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Problem 43. Use the methods of the proof of Silvers Theorem to show

(a) Let F ⊆
∏
α<λAα almost disjoint, card(Aα) ≤ κ++

α . Then card(F) ≤
κ++.

(b) Let ω < λ = cof(κ) < κ ∈ Card. Let 2µ = µ++ for all ω ≤ µ ∈ κ ∩ Card.

Then 2κ ≤ κ++.

Problem 44. Suppose S ⊆ ω1 is stationary. Show

(a) There are arbitrarily large α ∈ S with sup(S ∩ α) = α.

(b) For every limit ordinal α < ω1, let Cα denote the set of limit ordinals

γ < ω1 such that for all β < γ there is a closed set C with

(i) C ∩ β = ∅,
(ii) otp(C) = α+ 1,

(iii) max(C) = γ, and

(iv) C \ {γ} ⊆ S.

Then Cα contains a cub subset of ω1.

Conclude that for any α < ω1, there is a closed set C ⊆ S with otp(C) = α+ 1.

Problem 45. Let [µ]κ denote the set of all subsets of µ of cardinality κ. A subset

C ⊆ µκ is called cofinal if for all x ∈ [µ]κ there is some y ∈ C with x ⊆ y. Show for

all infinite cardinals κ ≤ µ: If C is cofinal in [µ]κ, then card([µ]κ) = card(C) · 2κ.

Problem 46. The cofinality of the partial order ([µ]κ,⊆) is the least size of a

cofinal subset of [µ]κ.

(a) Calculate the cofinality of the partial orders ([ℵn+1]ℵn ,⊆) and ([ℵn]ℵ0 ,⊆)

for all n ∈ ω.

(b) Show that the cofinality of ([ℵω]ℵ0 ,⊆) is at least ℵ+
ω .

There are 6 points for each problem. Please hand in your solutions on Monday,

January 14 before the lecture.


