9. Problem sheet for Set Theory, Winter 2012

Prof. Dr. Peter Koepke, Dr. Philipp Schlicht Mathematisches Institut, Universität Bonn, 03.12.2012

Problem 31. Show that the sets $\{f \mid f : \omega \to 2\}$, $\{f \mid f : \omega \to \omega, f \text{ bijective }\}$, $\{f \mid f : \omega \to \omega, f \text{ surjective }\}$, and $\{f \mid f : \mathbb{R} \to \mathbb{R}, f \text{ continuous}\}$ have the same cardinality.

Problem 32. Suppose A is a set and κ is a cardinal. Define:

- $[A]^{\kappa} = \{ X \subseteq A \mid card(X) = \kappa \},\$
- $[A]^{<\kappa} = \{X \subseteq A \mid card(X) < \kappa\}, \text{ and }$
- $[A]^{\leq \kappa} = \{X \subseteq A \mid card(X) \leq \kappa\}.$

Show: if A and κ are infinite and $\kappa \leq card(A)$, then $card([A]^{\kappa}) = card([A]^{\leq \kappa}) = card(A)^{\kappa}$ and $card([A]^{<\kappa}) = \sup\{card(A)^{\lambda} \mid \lambda < \kappa, \ \lambda \in Card\}.$

Problem 33. Show $\kappa < \kappa^{cof(\kappa)}$ by disproving the existence of a surjection $f: \kappa \to \kappa^{cof(\kappa)}$ by diagonalization, without using König's Theorem.

Problem 34. Prove $\Pi_{n < \omega} \aleph_n = \aleph_{\omega}^{\aleph_0}$, $\Pi_{\alpha < \omega + \omega} \aleph_{\alpha} = \aleph_{\omega + \omega}^{\aleph_0}$, and $\Pi_{\alpha < \omega_1 + \omega} \aleph_{\alpha} = \aleph_{\omega_1 + \omega}^{\aleph_1}$.

There are 6 points for each problem. Please hand in your solutions on Monday, December 10 before the lecture.