8. Problem sheet for Set Theory, Winter 2012

Prof. Dr. Peter Koepke, Dr. Philipp Schlicht
Mathematisches Institut, Universität Bonn, 26.11.2012

Problem 27. Prove:
(a) If α is an ordinal, then $T C(\alpha)=\alpha$ and $T C(\{\alpha\})=\alpha+1$.
(b) If $(X,<)$ is a well-ordered set and $Y \subseteq X$, then $\operatorname{otp}(Y,<) \leq \operatorname{otp}(X,<)$, where otp denotes the order type.
(c) If α is a countable limit ordinal, then there is a strictly increasing sequence $\left(\beta_{i} \mid i \in \omega\right)$ with $\alpha=\sup _{i \in \omega} \beta_{i}$.

Problem 28. Define $+: V \times V \rightarrow V$ and $\cdot: V \times V \rightarrow V$ by

- $x+y=x \cup\{x+z \mid z \in y\}$ and
- $x \cdot y=\bigcup_{z \in y}(x \cdot z+x)$.

Show:
(a) + and \cdot extend ordinal addition and multiplication.
(b) $x+(y+z)=(x+y)+z$ for all $x, y, z \in V$.

Problem 29. Show:
(a) The set of algebraic numbers is countable.
(b) The set of transcendental numbers has the same cardinality as \mathbb{R}.
(c) The set of open subsets of \mathbb{R} has the same cardinality as \mathbb{R}.

Problem 30. A set X is called Dedekind infinite if there is an injective but not surjective function $f: X \rightarrow X$.
(a) Prove in ZF that every Dedekind infinite set is infinite.
(b) Work in ZF plus the Axiom of countable choice: $\forall x(\overline{\bar{x}} \leq \omega \rightarrow \exists g$ (g is a function with domain $x \wedge \forall u \in x(u \neq \emptyset \rightarrow g(u) \in u))$. Suppose X is infinite. Let $f(n)$ denote the set of all injective functions $t: n \rightarrow X$ for $n \in \omega$. Show that $f(n)$ is nonempty for each n. Show that X is Dedekind infinite.

There are 6 points for each problem. Please hand in your solutions on Monday, December 3 before the lecture.

