotomy, there is a Borel ω-coloring c : ω2 × ω2 → ω of G. Let Rn =

c−1[{n}] ∩R. Then y = z for all (x, y), (x, z) ∈ Rn. �

If R is Borel, then Rn is Borel and hence also dom(Rn) is Borel for all n, since injective

images of Borel sets under continuous (and even Borel measurable) maps are Borel by a

previous lemma.

The Lusin-Novikov theorem can also be shown for Hausdorff spaces X,Y with a very

similar proof.

Definition 4.9 (Topological group). A topological group G = (G, ·, 1) is a group with a

topology such that · and −1 are continuous. We will equip every countable group with the

discrete topology, making it into a topological group.

Definition 4.10 (Group actions). Suppose that G = (G, ·, 1) is a group.

(1) A Borel (continuous) action of G on X is a Borel (continuous) map G×X → X,

(g, x) 7→ g · x with (gh) · x = g · (h · x) for all g, h ∈ G and x ∈ X.

(2) If G acts on X, let EG = {(x, y) | ∃g ∈ G g · x = y}.

Definition 4.11. Let Aut(X) denote the group of Borel automorphisms of X.

Definition 4.12. An equivalence relation E is countable if all its equivalence classes are

countable.

Lemma 4.13. There is a partition X2 \ idX =
F
n∈ω An × Bn with An, Bn Borel and

An ∩Bn = ∅.

Proof. It is sufficient to prove this for X = ω2, since all uncountable Polish spaces are

Borel isomorphic. Let (sn)n∈ω enumerate <ω2 without repetitions. Let An = N
s
a
n 0

and

Bn = N
s
a
n 1

. �

Theorem 4.14 (Feldman-Moore). Suppose that E is a countable Borel equivalence re-

lation on X. Then there is a countable group G and a Borel action of G on X with

E = EG.

Proof. Let E =
S
n∈ω Rn where each Rn is Borel and (Rn)x is countable for all x ∈ X

and n ∈ ω by Lusin-Novikov. We can assume that the sets Rn are pairwise disjoint.

Let X2 \ idX =
F
k∈ω Ak × Bk with Ak ∩ Bk = ∅ and Ak, Bk Borel by the previous

lemma. Let

Em,n,k = {(x, y) ∈ E | (x, y) ∈ Rm, (y, x) ∈ Rn, x 6= y, (x, y) ∈ Ak ×Bk}.
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Then E \ idX =
F
m,n,k Em,n,k. Each Em,n,k is the graph of some Borel isomorphism

fm,n,k : Am,n,k → Bm,n,k. In fact fm,n,k = fn � Am,n,k and f−1
m,n,k = fm � Bm,n,k.

We extend each fm,n,k to a Borel automorphism of X as follows. Let

hm,n,k(x) =

8>>>>><>>>>>:
fm,n,k(x) if x ∈ Am,n,k,

f−1
m,n,k(x) if x ∈ Bm,n,k,

x otherwise.

Let G ⊆ Aut(X) denote the (countable) group generated by all hm,n,k. Then E ⊆ G by

the definition of G, and EG ⊆ E since E is an equivalence relation. �
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