8. Problem sheet for Set Theory, Winter 2012

Prof. Dr. Peter Koepke, Dr. Philipp Schlicht Mathematisches Institut, Universität Bonn, 26.11.2012

Problem 27. Prove:

- (a) If α is an ordinal, then $TC(\alpha) = \alpha$ and $TC(\{\alpha\}) = \alpha + 1$.
- (b) If (X, <) is a well-ordered set and $Y \subseteq X$, then $otp(Y, <) \leq otp(X, <)$, where *otp* denotes the order type.
- (c) If α is a countable limit ordinal, then there is a strictly increasing sequence $(\beta_i \mid i \in \omega)$ with $\alpha = \sup_{i \in \omega} \beta_i$.

Problem 28. Define $+: V \times V \to V$ and $:: V \times V \to V$ by

- $x + y = x \cup \{x + z \mid z \in y\}$ and
- $x \cdot y = \bigcup_{z \in y} (x \cdot z + x).$

Show:

- (a) + and \cdot extend ordinal addition and multiplication.
- (b) x + (y + z) = (x + y) + z for all $x, y, z \in V$.

Problem 29. Show:

- (a) The set of algebraic numbers is countable.
- (b) The set of transcendental numbers has the same cardinality as \mathbb{R} .
- (c) The set of open subsets of \mathbb{R} has the same cardinality as \mathbb{R} .

Problem 30. A set X is called *Dedekind infinite* if there is an injective but not surjective function $f: X \to X$.

- (a) Prove in ZF that every Dedekind infinite set is infinite.
- (b) Work in ZF plus the Axiom of countable choice: ∀x(x̄ ≤ ω → ∃g (g is a function with domain x ∧ ∀u ∈ x(u ≠ Ø → g(u) ∈ u))). Suppose X is infinite. Let f(n) denote the set of all injective functions t: n → X for n ∈ ω. Show that f(n) is nonempty for each n. Show that X is Dedekind infinite.

There are 6 points for each problem. Please hand in your solutions on Monday, December 3 before the lecture.