13. Problem sheet for Set Theory, Winter 2012

Prof. Dr. Peter Koepke, Dr. Philipp Schlicht Mathematisches Institut, Universität Bonn, 14.01.2013

Problem 47.

- (a) Determine the class of infinite cardinals κ such that the intersection of finitely many cub subsets of κ is cub.
- (b) Determine the class of infinite cardinals κ such that Fodor's Lemma holds for κ.

Problem 48. Suppose (P, \leq) is a partial order of size κ without maximal elements. A set $C \subseteq P$ is unbounded in P if $\forall x \in P \exists y \in C \ y \not\leq x$. Show that there is a unbounded wellordered chain $C \subseteq P$.

Problem 49.

- (a) If $2^{\aleph_n} < \aleph_{\omega}$ for all $n < \omega$, show that $2^{\aleph_{\omega}} = \aleph_{\omega}^{\aleph_0}$.
- (b) Let $f(\gamma) = \delta$ with $\prod_{\alpha < \gamma} \aleph_{\alpha} = \aleph_{\delta}$. Under GCH show
 - (1) $f(\gamma) = \gamma + 1$ for $\gamma \in Lim$ using König's theorem.
 - (2) $f(\gamma + 1) = \gamma + 1$ for $\gamma \in Lim$.
 - (3) $f(\alpha + 2) = \alpha + 1$ for all $\alpha \in Ord$.

Problem 50. Suppose κ is a regular infinite cardinal. Recall the definition of filters in Definition 75.

- A filter F on κ is free if $\{\alpha\} \notin F$ for all $\alpha < \kappa$.
- A filter F on κ is an *ultrafilter* if $X \in F$ or $\kappa \setminus X \in F$ for all $X \in \mathcal{P}(\kappa)$.

Show

- (a) A set $F \subseteq \mathcal{P}(\kappa)$ is a κ -complete ultrafilter on κ if and only if the map $\mu_F \colon \mathcal{P}(A) \to \{0,1\}$ with $\mu_F^{-1}(\{1\}) = F$ is a κ -additive measure.
- (b) If F is a κ -complete free ultrafilter on κ , then $card(X) = \kappa$ for all $X \in F$.

There are 6 points for each problem. Please hand in your solutions on Monday, January 21 before the lecture.